System Identification and Data Analysis: An Introduction
System Identification and Data Analysis: An Introduction. Seminar of two hours for the Nanjing University of Aeronautics and Astronautics - NUAA
Abstract
- This talk provides a comprehensive and coherent description of the theory, methodology and practice of System Identification and Data Analysis, which represents the science of building mathematical models of dynamic systems by observing input/output data. It puts the user in focus, giving the necessary background to understand the theoretical foundation and emphasising the practical aspects of the options and choices that face the user.
Keywords
- System identification, data analysis, identification models, identification experiment, model validation, structure selection.
Talk's Topics
Downloads
General References and Textbooks
-
SID, "System Identification Toolbox". System Identification Graphical User Interface for Matlab (pdf format file).
-
System Identification: Theory for the User, Lennart Ljung - Springer, 1999.
-
Model-based Fault Diagnosis in Dynamic Systems Using Identification Techniques, S. Simani, C. Fantuzzi, R. J. Patton - Springer, 2003.
-
System Identification, T. Soderstrom, P. Stoica, Prentice Hall International, Cambridge, 1989
Fundamental Publications on System Identification and Data Analysis
Books
- Ljung, L. (1999). System Identification: Theory for the User (2nd ed.). Prentice Hall, Upper Saddle River, NJ, USA.
- Ljung, L., Glad, T. (2021). Modeling and Identification of Dynamic Systems. Studentlitteratur AB, Lund, Sweden.
- Soderstrom, T., Stoica, P. (1989). System Identification. Prentice Hall International, Hemel Hempstead, UK.
- Sintelon, R., Schoukens, J. (2012). System Identification: A Frequency Domain Approach (2nd ed.). Wiley-IEEE Press, Hoboken, NJ, USA.
- Nelles, O. (2001). Nonlinear System Identification: From Classical Approaches to Neural Networks. Springer, Berlin, Germany.
- Goodwin, G.C., Payne, R.L. (1977). Dynamic System Identification: Experiment Design and Data Analysis. Academic Press, New York, NY, USA.
Journal Articles
- Schoukens, J., Ljung, L. (2019). Nonlinear system identification: A user-oriented roadmap. IEEE Control Systems Magazine, 39(6), 28 - 99.
- Pillonetto, G., Ljung, L., Chen, T. (2023). Deep networks for system identification: A survey. Annual Reviews in Control, 56, 242 - 264.
- Wahlberg, B., Ljung, L. (2018). Algorithms and performance analysis for stochastic Wiener system identification. Automatica, 95, 277 - 289.
- Brunton, S.L., Proctor, J.L., Kutz, J.N. (2016). Sparse Identification of Nonlinear Dynamical Systems with Control (SINDYc). IFAC-PapersOnLine, 49(18), 710 - 715.
- Pillonetto, G., Dinuzzo, F., Chen, T., De Nicolao, G., Ljung, L. (2014). Kernel methods in system identification, machine learning and function estimation: A survey. Automatica, 50(3), 657 - 682.
- Ljung, L. (2010). Perspectives on system identification. Annual Reviews in Control, 34(1), 1 - 12.
- Verdult, V., Ljung, L. (2005). Nonlinear state-space system identification with application to neural networks. Automatica, 41(11), 1771 - 1784.
- Ljung, L. (2008). Perspectives on the relation between artificial intelligence and system identification. IFAC Proceedings Volumes, 41(2), 1 - 12.
- Gevers, M., Ljung, L. (1986). Optimal experiment designs with respect to the intended model application. Automatica, 22(5), 543 - 554.
Software Resources
- Ljung, L. (2024). System Identification Toolbox (version 10.1). MathWorks, Natick, MA, USA. (PDF format file).
-