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Abstract In this contribution we give an overview
and discussion of the basic steps of System Identifi-
cation. The four main ingredients of the process that
takes us from observed data to a validated model are:
(1) The data itself, (2) The set of candidate mod-
cls, (3) The criterion of fit and (4) The validation
procedure. We discuss how these ingredients can be
blended to a useful mix for model-building in prac-
tice.

1 Introduction

Here is an archetypical problem in science and human
learning:” We are shown a collection of vector pairs
(u@e); =)t =1,... N}. Call this "the training set”.
We are then shown a new value z(/V+1) and are asked
to name a corresponding value y(N+1).” The variable
¢ could be thought of as time, but could be anything.
The vectors y(t) and z(t) may take values in any sets
(finite sets or subsets of R" or anything else) and the
dimension of z(t) could very well depend on t (and
could be unbounded). The formulation covers most
kinds of classification and model building problems.

How to solve this problem? The mathematical mod-
elling approach is to construct a function g (t, z(t))
based on the "training” set, and to use this function
for pairing y¥(t) to new z(t):

§(t) = g (t. (1)) (1)

Where do we get the function g from? Essentially we
have to search for it in a family of functions that is
described (parametrized) in terms of a finite number
of parameters. These parameters will be denoted by
. The family of candidate model functions will be
called a model structure, and we write the function as

g(t,8,2(t)) (2)

The value y(t) is thus matched against the "candi-
date” g(t,@,z(t)) :

y(t) ~ g(t,8,2(t)} (3)

We shall also use the notation
§(216) = g(t, 8, =(t)) (4)

to stress that g is a “predicted” or “guessed” y-value.
The search for a gond model function is then carried
out in terms of the parameters 8, and the chosen value
fxn gives us

an(t, z(t) = g(t,8n,x(1)) (3)

The process of going from observed data to a math-
ematical model is thus fundamental in science and
engineering. In the control area this process has been
termed “System Identification” and the objective is
then to find dynamical models (difference or differen-
tial equations) from observed input and output sig-
nals. 1ts basic features are however common with gen-
eral model building processes in statistics and other
sciences.

System Identification has been an active research area
for more than thirty years. It has matured and many
of the techniques have become standard tools in con-
trol and signal processing engineering. The “main-
stream approach” is described e.g. in [14] and [27}.
Over the past few years there has been a signifi-
cantly renewed interest in the area with topics like
“ynknown-but-bounded” disturbances, [24] [17), set
membership techniques {5], [21] subspace techniques
[22], Hoo-identification [23], [10], worst case analysis
[8], [16], as well as how to deal with unmodeled dy-
namics [20].

The procedure is characterized by four basic ingredi-
ents:

1. The observed data

2. A set of candidate models

3. A criterion of fit

4. Validation
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Figure 1: Results form test flights of the new Swedish
aircraft JAS-Gripen, developed by SAAB Military
Aircraft AB, Sweden. From above) Pitch rate. b)
Elevator angle. c¢) Canard angle. d) Leading edge
flap.

We shall in the sequel discuss these items more
closely.

2 The Data

The area of system identification begins and ends
with real data. Data required to build models and
to validate models. The result of the modelling pro-
cess can be no better than what corresponds to the
information contents in the data.

Let us take a look at two data sets:

Example 1 An unstable aircraft. Figure I shows
some results from test flights of the new Swedish oir-
craft JAS-Gripen, developed by SAAB Military Air-
craft AB, Sweden. The problem is to use the informa-
tion in these data to determine the dynamical proper-
ties of the aircraft for fine-tuning regulators, for sim-
ulations, and so on. Of particular interest are the
gerodynamical derivatives.

Example 2 Vessel dynamics. See Figure 2. The
problem is to determine the residence time in the
buffer vessel. The pulp spends about {8 hours total in
the process, and knowing the residence time in the dif-
ferent vessels is important in order to associate var-
ious portions of the pulp with the different chemical
actions that have taken place in the vessel at different
times. (The x-number is a quality property thet in
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Figure 2: From the pulp factory at Skutskir, Sweden.
The pulp flows continuously through the plant via
several buffer tanks. From above: a) The x-number
of the pulp flowing into a buffer vessel. b) The «-
number of the pulp coming out from the buffer vessel.
¢} Flow out from the buffer vessel. d) Level in the
buffer vessel.

this contezt can be seen as a marker allowing us to
trace the pulp.)

3 The Set of Models: Model
Structures

The single most important step in the identification
process is to decide upon a medel structure, i.e., a set
of candidate models. In practice typically a whole lot
of them are tried out and the process of identification
really becomes the process of evaluating and choos-
ing between the resulting models in these different
structures.

It is natural to distinguish between three types of
model structures:

1. Black-box structures

9. Structures from physical modelling

3. Structures from semi-physical modelling
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3.1 Black-box structures

A black-box structure is one where the parameteriza-
tion in terms of a parameter vector 4 is chosen so that
the family of candidate models covers as “many com-
mon and interesting” ones as possible. No particular
attention to the actual application is then paid. For
a linear system (a linear mapping from past data to
future ones) we could for example think of choosing
the parameters as the impulse response coefficients,
of a finite impulse response model

M
§(t19) =3 Bpu(t - k) (6)

k=1

Here u(t) is the input to the process and §(t|8) is the
model’s predicted or “guessed” output at time ¢. y(f)
will be the actual output. More common in control
applications is the ARX black box structure for linear
systems:

9(t0) = ~a1y(t — 1) —aqy(t — 2} —. ..

—any{t—n)+byu(t - 1)+ ...+ bpu(t —m) (7)
“the mother of all dynamical model structures”.

In general we can write a black box structure concep-
tually as

M
§(t18) = Y 6uhy(2t1) (8)
k=1 -
ie. as some kind of function expansion. In the gen-
eral case the basis functions {h;} may also depend
on #. In most cases the A, are also constrained to be
functions of a fixed dimensional vector (2t} (like

he(z*~1) = hy(p(2*71)),

Pl = (¥t - 1},...,p(t —wu{t — 1),...,ult — u))

It is instructive to distinguish between two principally
different basis functions:

» Global: Each of the h; have support in the whole
p-space

» Local: Each of the h; has support only in a small
local box in the ¢-space.That is, hi(y) is zero
unless o belongs to a certain neighborhood (that
depends on k).

Among black-box structures that use global basis
functions are all the usual linear black box madels,
Volterra series expansions and so on.

The local basic functions models can be visualized
as a multidimensional table: The -space has been
split up into a number of boxes. A new observation

(t) then falls into one of these boxes, the one corre-
sponding to say h, and the predicted output is then
taken as 6 (or possibly interpolated, taking into ac-
count few neighboring boxes). The sizes and loca-
tions of the boxes can be determined with the aid
of estimation data. The extreme case is when the
boxes are determined so that exactly one data point
p(tyt =1..., N has fallen in each box: this is the so
called nearest neighbor approach [30]. All this is well
established in the statistical literature under names
of “non-parametric regression” and “density estima-
tion” [28), [3].

Neural network model structures, e.g. [19] represent
a spectacular revival of these techniques. So calied
radial basis networks correspond to localized bases
{where the “boxes” overlap like Gaussian distribution
functions), while the feed-forward sigmoid network
formally would use global basis functions (although
the “dynamic coffects” really are localized).  Fuzzy
modelling [13] is again an example of localized ba-
sis functions with typically polynornial interpolation
rules, which are inherited by the “membership func-
tion”. .

It is worth stressing that these new techniques of neu-
ral net modelling and fuzzy identification represent
useful realization of non-linear black box modelling
with some new particular structures, but at the same
time they definitely fall into a very old and classical
framework of estimation techniques (See, e.g. [15],

(2].)

3.2 Structures from physical mod-
elling

In case we have physical insight into the properties
of the system to be identified, it is natural to exploit
this: “Don‘t estimate what you already know!” Ba-
sically we then write down those physical laws and
relationships that describe the systemn. Most often
they are then summarized in a state space form where
the parameters are unknown physical constants in the
description. The identification process is then to es-
timate these constants.

3.3 Semi-physical model structures

The logical route to utilize available physical knowl-
edge may be quite laborious. It is then tempting to
instead try some simple black-box structures, such
as the ARX model (7) (“Try Simple Things First”).
This is quite OK, but it should in any case be com-
bined with physical insight. Here is a toy example to
illustrate the point:




«Suppose we want to busld a model for how the volt-
age applied to an electric heater affects the temper-
sture of the room. Physical modelling entails writ-
ing down all equations relating to the power of the
peater, heat transfer, heat convection and so on. This
involves severel equations, expressions and unknoun
heat transfer coefficients and so on. A simple black-
boz approach would instead be o use, say the ARX-
model (7) with u cs the applied voliage and y the room
temperature. But that‘s teo simple! A moment’s re-
flection reveals that it’s the heater power rather than
the voltage that gives the temperature change. Thus
use (7) with u= squared voltage and y= room tem-
perature”

I would like to coin the term semi-physical modelling
for introducing non-linear transformation of the raw
measurement, based on high-school physics and com-
mon sense. The transformed measurements are then
used in black-box structures such as the ARX struc-
ture.

Clearly semi-physical modelling is in frequent use. It
is however also true that many failures of identifica-
tion are indeed to be blamed on not applying this
principle.

3.4 Hybrid structures

Of particular current interest is to conceive model
structures that are capable of dealing both with
dynamic effects, described by differential/difference
equations and with logical constraints, “the ifs and
the buts” of the system. Not so many concrete re-
sults have yet been obtained in this area, but quite
intense work is going on now. We may point to some
work on using three models and pattern recognition
for these hybrid model structures: [29], [26].

4 The Criterion of Fit

The system identification problem really is a variant
of the following archetypical problem in science and
human learning: “We are shown a collection of vector
pairs

M{jye)ie(t)], t=1,2...N)

Call this “the training set”. We are then shown a new
value (N +1) and are asked to name a corresponding
value y(N + 1)"

The variable ¢ could be thought of as time, but could
be anything. The vectors y(t) and o(t) may take
values in any sets (finite sets or subsets of R™ or any-
thing else) and the dimension of () could very well

depend on ¢ (and could be unbounded). The formu-
lation covers most kinds of classification and model
building problems.

How to solve this problem? The mathematical mod-
elling approach is to construct a function ga (¢, p(t))
based on the "training” set, and to use this function
for pairing y(t) to new (t):

#(t) = gn(t,0(t)) (9)
Where do we get the function g {from?

Basically, we have to follow the process desctibed in
the previous section, and carry out the search for g in
a family of functions that is parameterized in terms of
a finite number of parameters, i.e., a model structure.
We thus match the measured value y(t) against the
candidate g(t, 8, ¢(t)) = §(1|8)

v(t) ~ §(216)

How shall we proceed to match these two? There are
essentially two approaches. We can assume that the
variables are related by

y(t) = §(¢16} + v(t) (10)

where v(t} is the effect of unmeasured inputs that in-
fluence the system

The unmeasured input v is vsually thought of as “dis-
turbances and noise”. Clearly we need some sort of
assumptions about the character of v, in order to pro-
ceed to find a good value of 8, based on the informa-
tion in z!. There are two basic approaches to such
assumptions.

e Non-probabilistic: Constrain the set of possible
signals {v(t)} in some way, like

()< C vt (11

In general we may write for the “allowed” dis-
turbaces:

v € V(8) (12)

e Probabilistic: Assign probabilities to the differ-
ent possible {v(¢)} sequences. That is, describe
{v{t)} as a random process with known or pa-
rameterized probability distribution:

_vhas pdf p,(-,8) (13)

The non-probabilistic approach

Given a model description (10) and some constraint
on possible {v{t)}-sequences (such as (11)) the iden-
tification problem is conceptually very simple:



Find all those values of @, such that (10) holds with
a v subject to (12). This gives

el (14)

Calculating 1y could of course be an overwhelming
task. There is a rather extensive literature on various
ways to do this. Most often one has to be content with
an over bound 3,

05 C Q.
with a more simple version of (10), viz
y(t) = 67(t) + u(t) (15)
o(t) = [~y(t=1},..., ~y(t-n), u(t-n) o u(t-m)|T
(16)

and with the simple constraint (11).  The ap-
proach has been called “unknown-but-bounded”
noise, “set membership identification” and “optinal
algorithms".  See among many roferences [25] [18),
(12], [11).

The probabilistic approach

Given a model description like (10) and a probabilis-
tic measure (13) for v, we have of course indirectly
specified a probabilistic measure. Indeed, the mea-
sure can be explicitly given as

t -
logpz:(2*,6) = 3" log £, (e(k, 6), 8) (17)
k=1

where
€(t,8) = y(t) - §(2)9) (18)
which gives the logarithm of the likelihood criterion.

A pragmatic approach

A more pragmatic approach to estimating the dynam-
ics of a system is simply to postulate a predictor model
structure, ie. look for a description of the observed

data within a family of models
§(216) = g.(2*,6) (19)

where the prediction of y(t) is denoted by %(t}6). The
function g is based on observations available at time
t-1, o

2= (y(t ~ 1), u(t-1),... 1%(0), u(0)) (20)

3ad is an arbitrary (differentiable) function of these
data and of the parameter vector §. The actual out-
D(U; will then differ from the prediction by an error
et

() = §(£l6) + e(t) (21)

e |

We then seek that value of @ that has the best track
record in achieving good predictions

N
. . 1
On =agmin = 3 6(t,6,c(1,6) (g0

=]

€(t,0) = y(t) — §(e)6) (23

It is clear that by invoking a probabilistic framework,
ie. by assigning a pdf to {e(t)} in (21) the pragmatic
estimate (22) can be seen as an ML estimate (17) -
(18).

It is also clear that by choosing

0 |zj<cC

oo |z|>C (21

£t 8, ) = {
the method {22) will pick out those # which are con-
sistent with the assumption |e(t)] < C in {20) for ali
U< 1< N, Thes the non-probabilistic approach also
fits into (22).

Most “traditional” control oriented descriptions’ of
System Identification follow this mixture of pragmatic
and probabilistic approaches. See e.g. [14] and [27].

5 Model Validation

It is not enough to come up with a nominal model 6,
from (22) - we must also have a measure of its reliabil-
ity. Model validation is the process of examining the
model, assessing its quality and possibly rejecting its
use for the purpose in question. In a sense this could
be viewed as the essential process of identification -
the estimation phase is really just a means to provide
candidate models that might pass the needle’s eye of
validation.

Model validation has at least these different objec-
tives:

1. To decide if the model is “good enough” for the
intended application

2. To decide how “far from the true system descrip-
tion” the model might be

3. To decide whether the model and the data indeed
are consistent with assumptions about the model
structure,

These objectives partly overlap, but it is still possible
to single out basic techniques:

1. The most obvious and pragmatic way to decide
if 2 model is good enough is to test how well it js



able to reproduce validation data {data that were
not used to estimate the model) in simulation or
prediction. The user can then by eye inspection
decide if the fit is “good enough”. In my mind
this is the prime validation tool.

9. To determine error bounds — how far is the true
gystem from the model - is a fundamentally diffi-
cult question. If we adopt a probabilistic setting
and assume that the true system is to be found
within the chosen structure it becomes a mat-
ter to see how much the stochastic disturbances
might have affected the model. The covariance
matrix of the asymptotic distribution is classi-
cally used for the error bounds in this case, This
covariance matrix is generally given by

con{fin} ~ B (Dleovi IO~ (25)

for the structure {21). If we (according to 3)
below) cannot disprove that the true system can
be represented in the chosen structure it is still
reasonable to use the measure (25).

3. To test if the data and the model are consistent
with the model structure assumptions, is again a
more straightforward task. Basically we compute
the residuals y(t)—§(t|fn) = €(t) from the model
and a (validation) data set and check if

{a) |e(t)] < C in the deterministic setting (11)

(b} €(t) and u(t — r} are independent random
variables, in the probabilistic setting (u is
the input to the system).

The latter test is one of many residual analysis
tests that can be performed, and this is standard
statistical practice, see e.g. [4].

A quite important aspect of Model Validation that
has raised considerable current interest is that of how
to deal with unmodeled dynamics. See, e.g. [6] and
{7]. A very insightful recent discussion is given in [20].

A model structure is always too simple to describe a
true system. Thus we always have to deal with model
errors. These consist of two parts

1. Errors arising from the “unmeasured input”. We
call these the random error or the variance error

2. Errors arising from too sitnple a model structure.
We call these errors bias error (or unmodeled
dynamies).

The total error of the model is from a statistical point
of view the sum of (the squared) bias error and the
variance error:

feld) = fo(d) + fou(d) (26)

Here d is a variable that reflects the model complexity.
(such that a larger value of d means a more flexible
model structure)

The following chain of reasoning is taken from [9]:
It is natural to assume that f, decreases and f, in-
creases with d, and that the product f, f, decreases
with d (the bias error decreases more rapidly than the
variance error increases). It is also natural to seek a
model complexity that minimizes the mear square
error fit. However, under the given assumptions

d" = argmin f.(d"} = fuo(d”) € fu(d") (27)

that is, the variance error dominates the bias error
for such a choice of model structure.

In [9] it is also proven that a modei that passes a
typical residual analysis test is also such that the bias
error is dominated by the variance error,

"I'he message of this analysis is consequently that for
a valideted model the bias error is no larger than
the variance error. Moreover, the variance error can
be estimated from data. It is then another mat-
ter that the user may like a simpler model for de-
sign/simulation purposes. But the total error for such
a simplified model can then be assessed via its dis-
tance to a validated model.

6 Back to Data: The Practical
Side of Identification

It follows from our discussion that the most essential
element in the process of identification ~ once the data
have been recorded - is to try out various model struc-
tures, compute the best model in the structures; using
(22), and then validate this model. Typically this has
to be repeated with quite a few different structures
before a satisfactory model can be found.

While one should not underestimate the difficulties of
this process, I suggest the following simple procedure
to get started and gain insight into the modeis.

1. Find out a good value for the delay between in-
put and output, e.g. by using correlation analy-
sis.

2. Estimate a fourth order linear model with this
delay using part of the data, and simulate this
model with the input and compare the model’s
simulated output with the measured ouiput over
the whole data record. In MATLAB language
this is simple,

z = [y ul;
compare(z,arx(z(1:200,:),[4 4 11));




T

If the model/system is unstable cr has integrators,
use prediction over a reasonable large time horizon
instead of simulation.

Now, either of two things happen:

e The comparison “looks good”. Then we can be
confident that with some extra work — trying out
different orders, and various noise models ~ we
can fine tune the model and have an acceptable
model quite soon. Let me add here that I am
amazed by the large amount of applications that
fall into this category.

e The comparison “does not look good”. Then we
must do further work. There are three basic rea-
sons for the failure.

1. A good description needs higher order linear
dynamics. This is actually in practice the
least likely reason, excopt {or systems with
mechanical resonances. One then obviously
has to try higher order models or focus on
certain frequency bands by band pass filter-
ing.

2. There are mare signals that significantly aof-
fect the output. We must then lock for what
these signals might be, check if they can be
measured and if so include them among the
inputs. Signal sources that cannot be traced
or measured are called “disturbances” and
we simply have to live with the fact that
they will have an adverse effect on the com-
patrisons.

3. Some important non-linearities have been
overlooked. 'We must then resort to semi-
physical modelling to find out if some of
the measured signals should be subjected
to non-linear transformations. If no such
transformations suggest themselves, one
might have to try some non-linear black-box
model, like a neural network.

Clearly, this advice does not cover all the art of iden-
tification, but it is the best half page summary of the
practical process of identification that I can offer.

Example 3 Aircraft dynamics

Let us try the recipe on the aircraft data in figure 1!
Picking the canard angle only as the input, estimat-
ing a fourth order model based on the dats points 90
to 180, gives figure 3. (We use 10-step ahead pre-
diction in this example since the models are unstable
- as they should be, JAS has unstable dynamics in
this flight case). It does not “look good”. Let us try
alternative 2: More inputs. We repeat the procedure

[} 0 40 80 0 100 120 140 180 180

Figure 3: Dashed line: Actual Pitch rate. Solid
line: 10 step ahead predicted pitch rate, based on
the fourth order model from canard angle only.
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Figure 4: As figure 3 but using all three inputs.

using all three inputs in figure 1. That is, the model
is computed as

arx([y ul u2 w3}, [4444111])

on the same date set. The comparison is shown in
figure 4. It “looks good”. By further fine-tuning, as
well as using model structures from physical modeling,
only slight improvements are obtained.

Example 4 Buffer vessel dynamics

Let us now consider the pulp process of figure 2. We
use the k-number before the vessel as input and the
k-number efter the vessel as output. The delay is pre-
liminarily estiriuted to 12 samples. Our recipe, where
@ fourth order linear model is estimated using the first
200 samples and then simulated over the whole record
gives figure 5. It does not look good.

Some reflection shows that this process indeed must be
non-linear (or time-varying): the flow and the vessel
level definitely affect the dynamics. For example, if



Figure 5: Dashed line: x-number after the vessel, ac-
tual measurements. Solid line: Simulated x-number
using the input only and a fourth order linear model
with delay 12, estimated using the first 200 data
points.

the flow was a plug flow (no mizing) the vessel would
have a dynamics of a pure delay equal to vessel volume
divided by flow.

Let us thus resample the date accordingly, i.e. so that
a new sample is taken (by interpolation from the orig-
inal measurement,) equidistantly in terms of integrated
flows divided by volurne. In MATLARB terms this will
be :

z = [y,u]; pf = flovw./level;
=1:length(z)
newt =
tablel([cumsum(pt),t], [p£{1)sum:(p£)}’ );
nevz = tablel([t,z], newt);

We now apply the same procedure to the resampled
data. This gives figure 6. This “looks good”. Some-
what better numbers can then be obiained by fine-
tuning the orders.

7 Conclusions

The area of process identification is one where real
practical application and rather advanced mathemat-
ical tools and perspectives meet. The meeting place
is really the software into which many years’ research
has been packaged. There are now many successful
such packages commercially available. They have be-
come standard tools in many industrial applications.
This again stresses that it is the engineer’s perspec-
tive that is the ultimate one in this area.

Figure 6: Same as figure 5 but applied to resampled
data
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