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Abstract

The control devices which are nowadays exploited to improve the overall performance of indus-

trial processes involve both sophisticated digital system design techniques and complex hardware

(input-output sensors, actuators, components and processing units). In such a way, the probabil-

ity of failure occurrence on such equipment may result signi�cant and an automatic supervision

control should be used to detect and isolate anomalous working conditions as early as possible.

Since the early 1970's, the problem of fault detection and isolation in dynamic processes has

received great attention and a wide variety of model-based approaches has been proposed and

developed.

Model-based techniques have been widely recognized as powerful approaches for fault diagno-

sis and require a realistic mathematical model of the monitored system. An e�ective model-based

fault diagnosis system should manage noises and modeling uncertainties, always present in real

situation.

On the other hand, for the diagnosis of faults, mathematical models of the process under

investigation are required, either in state space or input-output

A state space description of the system provides general and mathematically rigorous tools

for system modeling and residual generation, which may be used in fault diagnosis of industrial

systems, for both the deterministic and the stochastic case.

Residuals should then be processed to detect an actual fault condition, rejecting any false

alarms caused by noise, spurious signals and modeling uncertainties.

This thesis aims to de�ne a comprehensive methodology for actuator, component and sen-

sor fault detection and isolation by using an output estimation approach, in conjunction with

residual processing schemes, which include a simple threshold detection, in deterministic case,

as well as statistical analysis when data are a�ected by noise.

The �nal result consists in a fault detection and isolation strategy based on diagnostic meth-

ods to analytically generate redundant residuals. A number of strategies for the design of residual

generators are then proposed.

The suggested methods do not require any physical knowledge of the processes under obser-

vation since the mathematical description of the monitored system is obtained by means of a

system identi�cation scheme based on equation error and errors{in{variables models. The latter

identi�cation approach gives a reliable model of the plant under investigation, as well as the

variances of the input{output noises a�ecting the data.

It is worthy to note how this work presents a novel point of view of the model-based fault

diagnosis. The new aspect consists in exploiting linear system identi�cation procedures in con-

nection with the model-based residual generation problem.

The diagnostic tools presented in this thesis are well illustrated using practical application

examples and the results show the e�ectiveness of the developed techniques.
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Finally, even if industrial processes are nonlinear, instead of exploiting complicated nonlin-

ear models obtained by modeling techniques in connection with nonlinear observers, this work

concerns mainly the development of linear identi�ed prototypes for the design of linear output es-

timators. Moreover, if the number of studies addressing nonlinear fault diagnosis theory clearly

increases over the years, unfortunately it is important to note the lack of nonlinear process

applications using these nonlinear models.
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Symbols and Abbreviations

The symbols and abbreviations listed here are used unless otherwise stated.

ARMAX AutoRegressive Moving Average eXogenous

ARX AutoRegressive eXogenous

BFDF Beard Fault Detection Filter

DOS Dedicated Observer Scheme

EE Equation Error

EIV Errors-In-Variables

FDD Fault Detection and Diagnosis

FDI Fault Detection and Isolation

FFT Fast Fourier Transform

GK Gustafson-Kessel

GOS Generalized Observer Scheme

IGV Inlet Guided Vane

KF Kalman Filter

LS Least Squares

MIMO Multi-Input Multi-Output

MISO Multi-Input Single-Output

MLP MultiLayer Perceptron

NN Neural Network

OO Output Observer

OLS Ordinary Least Squares

RBF Radial Basis Function

RLS Recursive Least Squares

SISO Single-Input Single-Output

TS Takagi-Sugeno

UIKF Unknown Input Kalman Filter

UIO Unknown Input Observer
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Chapter 1

Introduction

1.1 Background

There is an increasing interest in the development of model-based fault detection and fault

diagnosis methods, as can be seen in the many papers submitted to the IFAC (International

Federation of Automatic Control) Congress and IFAC Symposium SAFEPROCESS [1, 2, 3].

The development began at various places in the early 1970's. Beard [4] and Jones [5] reported

on observer-based fault detection in linear systems.

A summary of this development is given by Willsky [6]. Then Rault and his sta� [7] have

considered the application of identi�cation methods to the fault detection of jet engines. Corre-

lation methods were applied to leak detection [8].

A �rst book appeared on model-based methods for fault detection and diagnosis in chemical

processes [9]. Sensor failure detection based on the inherent analytical redundancy of multiple

observers was shown by Clark [10].

The use of parameter estimation techniques for fault detection of technical systems was

proved by Hohmann [11], Bakiotis [12], Geiger [13], Filbert and Metzger [14].

The development of process fault detection methods based on modeling, parameter and state

estimation was then summarized by Isermann [15].

Parity equation-based methods were treated early [16], and then further developed by Patton

and Chen [17], Gertler [18], H�oing and Pfeufer [19].

Frequency domain methods are typically applied when the e�ects of faults as well as the

disturbances have frequency characteristics which di�er from each other and thus the frequency

spectra serve as criterion to distinguish the faults [20, 21].

The development of fault detection methods up to the corresponding times is summarized

in the books of Pau [22], Patton et al. [23], Chen and Patton [24], Gertler [25], Isermann [26]

and in survey papers by Gertler [27], Frank [28] and Isermann [29].

Within IFAC, the increasing interest in this �eld was taken into account by creating �rst in

1991 a SAFEPROCESS (fault detection supervision and safety for technical processes) Steering

Committee which then became a Technical Committee in 1993.

A �rst IFAC SAFEPROCESS Symposium was organized in Baden-Baden, Germany in 1991,

and a second one in Espo, Finland in 1994. The third symposium was scheduled for Hull, UK

in 1997 and the next one will be held in Budapest, Hungary in 2000.

Another series of IFAC Workshop exist for \Fault detection and supervision in the chemical

17
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process industries". Meetings have been held in Newark, Delaware and Newcastle, UK between

1992 and 1995.

This �rst chapter of the thesis tries to propose a common terminology in the fault diagnosis

framework and to comment on some developments in the �eld of fault detection and diagnosis

based on papers selected during 1991-1999.

1.2 Nomenclature

By going through the literature, one recognize immediately that the terminology in this �eld

is not consistent. This makes it di�cult to understand the goals of the contributions and to

compare the di�erent approaches.

The SAFEPROCESS Technical Committee therefore discussed this matter and tried to �nd

commonly accepted de�nitions. Some basic de�nitions can be found, for example, in the RAM

(Reliability, Availability and Maintainability) dictionary [30], in contributions to IFIP [31].

Below, some de�nitions used through this thesis are suggested. They are based on the dis-

cussion within the Committee. However, these proposal are preliminary, because the discussions

are still going on.

1. States and Signals

Fault

An unpermitted deviation of at least one characteristic property or parameter of the

system from the acceptable, usual or standard condition.

Failure

A permanent interruption of a system's ability to perform a required function under

speci�ed operating conditions.

Malfunction

An intermittent irregularity in the ful�llment of a system's desired function.

Error

A deviation between a measured or computed value of an output variable and its true

or theoretically correct one.

Disturbance

An unknown and uncontrolled input acting on a system.

Residual

A fault indicator, based on a deviation between measurements and model-equation-

based computations.

Symptom

A change of an observable quantity from normal behavior.

2. Functions

Fault detection

Determination of faults present in a system and the time of detection.
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Fault isolation

Determination of the kind, location and time of detection of a fault. Follows fault

detection.

Fault identi�cation

Determination of the size and time-variant behavior of a fault. Follows fault isolation.

Fault diagnosis

Determination of the kind, size, location and time of detection of a fault. Follows

fault detection. Includes fault detection and identi�cation.

Monitoring

A continuous real-time task of determining the conditions of a physical system, by

recording information, recognizing and indication anomalies in the behavior.

Supervision

Monitoring a physical and taking appropriate actions to maintain the operation in

the case of fault.

3. Models

Quantitative model

Use of static and dynamic relations among system variables and parameters in order

to describe a system's behavior in quantitative mathematical terms.

Qualitative model

Use of static and dynamic relations among system variables in order to describe a

system's behavior in qualitative terms such as causalities and if-then rules.

Diagnostic model

A set of static or dynamic relations which link speci�c input variables, the symptoms,

to speci�c output variables, the faults.

Analytical redundancy

Use of more (not necessarily identical) ways to determine a variable, where one way

uses a mathematical process model in analytical form.

4. System properties

Reliability

Ability of a system to perform a required function under stated conditions, within a

given scope, during a given period of time.

Safety

Ability of a system not to cause danger to persons or equipment or the environment.

Availability

Probability that a system or equipment will operate satisfactorily and e�ectively at

any point of time.



20 CHAPTER 1. INTRODUCTION

5. Time dependency of faults

Abrupt fault

Fault modeled as stepwise function. It represents bias in the monitored signal.

Incipient fault

Fault modeled by using ramp signals. It represents drift of the monitored signal.

Intermittent fault

Combination of impulses with di�erent amplitudes.

6. Fault typology

Additive fault

Inuences a variable by an addition of the fault itself. They may represent, e.g.,

o�sets of sensors.

Multiplicative fault

Are represented by the product of a variable with the fault itself. They can appear

as parameter changes within a process.

1.3 Fault Detection and Diagnosis Methods

A traditional approach to fault diagnosis in the wider application context is based on hardware

or physical redundancy methods which use multiple sensors, actuators, components to measure

and control a particular variable. Typically, a voting technique is applied to the hardware

redundant system to decide if a fault has occurred and its location among all the redundant

system components. The major problems encountered with hardware redundancy are the extra

equipment and maintenance cost, as well as the additional space required to accommodate the

equipment.

In view of the conict between reliability and the cost of adding more hardware, it is possible

to use the dissimilar measured values together to cross-compare each other, rather than replicat-

ing each hardware individually. This is the meaning of analytical or functional redundancy. It

exploits redundant analytical relationships among various measured variables of the monitored

process.

In analytical redundancy scheme the resulting di�erences generated from the comparison of

di�erent variables is called a residual or symptom signal. The residual should be zero when

the system is in normal operating condition and should be di�erent from zero in case of fault

occurrence. This property of the residual is used to determine whether or not faults have

occurred.

Consistency checking in analytical redundancy is normally achieved through a comparison

between a measured signal with its estimation. The estimation is generated by a mathematical

model of the considered plant. The comparison is done using the residual quantities which are

computed as di�erences between the measured signals and the corresponding signals generated

by the mathematical model.

In Figure (1.1) the hardware and analytical redundancy concept in illustrated.
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Figure 1.1: Comparison between hardware and analytical redundancy schemes.

In practice, the most frequently used diagnosis method is to monitor the level (or trend) of the

residual and taking action when the signal reached a given threshold. This method of geometrical

analysis, whilst is simple to implement, has few drawbacks. The most serious is that, in case

of noises, input variations and change of operating point of the monitored process, false alarms

are possible.

The major advantage of the model-based approach is that no additional hardware compo-

nents are required in order to realize a Fault Detection and Identi�cation (FDI) algorithm. A

model-based FDI algorithm can be implemented via software on a process control computer. In

many cases, the measurements necessary to control the process are also su�cient for the FDI

algorithm so that no additional sensors have to be installed.

Analytical redundancy makes use of a mathematical model of the system under investigation

and it is therefore often referred to as the model-based approach to fault diagnosis.

1.4 Model-Based Fault Detection Methods

The task consists of the detection of faults on the technical process including actuators, com-

ponents and sensors by measuring the available input and output variables u(t) and y(t). The

principle of the model-based fault detection is depicted in Figure (1.2).

Basic process model-based FDI methods are:

(1) Output observers (OO, estimators, �lters),

(2) Parity equations,

(3) Identi�cation and parameter estimation.

They generate residuals for output variables with �xed parametric models for method (1), �xed

parametric or nonparametric models for method (2) and adaptive nonparametric or parametric

models for method (3).

An important aspect of these methods is the kind of fault to be detected. As noted above,

one can distinguish between additive faults which inuence the variables of the process by a

summation and multiplicative faults which are products with the process variables. The basic

methods show di�erent results, depending on these types of faults.

If only output signals y(t) can be measured, signal model-based methods can be applied.

E.g. vibrations can be detected, which are related to rotating machinery or electrical circuits.

Typical signal model-based methods of fault detection are:
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Figure 1.2: Scheme for the model-based fault detection.

(4) Bandpass �lters,

(5) Spectral analysis (FFT),

(6) Maximum-entropy estimation.

The characteristic quantities or features from fault detection methods show stochastic behavior

with mean values and variances. Deviations from the normal behavior have then to be detected

by methods of change detection (residual analysis, Figure (1.2)) like:

(7) Mean and variance estimation,

(8) Likelihood-ratio test, Bayes decision,

(9) Run-sum test.

1.5 Fault Diagnosis Methods

If several symptoms change di�erently for certain faults, a �rst way of determining them is to

use classi�cation methods which indicate changes of symptom vectors.

Some classi�cation methods are:

(10) Geometrical distance and probabilistic methods,

(11) Arti�cial neural networks,

(12) Fuzzy clustering.

When more information about the relations between symptoms and faults is available in form

of diagnostic models, methods of reasoning can be applied. Diagnostic models then exist in the
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form of symptom-fault causalities, e.g. in the form of symptom-fault tree. The causalities can

be expressed as IF-THEN rules. Then analytical as well as heuristic symptom (from operators)

can be processed. By considering them as vague facts, probabilistic or fuzzy set descriptions

lead to a uni�ed symptom representation. By forward and backward reasoning, probabilities

or possibilities of faults are obtained as a result of diagnosis. Typical approximate reasoning

methods are:

(13) Probabilistic reasoning,

(14) Possibilistic reasoning with fuzzy logic,

(15) Reasoning with arti�cial neural networks.

This very short consideration shows that many di�erent methods have been developed during

the last 20 years. It is obvious that many combinations of them are possible.

Based on more than 100 publications during the last 5 years, it can be stated that parameter

estimation and observer-based methods are the most frequently applied techniques for fault

detection, especially for the detection of sensor and process faults. Nevertheless, the importance

of neural network-based and combined methods for fault detection is steadily growing. In most

applications, fault detection is supported by simple threshold logic or hypothesis testing. Fault

isolation is often carried out using classi�cation methods. For this task, neural networks are

being more and more widely used.

The number of applications using nonlinear models is growing, while the trend of using

linearized models is diminishing. It seems that analytical redundancy-based methods have their

best application areas in mechanical systems where the models of the processes are relatively

precise. Most nonlinear processes under investigation belong to the group of thermal and uid

dynamic processes. The �eld of applications on chemical processes is only slightly developed,

but the number of applications is growing. The favorite linear process under investigation is the

DC motor. In general, the trend is changing from applications to safety-related processes with

many measurements, as in nuclear reactors or aerospace, to applications in common technical

processes with only a few sensors. For diagnosis, classi�cation and rule-based reasoning methods

are the most important and the use of neural network classi�cation as well as fuzzy logic-based

reasoning is growing.

1.6 Summary of FDI Applications

Because of the many publications and increasing number of applications, it is of interest to show

some trends. Therefore, a literature study of IFAC FDI-related Conferences was performed.

Contributions taking into account the applications reported in Table (1.1) were considered.

The type of faults considered are distinguished according to Table (1.2).

Among all contributions, the fault detection methods were classi�ed as in Table (1.3).

The change detection and fault classi�cation methods are indicated by Table (1.4).

The reasoning strategies for fault diagnosis are reported in Table 1.5.

The contributions considered are summarized in Table (1.6). The evaluation has been limited

to the Fault Detection and Diagnosis (FDD) of laboratory, pilot and industrial processes.

Table (1.6) shows that among mechanical and electrical processes, DC motor applications

are mostly investigated. Parameter estimation and observer-based methods are used in the
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Application Number of contributions

Simulation of real processes 55

Large-scale pilot processes 44

Small-scale laboratory processes 18

Full-scale industrial processes 48

Table 1.1: FDI applications and number of contributions.

Fault type Number of contributions

Sensor faults 69

Actuator faults 51

Process faults 83

Control loop or controller faults 8

Table 1.2: Fault type and number of contributions.

Method type Number of contributions

Observer 53

Parity space 14

Parameter estimation 51

Frequency spectral analysis 7

Neural networks 9

Table 1.3: FDI methods and number of contributions.

Evaluation method Number of contributions

Neural networks 19

Fuzzy logic 5

Bayes classi�cation 4

Hypothesis testing 8

Table 1.4: Residual evaluation methods and number of contributions.

Reasoning strategy Number of contributions

Rule based 10

Sign directed graph 3

Fault symptom tree 2

Fuzzy logic 6

Table 1.5: Reasoning strategies and number of contributions.

majority of applications on these kind of processes, followed by parity space and combined

methods. Thermal and chemical processes are investigated less frequently.
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FDD Number of contributions

Milling and grinding processes 41

Power plants and thermal processes 46

Fluid dynamic processes 17

Combustion engine and turbines 36

Automotive 8

Inverted pendulum 33

Miscellaneous 42

DC motors 61

Stirred tank reactor 27

Navigation system 25

Nuclear process 10

Table 1.6: Applications of model-based fault detection.

Table (1.3) shows that parameter estimation and observer-based methods are used in nearly

70% of all application considered. Neural networks, parity space and combined methods are

signi�cantly less often applied.

More than 50% of sensor faults are detected using observer-based methods, while parameter

estimation and parity space and combined methods play a less important role. For the detection

of actuator faults, observer-based methods are mostly used, followed by parameter estimation

and neural networks methods.

Parity space and combined methods are rarely applied. In general, there are fewer appli-

cations for actuator faults than for sensor or process faults. The detection of process faults is

mostly carried out with parameter estimation methods. Nearly 50% of all the applications con-

sidered use parameter estimation-based methods for detection of process faults. Observer-based,

parity space and neural networks-based methods are used less often for this class of faults.

Among all the described processes, linear models have been used much more than nonlinear

ones. On processes with nonlinear models, observer-based methods are applied most, but parity

equations and neural networks do also play an important role. Parity space and combined

methods are only used to a minor extent. On processes with a linear or linearized models,

parameter estimation and observer-based methods are mostly used. Parity space and combined

methods are also used in several applications, but not to the same extent as observer-based and

parameter estimation methods.

Taking into account the considered systems, the number of nonlinear process applications

using nonlinear models are decreasing. For linear processes, no signi�cant change can be stated.

The applications of fault-detection methods for nonlinear processes, used mostly observer-

based and parameter estimation, more than parity space methods. The use of neural networks

and combinations seems to be increasing.

Concerning the fault diagnosis methods, in recent years, the �eld of classi�cation approaches,

especially with neural networks and fuzzy logic has steadily been growing. Also, rule-based rea-

soning methods are increasingly being used in fault diagnosis. A growing application of fuzzy

rule-based reasoning can be stated. Applications using neural networks for classi�cation are

increasing and the trends are analogous to the increasing number of nonlinear process investiga-
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tions. Nevertheless, the classi�cation of generated residuals seems to remain the most important

application area for neural networks.

1.7 Model Uncertainty and Fault Detection

Model-based FDI makes use of mathematical models of the system. However, a perfectly accu-

rate mathematical model of a physical system is never available. Usually, the parameters of the

system may vary with time and the characteristics of the disturbances and noises are unknown

so that they cannot be modeled accurately. Hence, there is always a mismatch between the

actual process and its mathematical model even under no fault conditions. Such discrepancies

cause di�culties in FDI applications, in particular, since they act as sources of false alarms and

missed alarms. The e�ect of modeling uncertainties, disturbances and noises is therefore the

most crucial point in the model-based FDI concept and the solution to this problem is the key

for its practical applicability [24].

To overcome these problems, a model-based FDI has to be insensitive to modeling uncer-

tainty. Sometimes, a reduction of the sensitivity to modeling uncertainty does not solve the

problem since the sensitivity reduction may be associated with a reduction of the sensitivity to

faults [24, 25]. A more meaningful formulation of the FDI problem is to increase insensitivity

to modeling uncertainty in order to provide increasing fault sensitivity.

The di�culties introduced by model uncertainties, disturbances and noises in model-based

FDI have been widely considered during the last 10 years by both academia and industry [25].

A number of methods have been proposed to tackle this problem, for example the Unknown

Input Observer (UIO), eigenstructure assignment and parity relation methods.

An important task of the model-based FDI scheme is to be able to diagnose incipient faults

in a system. With respect to abrupt faults, incipient faults may have a small e�ect on residuals

and they can be hidden by disturbances. On the other hand, hard faults can be easier detected

because their e�ects are usually larger than modeling uncertainties and a simple �xed threshold

is usually enough to diagnose their occurrence analyzing residuals.

The presence of incipient faults may not necessarily degrade the performance of the plant,

however, they may indicate that component should be replaced before the probability of more

serious malfunctions increases. The successful detection and diagnosis of incipient faults can

therefore be considered a challenge for the design and evaluation of FDI algorithms.

1.8 Outline of the Thesis

To detect and isolate faults in a dynamic system, based on the use of an analytical model, a

residual signal has to be used. It is derived from a comparison between real measurements

and the relative estimates (generated by the model). The modeling uncertainty problem can

be tackled by designing a FDI scheme, whose residuals are insensitive to uncertainties whilst

sensitive to faults. On the other hand, a model with satisfactory accuracy can be estimated

using identi�cation procedures [32, 33, 34].

The aim of the design of a FDI scheme is to reduce the e�ects of uncertainties on the residuals

and to enhance the e�ects of faults acting on the residuals. The main aim of this thesis is to

develop a residual generator for model-based fault diagnosis of a process by means of input

and output signals. An accurate model of the process under investigation will be estimated
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using identi�cation procedures from data a�ected by noises and acquired from simulated and/or

actual plants. The thesis consists of 6 chapters and the main contributions are presented in

Chapters 3, 4 and 5. Chapters are devoted to the particular problem in residual generation and

the are organized as follows.

Chapter 2 reviews the state of the art of the model-based FDI. The FDI problem is formal-

ized in an uniform framework by presenting the mathematical description and de�nitions. The

fundamental issue of model-based methods is the generation of residuals using the mathematical

model of the monitored system. By analyzing residuals, fault diagnosis can be performed. Some

structures of the residual generator are presented in this chapter in order to give ideas how

to implement the residual generation. A residual generator can be designed for achieving the

required diagnosis performances, e.g. fault isolation and disturbance decoupling.

In order to design the residual generator, some assumptions about the modeling uncertainties

need to be made. The most frequently used hypothesis is that the modeling uncertainty is

expressed as a disturbance term in the system dynamic equation. The disturbance vector is

unknown whilst its distribution matrix can be estimated by using identi�cation procedures.

Based on this assumption, the disturbance decoupling residual generator can be design by using

unknown input observer [24, 35].

Chapter 3 demonstrates how to apply dynamic system identi�cation methods in order to

estimate an accurate model of the monitored system.

The presented FDI methods require, in fact, a linear mathematical model of the process

under investigation, either in state space or input-output form.

In particular, since state{space descriptions provide general and mathematically rigorous

tools for system modeling, they may be used in the residual generator design, both for the

deterministic case (UIO and OO) [24, 28, 36, 37] and the stochastic case (Kalman �lters (KF)

and unknown input Kalman �lters (UIKF)) [38, 39, 40].

In such a manner, the suggested FDI tool does not require any physical knowledge of the

process under observation since the linear models are obtained by means of an identi�cation

scheme which exploits equation error (EE) and errors{in{variables (EIV) models. In this situ-

ation, the identi�cation technique is based on the rules of the Frisch scheme [41], traditionally

exploited to analyze economic systems. This approach, modi�ed to be applied to dynamic sys-

tem identi�cation [42, 43, 44], gives a reliable model of the plant under investigation, as well as

the variances of the input{output noises a�ecting the data.

For the nonlinear case, piecewise a�ne and fuzzy models will be used as prototypes for the

identi�cation. In particular, the multiple model approach, using several local a�ne submodels

each describing a di�erent operating condition of the process, is exploited.

Chapter 4 aims to de�ne a comprehensive methodology for actuator, process component

and sensor fault detection. It is based on an output estimation approach, in conjunction with

residual processing schemes, which include a simple threshold detection, in deterministic case, as

well as statistical analysis when data are a�ected by noise. The �nal result consists in a strategy

based on fault diagnosis methods well{known in literature to generate redundant residuals.

In particular, this chapter studies the approach to residual generator with the aid of OO,

UIO, KF and UIKF. The residual is de�ned as the output estimation error, obtained by di�erence
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between the measurement of one output and the relative estimate. This chapter presents also

the design of such estimators both in the deterministic and stochastic environment.

The diagnosis procedure may be further specialized for actuators, input or output sensors

and process components. In fact, the fault diagnosis of input sensors and actuators uses a bank

of UIO in high signal to noise ratio conditions or a bank of UIKF, otherwise. The i{th UIO or

UIKF is designed to be insensitive to the i{th input of the system. On the other side, output

sensor and process component faults a�ecting a single residual can be detected by means of a

OO or a classical KF, driven by a single output and all the inputs of the system.

Chapter 5 shows how the proposed algorithms can be applied to the FDI of actuators,

process components and input-output sensors of industrial plants.

In particular, the FDI techniques presented in this thesis have been tested on time series

of data acquired from di�erent simulated and real industrial gas turbine working in parallel

with electrical mains, whose linear mathematical description is obtained by using identi�cation

procedures.

Results from simulation show that minimum detectable faults are perfectly compatible with

the industrial target of this application.

Chapter 6 summarizes the contributions and achievements of the thesis providing some

suggestions for possible further research topics as an extension of this work.

1.9 Conclusions

The �rst chapter of the thesis tried to suggest a common terminology in the fault diagnosis

framework in order to comment on some developments in the �eld of fault detection and diagnosis

based on papers selected during the last 10 years.

The structure of the 6 chapters composing this thesis and the main contributions presented

were briey outlined.



Chapter 2

Model-Based Fault Diagnosis

Techniques

2.1 Introduction

The model-based approach to fault detection in dynamic systems has been received more and

more attention over the last two decades, both in a research context and also in the domain of

application studies on real plants. There is a great variety of techniques in the literature, based

on the use of mathematical models of the process under investigation and exploiting modern

control theory [24].

The most important issue in model-based fault detection concerns the accuracy of the model

describing the behavior of the monitored system. This issue has become a central research theme

over recent years. Modeling uncertainty arises from the impossibility of obtaining complete

knowledge and understanding of the monitored process, in connection with the presence of

noises on process measurements.

Since this thesis focuses on the development and the design of model-based FDI algorithms,

this chapter studies basic principles of model-based fault detection. As shown in Chapter 3,

a linear model for the monitored process will be obtained by means of linear dynamic system

identi�cation methods.

Attention in �rst turned to the modelling of the process with fault typology reported in

Section 1.2. Residual generation is then identi�ed as an essential problem in model-based FDI,

since, if it is not performed correctly, some fault information could be lost. A general framework

for the residual generation is also recalled.

Residual generators based on di�erent methods, such as (state) output observers, parity

relations and parameter estimations, are just special cases in this general framework. Some

commonly used residual generation methods are discussed and their mathematical formulation

summarized in the following sections.

The chapter introduces and analyses some basic problems and methods in FDI. The main

task of FDI are considered and a description of model-based FDI methods is given.

29
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2.2 Model-Based FDI Techniques

According to de�nitions given in Section 1.2, model-based FDI can be de�ned as the detection,

isolation and characterization of faults on a system by means of methods which extract features

from measured signals and use process mathematical models.

Faults are thus detected by setting �xed or variable thresholds on residual signals generated

from the di�erence between actual measurements and their estimates obtained by using the

process model.

A number of residuals can be designed with each having sensitivity to individual faults

occurring in di�erent locations of the system. The analysis of each residual, once the threshold

is exceeded, then leads to fault isolation.

Figure (2.1) shows the general and logic block diagram of model-based FDI system. It

comprises two main stages of residual generation and residual evaluation. This structure was

�rst suggested by Chow in [45] and now is accepted by the fault diagnosis community.

Figure 2.1: Structure of model-based FDI system.

The two main block are described as follows:

1. Residual generation: this block using available inputs and outputs from the monitored

system has to generate residual signals. This residual (or fault symptom) should indicate

any fault occurrence. It should be normally zero or close to zero under no fault condition,

whilst is distinguishably di�erent from zero when a fault occurs. This means that the

residual is characteristically independent of process inputs and outputs, in ideal conditions.

The procedure used to compute residuals is called a residual generation, as depicted in

Figure (2.1).

Such a procedure is thus exploited to extract fault symptoms from the system, with the

fault symptom represented by the residual signal.

2. Residual evaluation: This block examines residuals for the likelihood of faults and

a decision rule is then applied to determine if any faults have occurred. The residual

evaluation block, shown in Figure (2.1), may perform a simple threshold test on the

instantaneous values or moving averages of the residuals, or it may consist of statistical

methods, e.g., generalized likelihood ratio testing or sequential probability ratio testing [2,

6, 46, 47].
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Most of the contribution in the �eld of quantitative model-based FDI focuses on the

residual generation problem, since the decision-making becomes relatively easy if residuals

are well-designed.

The thesis will present a number of strategies for the quantitative residual generation

problem for FDI of industrial processes. These model-based procedures do not require a

deep insight into the monitored plant, since a process model is obtained by identi�cation

procedures.

2.3 Mathematical Description of the System

This thesis is concerned with the FDI of Multi-Input Single-Output (MISO) and Multi-Input

Multi-Output (MIMO) dynamic systems. The �rst step in the model-based approach consists

in describing the system under investigation from a mathematical point of view.

The FDI technique presented in this thesis considers open-loop system model. In fact, as

depicted in Figure (2.2) the system model required in model based FDI can be seen as open-loop

system although the system can be considered in the control loop.

Figure 2.2: Fault diagnosis and control loop.

The information required by the FDI system is related to the open-loop system, hence it is

not necessary to consider the controller in the design of a FDI scheme. Once the actual process

inputs and outputs u�(t) and y�(t) (not available) are measured by the input and output sensors,

FDI theory can be treated as an observation problem of u(t) and y(t).

In particular, the open-loop subsystem considered for FDI design is illustrated in Figure (2.3).

It is separated into four di�erent parts: actuators, process, input and output sensors.

The dynamics of the monitored system, shown in Figure (2.3), can be described by the following

discrete-time, time-invariant, linear dynamic system in the state-space form�
x(t+ 1) = Ax(t) + Bu�(t)

y�(t) = Cx(t)
(2.1)

where x(t) 2 <n is the system state vector, u�(t) 2 <r is the actuation signal vector from the

actuators and y�(t) 2 <m is the actual (not available) system output vector. A, B, and C are

system matrices with appropriate dimension obtained by identi�cation procedure.

With reference to Figure (2.3), when a component fault fc(t) occurs in the system, its dy-

namics can be described as

x(t+ 1) = Ax(t) + Bu�(t) + fc(t) (2.2)
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Actuators
y*(t)u*(t)

Output sensors

y(t)u(t)

Input sensors

Process

f (t)a f (t)c

f (t)u
f (t)y

u (t)R

Figure 2.3: The monitored system and fault topology.

The component fault represents the situation in which expression (2.1) is invalid, since some

condition changes. In some cases, it can represent a change in the system parameters, e.g. a

change in entries of the A matrix. Under this assumption, with reference to the i-th row and

the j-th column of the A matrix, the vector fc(t) can be expressed as

fc(t) = Ii�aijxj(t) (2.3)

where xj(t) in the j-th element of the vector x(t) and Ii is a n-dimensional vector with all zero

except a `1' in the i-th element.

Under the assumption that actuators are fault free, the actual inputs and outputs of the

process u�(t) = uR(t) and y
�(t) are usually not directly accessible. Sensors have to be used to

measure the system inputs and outputs. As it is shown in Figure (2.3), by neglecting sensor

dynamics, they can be described mathematically as�
u(t) = u�(t) + fu(t)

y(t) = y�(t) + fy(t)
(2.4)

In real applications variables u�(t) and y�(t) are measured by means of sensors whose outputs,

due to technological reasons, are a�ected by noise.

The measured signals u(t) and y(t), without faults, are thus modeled as�
u(t) = u�(t) + ~u(t)

y(t) = y�(t) + ~y(t)
(2.5)

in which the sequences ~u(t) and ~y(t) are usually described as white, zero{mean, uncorrelated

Gaussian noises.

In this case Eq. (2.4) must be replaced by�
u(t) = u�(t) + ~u(t) + fu(t)

y(t) = y�(t) + ~y(t) + fy(t)
(2.6)

where the vectors fu(t) = [fu1(t) : : : fur(t)]
T and fy(t) = [fy1(t) : : : fym(t)]

T are additive signals

which assume values di�erent from zero only in the presence of faults. Usually these signals are

described by step and ramp functions representing abrupt and incipient faults (bias or drift),

respectively. By neglecting actuator block, Figure (2.4) shows the structure of the measurement

process.
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Figure 2.4: The structure of the plant sensors.

When uR(t) = u�(t) descriptions of types (2.1) and (2.5) are known as EIV models [42, 43].

It is also true that the actual actuation u�(t) of the system is not directly accessible. For

a controlled system, according to Figure (2.3), uR(t) is the input signal of the actuator, corre-

sponding to a u�(t) signal. By neglecting actuator dynamics, it can thus be described as

u�(t) = uR(t) + fa(t) (2.7)

where, similar to input-output sensor fault situation, fa(t) 2 <
r is the actuator fault vector and

u�(t) is the control command (not available).

When the system has all possible faults, by neglecting sensor noises and under the assumption

that the actuation signal u�(t) can be measured, the process model is described as

�
x(t+ 1) = Ax(t) + fc(t) +Bfu(t) +Bu(t)

y(t) = Cx(t) + fy(t)
(2.8)

On the other hand, Figure (2.5) represents the case in which the uR signal can be measured

only by the input sensors.

Actuators Plant

Input sensors Output sensors y(t)u(t)

y*(t)u*(t)u (t)
R

f (t)a
f (t)c

f (t)u f (t)y

Figure 2.5: Fault topology with actuator input signal measurement.

In such a situation, system faults are related to the process by the following system

�
x(t+ 1) = Ax(t) + Bfa(t) + fc(t) + Bfu(t) + Bu(t)

y(t) = Cx(t) + fy(t)
(2.9)
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Considering the general case, a system a�ected by all possible faults can be described by the

the following state-space model

�
x(t+ 1) = Ax(t) + Bu(t) + L1f(t)

y(t) = Cx(t) + L2f(t)
(2.10)

where entries of the vector f(t) 2 <k correspond to a speci�c fault. L1 and L2 are matrices

with appropriate dimension representing the e�ects of faults in the system. L1 and L2 can be

obtained by modelling or identi�cation procedure.

The vectors u(t) and y(t) are the measured inputs and outputs, respectively. Both vectors

are known for FDI purpose.

The distribution of the fault in the system depicted in Figure (2.3) can be described an

input-output transfer matrix representation in the following form

y(s) = Gyu(s)u(s) + Gyf (s)f(s) (2.11)

where �
Gyu(s) = C(sI�A)�1B

Gyf (s) = C(sI�A)�1L1 + L2
(2.12)

Both the general models for FDI described by Equations (2.10) and (2.11) in the time and

frequency domain, respectively, have been widely accepted in the fault diagnosis literature [23,

24, 25, 47].

The problem treated in this work regards the detection and isolation of the actuator, process,

input and output faults on the basis of the knowledge of the measured sequences u(t) and y(t).

Since the system matrices A, B and C, (2.10), in canonical forms can be obtained by multi-

variable identi�cation procedures [48], state space descriptions provide general and mathemati-

cally rigorous tools for system modeling and robust residual generation, for both the determin-

istic (noise free measurements) and the stochastic case (measurements a�ected by noises).

In case of a MIMO system, the choice of state space representations in canonical form [48]

instead of parity space methods [49] may avoid unexpected false alarm problems [50].

2.4 Residual Generator Structure

The most frequently used FDI methods exploit the a priori knowledge of characteristics of certain

signals. As an example, the spectrum, the dynamic range of the signal and its variations may

be checked. However, the necessity of a priori information concerning the monitored signals and

the dependence of the signal characteristics on unknown working conditions of the system under

diagnosis are main drawbacks of such a class of methods.

The most signi�cant contribution in modern model-based approaches is the introduction

of the symptom or residual signals, which depend on faults and are independent of system

operating states. They represent the inconsistency between the actual system measurements

and the corresponding signals of the mathematical model.

The residual generator block introduced in Figure (2.1) can be interpreted as illustrated in

Figure (2.6) [24].
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Inputs

u(t)

Outputs

y(t)
Plant

z(t)

Residuals

r(t)
W u(.),y(.)( )1 W z(.),y(.)( )

2

Figure 2.6: Residual generator general structure.

In the structure above, the auxiliary redundant signal z(t) is generated by the functionW1

�
u(�);y(�)

�
and, together with the measurement y(t), the symptom signal r(t) is computed by means of

W2

�
z(�);y(�)

�
. The following relations are satis�ed�

z(t) = W1

�
u(�);y(�)

�
r(t) = W2

�
z(�);y(�)

�
= 0

(2.13)

for the fault free case. When a fault occurs in the plant, the residual r(t) will be di�erent from

zero.

The simplest residual generator is depicted in Figure (2.7) and it is obtained when the system

W1 is a model identical to the original plant y(t) =W1

�
u(�)

�
or it is an identi�ed input-output

description for the actual process (e.g. an ARX model, see Chapter 3). In the former case,

the measurement y(t) is not required in W1 because it is a system simulator. The signal z(t)

represents the simulated output and the residual is computed as r(t) = z(t) � y(t). Since it is

an open-loop system, the disadvantage is the stability of the process simulator.

Figure 2.7: Residual generatior via system simulator.

An extension to the model-based residual generation is to replaceW1

�
u(�)

�
byW1

�
u(�);y(�)

�
, i.e.

an output estimator fed by both system input and output. In such a case, functionW1 generates

an estimation of a linear function of the output W1

�
z(�);y(�)

�
= My(t) whilst function W2 can

be de�ned as W2

�
z(�);y(�)

�
= W

�
z(t)�My(t)

�
, with W a weighting matrix.

The parity space general structure for all residual generators using the input-output transfer

matrix description was presented by Patton and Chen in [17].

The simplest and the most frequently used fault detection is obtained by performing a

residual limit value checking. It consists in comparing the signal r(t) with a threshold function
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� as follows �
r(t) � � for f(t) = 0

r(t) > � for f(t) 6= 0
(2.14)

where f(t) is the general fault vector de�ned in Eq. (2.10). If the residual exceeds the threshold,

a fault may be occurred.

This test works especially well if the process operates approximately in a steady state and

it reacts after relatively large feature, i.e. after either a large sudden or a long-lasting gradually

increasing fault.

2.5 Fault Detectability and Isolability

A successful detection of a fault is obtained if a residual has the maximal sensitivity to its

occurrence. Fault detectability conditions were stated in [24]. Such a stage is followed by the

fault isolation procedure which allows to distinguish a particular fault from others. Whilst a

single residual signal is su�cient to detect faults, a vector of residuals is usually required for

fault isolation. Faults are distinguishable or isolable using the residual set if each residual is

sensitive to a subset of faults, whilst remaining insensitive to the remaining faults.

The design technique to obtain the so-called structured residual set will be briey shown in

the following Sections.

2.6 Residual Generation Techniques

The generation of symptoms is the main issue in model-based fault diagnosis. A variety of

methods are available in literature for residual generation and this section presents briey some

of the most common methods. Most of the residual generation techniques are based on both

continuous and discrete system models, however, in this thesis, the attention is focused only on

discrete linear models.

2.6.1 Residual Generation via Parameter Estimation

In most practical cases, the process parameters are not known at all, or they are not known ex-

actly enough. Then, they can be determined with parameter estimation methods, by measuring

input and output signals, u(t) and y(t), if the basic structure of the model is known [2, 47].

a) Equation error methods

The SISO process model of order n is written in the vector form

y(t) = 	T� (2.15)

where

�T = [a1 : : : an; b1 : : : bn] (2.16)
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is the parameter vector and

	T = [y(t� 1) : : : y(t� n) u(t� 1) : : : u(t� n)] (2.17)

the discrete-time data vector.

For parameter estimation, the equation error e(t) is introduced (see Figure (2.8))

e(t) = y(t)�	T� (2.18)

or, if

y(s)

u(s)
=
B(s)

A(s)
(2.19)

is the transfer function of the process, the equation error via Laplace transformation becomes

e(s) = B̂(s)u(s)� Â(s)y(s): (2.20)

in which Â(s) and B̂(s) correspond to the estimates of A(s) and B(s).

The least square (LS) estimate

�̂ = [	T 	]�1	T y (2.21)

is obtained if the minimization of the sum of least squares is computed

J(�) =
X

k
e2(k) = eTe (2.22)

d J(�)

d �
= 0: (2.23)

The least square estimate can be also expressed in recursive form (RLS) (see e.g. [47, 51]). For

the improvement of the estimates, �ltering methods can be exploited. When measurements are

a�ected by noises, a Kalman �lter for the parameter estimation can be used [38].

B(s)____
A(s)

u(t) y(t)

A(s)^B(s)
^

Parameter
estimator

Σ
E(t)

Θ̂

Figure 2.8: Parameter estimation equation error.

b) Output error methods
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Instead of equation error computed in Eq. (2.18), the output error

e(t) = y(t)� ŷ(�; t) (2.24)

where

ŷ(�; s) =
B̂(s)

Â(s)
u(s) (2.25)

is the model output, can also be used (see Figure 2.9).

Figure 2.9: Parameter estimation output error.

Unfortunately, direct calculation of the parameter estimate � is not possible, because e(t) is

nonlinear in the parameters. Therefore, the loss function (2.24) as Eq. (2.18) has to be minimized

by numerical optimization methods. The computational e�ort is then much larger and on-line

real-time application is in general impossible. However, relatively precise parameter estimates

may be obtained.

If a fault within the process changes one or several parameters by ��, the output signal

changes for small deviations according to

�y(t) = 	T (t)��(t) + �	T (t)�(t) + �	T (t)��(t) (2.26)

and the parameter estimator indicates a change ��.

Generally, the process parameters � depend on physical process coe�cients p (like sti�ness,

damping factor, resistance, : : : )

� = f(p) (2.27)

via nonlinear algebraic equations. If the inversion of the relationship

p = f�1(�) (2.28)

exists [47, 51], changes �p of the process coe�cients can be calculated. These changes in

the coe�cients are in many cases directly related to faults. Therefore, the knowledge of �p

facilitates fault diagnosis, but is not necessary for fault detection only. Parameter estimation

can also be applied for nonlinear static process models [52].
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2.6.2 Residual Generation with Dynamic Observers

A discrete-time, time-invariant, linear dynamic model for the process under consideration is

described in state-space form �
x(t+ 1) = Ax(t) + Bu(t)

y(t) = Cx(t):
(2.29)

Here, r input signals u(t) and m output signals y(t) are assumed, as the method described is

especially suitable for multivariable process. Assuming that, as well as the structure, all process

matrices A, B and C are known, an observer is used to reconstruct the system variables based

on the measured inputs and outputs u(t) and y(t)�
x̂(t+ 1) = Ax̂(t) + Bu(t) + He(t)

e(t) = y(t)� Cx̂(t):
(2.30)

In Figure (2.10), the vector e(t) is the output error.

x x(t)+ u(t)(t+1) = A B

y x(t) = C (t)

B

u(t) y(t)

H W
e(t)

x(t+1)^

A

CΣ

Σ

y(t)^

r(t)

z
-1

x(t)^

Figure 2.10: Process and state observer.

For the state estimation error, it follows from Equations (2.30) that�
ex(t) = x(t)� x̂(t)

ex(t+ 1) = (A�HC)ex(t):
(2.31)

The state error ex(t) vanishes asymptotically

lim
t!1

ex(t) = 0 (2.32)

if the observer is stable, which can be achieved by proper design of the observer feedback H.

If the process is inuenced by disturbance and faults, by comparing Figure (2.11) and Equa-

tions (2.10), it is described by the following system�
x(t+ 1) = Ax(t) + Bu(t) + Qv(t) + L1f(t)

y(t) = Cx(t) + Rw(t) + L2f(t)
(2.33)

where v(t) is the nonmisurable disturbance vector at the input, w(t) the nonmisurable distur-

bance vector at the output, f(t) fault signals at the input and output acting through L1 and L2,

respectively. They can represent actuator, process, input and output sensor additive faults.
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Figure 2.11: MIMO process with faults and noises.

For the state estimation error, the following equations hold if the disturbances v(t) = 0 and

w(t) = 0

x(t+ 1) = (A�HC)x(t) + L1f(t)�HL2f(t) (2.34)

and the output error becomes

e(t) = Cex(t) + L2f(t): (2.35)

The vector f(t) represents additive faults because they inuence e(t) and x(t) by a summation.

In case of suddenly appearing and permanent fault signals f(t), the state estimation error

will deviate from zero. ex(t) as well as e(t) show dynamic behaviors which are di�erent for

L1f(t) and L2f(t). Both ex(t) or e(t) can be taken as residuals. In particular, the residual

e(t) is the basis for di�erent fault detection methods based on output estimation. For the

generation of residual with special properties, the design of the observer feedback matrix H is of

interest [24, 35]. Limiting conditions are the stability and the sensitivity against disturbances

v(t) and w(t). If the signals are a�ected by noises, KFs have to be applied instead of classical

observers [38].

If faults appear as changes �A or �B of the parameters, the process behavior becomes�
x(t+ 1) = (A +�A)x(t) + (B +�B)u(t)

y(t) = Cx(t)
(2.36)

while the state ex(t) and the output estimation e(t) errors�
ex(t+ 1) = (A�HC)ex(t) + �Ax(t) + �Bu(t)

e(t) = Cex(t):
(2.37)

The changes �A and �B are then multiplicative faults [1]. In this case, the changes in the resid-

uals depend on the parameter changes, input and state variable changes. Hence, the inuence

of parameter changes on the residuals is not as straightforward as in the case of the additive

faults f(t).

The following detection methods are briey summarized [1, 6, 23, 24, 47].

a) Dedicated observers for MIMO processes
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� Observer excited by one output : one observer is driven by one sensor output. The other

outputs ŷ(t) are reconstructed and compared with measured outputs y(t). This allows the

detection of single output sensor faults.

� Kalman �lter, excited by all outputs: the innovation (symptom) e(t) changes the char-

acteristics of zero mean white noise with known covariance if a fault appears. This is

detected by a hypothesis test.

� Bank of observers, excited by all outputs: several observers are designed for a de�nite fault

signal and detected by hypothesis test.

� Bank of observers, excited by single outputs: several observers for single sensors outputs

are used. The estimated outputs ŷ(t) are compared with the measured outputs y(t). This

allows the detection of multiple sensor fault (dedicated observer scheme).

� Bank of observers, excited by all outputs except one: as before, but each observer is excited

by all outputs except one sensor output, which is supervised.

b) Fault detection �lters for MIMO processes

The feedback H of the state observer in Equation (2.30) is chosen so that particular fault

signals L1f(t) change in a de�nite direction and fault signals L2f(t) in a de�nite plane [4, 5].

With directional residual vectors, the fault isolation problem consists in determining which of

the known fault signature directions the residual vector lies the closest to. The most e�ective

way to generate directional residual vectors is the use of the Beard Fault Detection Filters

(BFDF) [4, 5].

Fault detection �lters are a class of Luenberger observers with a specially designed feedback

gain matrix. It allows to obtain output estimation errors having directional characteristics

associated with some known fault directions.

These fault detection methods mostly require several measurable output signals and make

use of internal analytical redundancy of multivariable systems. Recently it was proposed to

improve their robustness with respect to process parameter changes and unknown input signals

v(t) and w(t) [53, 54].

This can be reached, for example, through �ltering the output error of the observer by

r(t) = We(t) (2.38)

together with a special design of the observer feedback H.

c) Output observers

Another possibility is the use of output observers (or UIO) in the reconstruction of the output

signals, if the estimate of the state variable x̂(t) is not of primary interest [24]. Through a linear

transformation

z(t) = Tx(t) (2.39)

the state-space representation of the observer becomes

ẑ(t+ 1) = Fẑ(t) + Ju(t) + Gy(t) (2.40)
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and the residual is determined by

r(t) = Wz ẑ(t) +Wyy(t): (2.41)

This situation is depicted in Figure (2.12).

x x(t)+ u(t)(t+1) = A B

y x(t) = C (t)

B

u(t) y(t)

z(t+1)^

Σ Σ
z(t)^

r(t)

G

F

+

++
z

-1
Wz

Wy

+

+

Figure 2.12: Process and output observer.

The state estimation error

ex(t) = ẑ(t)� z(t) = ẑ(t)� Tx(t) (2.42)

and the residuals r(t) are then designed, such that they are independent of the process states

x(t), the known input u(t) and the unknown inputs v(t) and w(t) (see Figure (2.11)). In this

way, the residuals are dependent only on additive faults f(t) [24, 25, 47].

2.6.3 Fault Detection with Parity Equations

A straightforward model-based method of fault detection is to take a model
Â(s)

B̂(s)
and to run it

in parallel to the process described by
A(s)
B(s)

, thereby forming an output error

r(s) =

 
A(s)

B(s)
�
Â(s)

B̂(s)

!
u(s): (2.43)

The methodology described is depicted in Figure (2.13(a)).

However, as for observers, the process model parameters have to be known a priori. With

reference to Figure (2.3), if
Â(s)

B̂(s)
=

A(s)
B(s)

, for additive input and output faults, the output error

then becomes

r(s) =
A(s)

B(s)
fu(s) + fy(s): (2.44)

Another possibility is to generate a polynomial error (Figure (2.13(b)))

r(s) = Â(s)y(s) � B̂(s)u(s)

= B(s)fu(s) + A(s)fy(s):
(2.45)
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(a) Output error (b) Equation error

Figure 2.13: Parity equation methods.

In both cases, di�erent time responses are obtained for an additive input or output fault. More-

over, r(s) computed by Equation (2.44) corresponds to the output error of parameter estimation

method (see Eq. (2.24)), while r(s) in Eq. (2.45) concerns the equation error of Eq. (2.18).

Equations (2.44) and (2.45) generate residuals and are called parity equations [18]. To

generate speci�c properties, the residuals can be �ltered [18, 24, 47]

rf (s) = Gfr(s): (2.46)

However, for SISO processes only one residual can be generated and it is therefore not easy to

distinguish between di�erent faults.

More freedom in the design of parity equations can be obtained if for SISO processes in-

termediate signals can be measured (2.3), or for MIMO systems. Then a state-space model is

appropriate, as shown in [25] for discrete-time models. Given the system�
x(t+ 1) = Ax(t) + Bu(t)

y(t) = Cx(t)
(2.47)

by substituting the second of Eqs. (2.47) in the �rst one and delaying several times, the following

system is obtained2
6664
y(t)

y(t+ 1)

y(t+ 2)
...

3
7775 =

2
6664
C

CA

CA2

...

3
7775x(t) +

2
6664
0 0 0 : : :

CB 0 0 : : :

CAB CB 0 : : :
...

...
...

. . .

3
7775
2
6664
u(t)

u(t+ 1)

u(t+ 2)
...

3
7775 (2.48)

Yf (t) = Tx(t) + QUf : (2.49)

In order to remove the nonmeasurable states x(t), Eq. (2.48) is multiplied by W, such that

WT = 0: (2.50)

This leads to residuals

r(t) = WYf �WQUf (t) (2.51)
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as shown in Figure (2.14).

The �ltered input and output vectors Uf and Yf are obtained by delaying the corresponding

signals. The design of the matrix W gives some freedom to generate a structured set of residuals.

One possibility is to select the elements of W such that one measured variable has no impact

on a speci�c residual. Then this residual remains small in the case of an additive fault on this

variable, and the other residuals increase [47].

x x(t)+ u(t)(t+1) = A B

y x(t) = C (t)

u(t) y(t)

Delay line Delay line

WQ Σ
+

_ W

r(t)

Figure 2.14: Parity equation methods for a MIMO model.

2.7 Change Detection and Symptom Evaluation

Because of the presence of noise, disturbances and other unknown signals acting upon the

monitored system, the measured or estimated quantities, such as signals, parameters, state

variables or residuals are usually stochastic variables Si(t), with mean value and variance [6]

�Si = EfSi(t)g; ��2i = Ef[Si(t)� �Si]
2
g (2.52)

as normal values for the fault-free process. Analytic symptoms are then obtained as changes

�Si = EfSi(t)� �Sig; ��i = Ef�i(t)� ��ig (2.53)

with reference to the normal values and t > tf , where tf is the time instant of fault occurrence.

To separate normal from faulty behavior, usually a �xed threshold

�Stol = ���S; � � 2 (2.54)

has to be selected. By this means, a compromise has to be made between the detection of

small faults and false alarms. Methods of change detection, e.g. a likelihood-ration test, Bayes

decision, fuzzy or adaptive threshold may improve the binary decision [47].

2.8 Residual Generation Problem

Although the analytical redundancy method for residual generation has been recognized as an

e�ective technique for detecting and isolating faults, the critical problem of unavoidable modeling

uncertainty has not been fully solved.
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The main problem regarding the reliability of FDI schemes is the modeling uncertainty which

is due, for example, to process noise, parameter variations and nonlinearities.

All model-based methods use a model of the monitored system to produce the symptom

generator. If the system is not complex and can be described accurately by the mathematical

model, FDI is directly performed by using a simple geometrical analysis of residuals.

In real industrial systems however, the modeling uncertainty is unavoidable. The design of

an e�ective and reliable FDI scheme should take into account of the modeling uncertainty with

respect to the sensitivity of the faults. Several papers addressed this problem. For example,

optimal robust parity relations were proposed [16, 53, 54, 55] and the threshold selector concept

was introduced [56]. Robust FDI using the disturbance decoupling technique was also used [24].

The model-based FDI technique requires a high accuracy mathematical description of the

monitored system. The better the model represents the dynamic behavior of the system, the

better will be the FDI precision. If a FDI method can be developed which is insensitive to

modeling uncertainty, a very accurate model is not necessarily needed.

All uncertainties can be are summarized as disturbances acting on the system. Although

the disturbance vector is unknown, its distribution matrix can be obtained by an identi�cation

procedure. Under this assumption, the \disturbance decoupling" principle can be exploited to

design a robust FDI scheme using the UIO [24].

In Chapters 4 and 3 identi�cation tools to improve the design of a robust residual generator

will be shown.

2.9 Fuzzy Logic and Neural Networks in FDI

Classical FDI model-based methods of FDD use static and dynamic models of the process. Faults

are supposed to appear as state changes caused by malfunctions of the components as well as

of the sensors. Such fault indices are often monitored using estimation techniques. The main

problem with these techniques is that the precision of the process model a�ects the accuracy of

the detection and isolation system as well as the diagnostic sensibility.

Rule-based expert systems have been also investigated very intensively for fault detection and

diagnosis problems [23, 47, 57, 58]. Fault diagnosis using rule-based system needs a database of

rules and the accuracy of diagnosis depend on the rules. Moreover, creating a rich and detailed

database of rules is usually a time-consuming task and many process experts are needed.

On the other hand, the majority of real industrial processes are nonlinear [24, 25, 59] and

cannot be modeled by using a single model for all operating conditions. Since a mathematical

model is a description of system behavior, accurate modeling for a complex nonlinear system is

very di�cult to achieve in practice. Sometime for some nonlinear systems, it can be impossible

to describe them by analytical equations. Instead of exploiting complicated nonlinear models

obtained by modeling techniques, it is also possible to describe the plant by a collection of

local a�ne fuzzy and non-fuzzy models [60, 61], whose parameters are obtained by identi�cation

procedures.

When the process model is only known to a certain extent of precision, pattern recognition

methods provide a convenient approach to solve the fault diagnosis problem [9, 22]. In recent

years, neural networks (NN) have been used successfully in pattern recognition as well as system

identi�cation, and they have been proposed as a possible technique for fault diagnosis, too. NN

can handle nonlinear behavior and partially known process because they learn the diagnostic
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requirements by means of the information of the training data. NN are noise tolerant and their

ability to generalize the knowledge as well as to adapt during use are extremely interesting

properties [62, 63, 64, 65, 66].

Some example processes were considered in which FDI was performed by a NN using in-

put and output measurements. In these works the NN is trained to identify the fault from

measurement patterns, however the classi�cation of individual measurement pattern is not al-

ways unique in dynamic situations, therefore the straightforward use of NN in fault diagnosis of

dynamic plant is not practical and other approaches should be investigated.

A NN could be exploited in order to �nd a dynamic model of the monitored system or

connections from faults to residuals. In the latter case, the NN is used as pattern classi�er or

nonlinear function approximator. In fact, arti�cial neural networks are capable of approximating

a large class of functions, for fault diagnosis of an industrial plant.

In this thesis, in Chapter 4, the identi�cation of fuzzy and non-fuzzy models for the system

under diagnosis as well as the application of NN as function approximator will be shown.

2.10 Summary

This chapter has presented a tutorial treatment on the basis principles of model-based FDI.

The FDI problem has been formalized in a uniform framework by presenting mathematical

description and de�nition. Within this framework, the residual generation has been identi�ed

as a central issue in model-based FDI.

The residual generator has been summarized in di�erent residual generation structures. The

ways of designing residuals for isolation have also been discussed.

The success of fault diagnosis depends on the quality of the residuals. Other FDI methods

such as fuzzy logic and qualitative modelling have been briey discussed.

Applications of the presented FDI techniques will be shown in in Chapters 4 and 5.



Chapter 3

System Identi�cation for Fault

Diagnosis

3.1 Introduction

The problem of identifying an unknown system given samples of its behavior is well-known [33,

43, 67] to be ill-posed in the sense of Hadamard [68], as its solution is neither unique nor depends

continuously on the given data.

When a priori knowledge on the characteristics of the unknown system is available, the

identi�cation procedure can be enhanced. This knowledge may act as a set of constraints shaping

the space of models so that identi�cation in this new space is a more tractable problem. As an

example, the regularity of the unknown system can be translated into smoothness constraints

of some kind, transforming the identi�cation problem into a minimization problem [69, 70].

This point of view can be successfully applied to estimate algebraic and dynamic a�ne

systems from noisy samples, by assuming certain good properties of the noise and of the sampling

process [42, 71].

The identi�cation method described in this chapter starts from the results on algebraic case

with the purpose of showing the possibility of extending the Frisch scheme [41] to dynamic

systems determining the whole family of models compatible with noisy sequences.

A frequency approach for EIV models and its application to the dynamic Frisch scheme

identi�cation in still in development [72, 73, 74].

This chapter also addresses the problem of the identi�cation of both linear and nonlinear

dynamic systems. In the case of nonlinear nonlinear systems the identi�cation will be performed

by exploiting a�ne, piecewise a�ne and fuzzy structure. The so-called Frisch scheme procedure

is exploited to estimate these models from noisy data.

3.2 The Frisch Scheme in the Algebraic Case

The �nite sequence of n variables x1, x2, � � � , xn observed at N di�erent times with N > n is

considered. If linear relations exist among these variables, they are described by models of the

type

a1x1 + a2x2 + � � �+ anxn = 0: (3.1)

47
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If X is the (N � n) matrix storing the previous measures, models (3.1) are described by the

columns of a matrix A such that

XA = 0 (3.2)

or, equivalently

XTXA = 0 (3.3)

where � = XTX is the sample covariance matrix, under a zero-mean assumption for all variables.

When the data are corrupted by noise then the rank[�] = n, so that no relation can be

obtained unless the data are modi�ed. In the Frisch scheme, the following assumptions are

added:

1. all variables are treated symmetrically and each variable is a�ected by an unknown amount

of additive noise;

2. each noise component is independent of every other noise component and of every variable.

Under these conditions, each variable xi, with i = 1; � � � ; n, is de�ned as

xi = x�i + ~xi (3.4)

where the unknown terms x�i are the true value of the i-th variable whilst ~xi, the additive

noises on this variable.

The problem of determining the true data from the available noisy sequences can thus be for-

mulated as follows.

Problem 1. Given an (n�n) symmetric positive de�nite covariance matrix �, �nd all diagonal

matrices ~� with non-negative elements elements such that �� = �� ~� � 0.

In this context, the solution of the problem is not univocally de�nite. The rank of �� may change

by varying ~�, which models the noise and, consequently, the same set of data may be linked

by di�erent numbers of linear relations. Even if it does not happen, the problem has in�nite

solutions; the rank of ��, for instance, is always equal to (n�1) if and only if ��1 can be reduced

to a matrix with strictly positive entries by the transformation L��1L with L = diag[�1]. The

solution set is the convex simplex the n vertices of which are the least-squares solutions which

can be found assuming that one variable is noisy and all others are noise-free [44].

Before solving Problem 1, the following theorem can be considered [44].

Theorem 1. Given the (n � n) symmetric positive de�nite covariance matrix �, the maximal

variance of the additive noise on the i-th variable, when all others are noise-free, is computed by

~�i =
det[�]

det[�i]
(3.5)

where �i is obtained from � by deleting its i-th row and column.

Every allowable noise covariance matrix ~� (i.e. such that �� = � � ~� � 0) de�nes a point

(�1; � � � ; �n) belonging to the �rst orthant of the noise space <n, which is mapped into one

and only one point (a1; � � � ; an) of the solution space <n. Moreover, the following result can be

proved [44].
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Theorem 2. The solution set de�ned by all points (�1; � � � ; �n) de�ned by the matrix set ~� is

a convex hypersurface belonging to the �rst orthant of the noise space the section of which, with

a plane parallel to a coordinate one, is a hyperbola segment.

Note that if noise values, corresponding to a rank of �� lower than n � 1, exist, they belong

to the hypersurface de�ned by Theorem 2. In these conditions, in the parameter space, the

solution set might be a collection of convex polyhedral sets lying in the orthants.

The hypersurface de�ned by Theorem 2 partitions the �rst orthant of the noise space into

two regions. The points over the hypersurface correspond to non-de�nite matrices ��, those

under the hypersurface to positive de�nite matrices.

3.3 The Frisch Scheme in the Dynamic Case

Let us consider a �nite sequence of the variables u1(�), � � � , ur(�), y(�) observed with a constant

sampling interval. If dynamic linear relations exist among these variables, they can be described

by models of the type

y�(t+ n) =

n�1X
i=0

�iy
�(t+ i) +

n�1X
i=0

rX
j=1

�iju
�

j (t+ i) (3.6)

which represent linear MISO discrete-time systems whose order is n and whose parameters are

�i and �ij .

At �rst, the following problem is considered.

Problem 2 (realization). Given a noiseless input{output sequence u�1(�), � � � , u
�
r(�), y

�(�) gen-

erated by a system of type (3.6), determine the order n and the parameters �i, �ij of the system.

The following vectors and matrices are thus de�ned

u�Nj (t+ k) =
�
u�j (t+ k) : : : u�j(t+ k +N � 1)

�T
(3.7)

y�N (t+ k) =
�
y�(t+ k) : : : y�(t+ k +N � 1)

�T
(3.8)

Xk(u
�

j ) =
�
u�Nj (t) : : : u�Nj (t+ k � 2)

�
(3.9)

Xk(y
�) =

�
y�N (t) : : : y�N (t+ k � 1)

�
(3.10)

��k(u
�

ju
�

j ) = XT
k (u

�

j )Xk(u
�

j ) (3.11)

��k(y
�y�) = XT

k (y
�)Xk(y

�) (3.12)

��k(y
�u�j ) = XT

k (y
�)Xk(u

�

j ) = ��Tk (u�jy
�) (3.13)

where N is assumed large enough to solve the problem considered.

Let us partition now the matrix ��k as follows

��k =

2
6664

��k(y
�y�) ��k(y

�u�1) : : : ��k(y
�u�r)

��k(u
�
1y
�) ��k(u

�
1u
�
1) : : : ��k(u

�
ry
�)

...
...

. . .
...

��k(u
�
ry
�) ��k(u

�
ru
�
1) : : : ��k(u

�
ru
�
r):

3
7775 : (3.14)
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To solve the realization problem it is possible to consider the sequence of increasing{dimension

matrices

��2; ��3; : : : ��k; : : : (3.15)

testing their singularity. As soon as a singular matrix ��k is found then n = k � 1 and the

parameters �0; : : : ; �n�1; �0j ; : : : ; �(n�1)j (j = 1; : : : ; r) describe the dependence relationship of

the (n+ 1)-th vector of ��n+1 on the remaining ones.

In Problem 2 it has been assumed thatN is large enough to avoid unwanted linear dependence

relationships due to limitations in the dimension of the involved vector spaces; this means

N � (r + 1)n + 1. If a lower number of samples is available then only a partial realization

problem can be solved.

In the noisy case the following identi�cation problem can be proposed.

Problem 3 (identi�cation). Given a noisy input-output sequence u1(�), : : : , ur(�), y(�) uni-

vocally determine, if possible, the order n and the parameters �i, �ij of a model (3.6) of the

system which has generated the noiseless sequences u�1(�), : : : , u
�
r(�), y

�(�).

Note that in the presence of noise, the procedure described for the solution of Problem 2 would

obviously be useless since matrices ��k would always be non-singular. In the Frisch scheme it is

normally assumed that

uj(t) = u�j (t) + ~uj(t); j = 1; : : : ; r

y(t) = y�(t) + ~y(t)
(3.16)

where every noise term ~uj(t), ~y(t) is independent of every other term and only uj(t) and y(t)

are known. Without loss of generality, all the variables may be assumed as having null mean

value. Consequently the generic positive de�nite matrix �k associated with the input-output

noise-corrupted sequences may always be expressed as the sum of two terms �k = ��k+
~�k where

~�k = diag[~�yIk; ~�u1Ik�1; : : : ; ~�urIk�1] � 0 (3.17)

since no correlation has been assumed among the noise samples at di�erent times. This condition

is veri�ed for additive white noise with variance ~�y and ~�uj on the input-output sequences.

Problem 4. Given a sequence of increasing{dimension
��
(r+1)k�r

�
�
�
(r+1)k�r

��
symmetric

positive de�nite covariance matrices

�2; �3; : : : �k; : : : (3.18)

�nd, for each k, all diagonal non-negative de�nite matrices

~�k = diag[~�yIk; ~�u1Ik�1; : : : ; ~�urIk�1] (3.19)

such that

��k = �k � diag[~�yIk; ~�u1Ik�1; : : : ; ~�urIk�1] � 0 : (3.20)
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It is worth observing now that, unlike the algebraic case, for each k the noise space is always

<
(r+1)
+ , while the parameter space is <(r+1)k�r.

It can be noted that for each k the solution set of relation (3.20) describes, in the �rst orthant

of the (~�y; ~�u1 ; : : : ; ~�ur) hyperplane, a hypersurface whose concavity faces the origin [44].

In the noise space, the (r+1) solutions (~�y; 0; ~�u2 ; : : : ; ~�ur), (~�y; ~�u1 ; 0; : : : ; ~�ur), � � � , (~�y; ~�u1 ;

: : : ; ~�ur�1
; 0) correspond to the limit case of noise a�ecting only the output or the input se-

quences. This case can be considered as the natural extension to the dynamic case of the

computation of least-square solutions.

Previous results hold for every value of k. Since determination of the system order requires

the increasing values of k to be tested, it is relevant to analyze the behavior of the associated

curves when k varies. This corresponds to a comparison of the admissible solution sets for

di�erent model orders. In this context the following result can be proved [44].

Theorem 3. The solution sets of condition (3.20) for di�erent values of k are non-crossing

curves.

It is also important to observe that, since it is assumes that a system (3.6) has generated the

noiseless data, for k > n all the hyper-surfaces of type (3.20) have necessarily at least one

common point, i.e. point (~�y� ; ~�u�1 ; : : : ; ~�u�r ) corresponding to the true variances ~�y� and ~�u�j of

the noise a�ecting the output and the inputs of the system. The search for a solution for the

identi�cation problem can thus start from the determination in the noise space of this point.

The following considerations can now be stated.

With reference to the diagonal non-negative de�nite matrices

~�k = diag[~�y�Ik; ~�u�1Ik�1; : : : ; ~�u�rIk�1] (3.21)

the following properties hold:

- If k � n, the matrices ��k are positive de�nite.

- If k > n, the dimension of the null space of ��k and, consequently, the multiplicity of its

least eigenvalue, is equal to (k � n).

- For k = (n + 1), matrix ��k is characterized by a linear dependence relation among its

(r+1)k � r vectors and the coe�cients which link the k-th vector of ��k to the remaining

ones are the parameters �i, �ij , with i = 0; : : : ; n� 1 and j = 1; : : : ; r, of the system (3.6)

which has generated the noiseless sequences.

- For k > (n + 1), all linear dependence relations among the vectors of the matrix ��k are

characterized by the same (r + 1)n coe�cients �i, �ij .

As an example, Figure (3.1) shows the above properties for a second order (n = 2) SISO dynamic

system. The point marked by a circle corresponds to the input-output noise variances ~�y� and

~�u� a�ecting the measurements.

It is worthy to note how this approach cannot be applied immediately to the identi�cation of

real processes, since the hypotheses on the linearity, �nite dimensionality and time independence

of the system and on the additivity and whiteness of the noise are not usually veri�ed, so that

the hyper-surfaces (3.20) have no common point for k > n. The de�nition of a suitable criterion

of model selection in such cases was suggested in [75].
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Figure 3.1: Singularity surfaces in the noisy space.

3.4 The Frisch Scheme in the MIMO Case

Multivariable system can be represented by means of canonical models of the type

y�i (t+ �i) =

mX
j=1

�ij�1X
k=0

�ijky
�(t+ k) +

rX
j=1

�i�1X
k=0

�ijku
�

j(t+ k) (3.22)

where i = 1; � � � ;m. r and m are the number of inputs and outputs of the system, respec-

tively [76]. The indices �ij � 1 satisfy the following relations:

�ij = �i for i = j

�ij = min(�i + 1; �j) for i > j

�ij = min(�i; �j) for i < j:

(3.23)

Model (3.22) decomposes the system into m interconnected subsystems the orders of which are

given by the integers �i. Such integers completely de�ne the system structure and are coincident

with the Kronecker observability invariants of any realization of the system.

Given the sequences yi(t) (i = 1; � � � ;m) and uj(t) (j = 1; � � � ; r) generated by the system of

the type (3.22), the identi�cation problem consists in univocally determining both the structure,

i.e. the set of integers �1, � � � , �m, as well as the characteristic parameters �ijk and �ijk of the

model (3.22) [76].

The solution of the identi�cation problem is described by Guidorzi in [76] with reference to

canonical models, but can easily be generalised to multistructural (overlapping) models.

Advantages associated to the use of these identi�ed models with reference to FDI concern

the minimal parametrisation [50], reduced storage, computing time and high e�ciency of the

related algorithms.

The techniques and properties for MISO systems identi�cation presented in Section 3.3 can

be generalised for the MIMO case. Because of these properties, it is possible to conclude that if,

starting from a certain structure, the hypersurfaces associated to increasing dimension covariace

matrices have only a common point in the noise space, then this point represent the variances
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of the noise a�ecting the input-output sequences. If the noise variances can thus be univocally

determined, the identi�cation problem can be reduced to a realization one and a canonical model

of the system can be obtained.

From a computational point of view, it can be noted that the search for the noise variances is

made in an (m+ r)-dimensional space and may, therefore, be time expensive. The results given

in Section 3.3 and extended to the MIMO case do not exclude the possibility that the previously

considered hypersurfaces may be coincident and consequently that non-unique solution exists.

Concluding, it can be stated that no conceptual di�erences exist between the application of

the Frisch scheme to the identi�cation of SISO and MIMO dynamic systems.

3.5 Identi�cation of Nonlinear Dynamic Systems

Industrial processes are nonlinear and cannot be modeled by using a single a�ne model for all

operating conditions. Instead of exploiting complicated nonlinear models obtained by modeling

techniques, it is also possible to describe the plant by a collection of a�ne models. Each submodel

approximates the system locally around an operating point and a selection procedure determines

which particular submodel has to be used. Such a multimodel structure will be called multiple

model approach [60]. At each operating point, the behavior of the multiple model is described

by a local a�ne dynamic model.

In this section, the nonlinear dynamic systems will be assumed piecewise a�ne on the same

region of the model so to explore the problem of noise rejection under the same assumption as in

the a�ne theory [42, 43]. Such a multiple model is piecewise a�ne with non-smooth boundary

transition. In order to ensure a smooth transition between models, continuity contraints among

local a�ne models have to be forced. In this context, such a problem will be solved by using an

optimization technique.

The contruction of the multiple model from only one set of global input-output measurements

is a non-trivial problem since the model structure, a switching function and the local model

parameters have to be identi�ed.

In a �rst stage, the method proposed requires the knowledge of the operating-point regions

and of the expected number of local models. Under this assumption, the identi�cation of the

structure and of the parameters of each local model can be performed [44].

The contribution of this identi�cation tool is two fold. First, it is shown how to integrate the

well-established Frisch scheme method for the identi�cation of a�ne algebraic systems within

a general procedure for nonlinear dynamic system. Second, some interesting properties of such

a Scheme can enhance the solution of the optimization problem as well as of the continuity

contraint ful�llment.

In the remainder of this chapter, the structure of the multiple model and the identi�cation

scheme used to estimate each local a�ne dynamic model from input{output noisy sequences

will be presented. The extension of such theory to the multiple model case and to the analysis

of the continuity constraints is also shown. Under the assumption of the Frisch scheme, some

conditions ensure that a unique solution exists in the model space. On the other hand, when the

Frisch scheme requirements are relaxed, the global identi�cation problem can be transformed

into an optimization problem. The presented technique shows how the properties of the Frisch

Scheme solutions may simplify the computation of such a problem.
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3.6 Multiple Model Structure

The main idea underlying the use of multiple model approach for the modeling of nonlinear

dynamic systems is based on the interpretation of a nonlinear regression model. For simplicity,

a discrete-time nonlinear SISO model in the following form is considered

y(t+ n) = F
�
y(t+ n� 1); � � � ; y(t); u(t+ n� 1); � � � ; u(t)

�
(3.24)

where y(t+n�1); � � � ; y(t) and u(t+n�1); � � � ; u(t) are lagged outputs and inputs of the model,

respectively, n is the model order and F (�) a static nonlinear function. In the product space of

the model inputs and outputs, the nonlinear mapping F (�) de�nes a hypersurface in a <2n+1

subspace. If a su�cient number of samples is acquired, the identi�cation of the nonlinear system

can be regarded as an approximation of this hypersurface. In case of multiple model approach,

a local approximation of this hypersurface is performed by using a�ne dynamic models. The

operating point is described by all the lagged inputs and output y(t + n � 1); � � � ; y(t) and

u(t + n � 1); � � � ; u(t) which can be collected into a vector x(t) = [y(t + n� 1); � � � ; y(t); u(t +

n� 1); � � � ; u(t)]T . By using the knowledge of the operating point vector x(t), the domain D of

the function F (�), with D � <2n, is divided into a number M of regions Ri in which the local

submodels are valid.

The output y(t+ n) of the nonlinear dynamic system F : <2n ! < can be approximated by

the multiple model f(�) in the form

f
�
x(t)

�
=

MX
i=1

�i
�
x(t)

�
[1;xT ] a(i) (3.25)

where a(i) = [a
(i)
0 ; a

(i)
1 ; : : : ; a

(i)
2n]

T are parameter vector and D is partitioned in M regions

R1; : : : ; RM such that �i
�
x(t)

�
= 1 if x(t) 2 Ri, otherwise �i

�
x(t)

�
= 0. The model is a�ne in

each Ri being [1;x
T ] a(i) the local a�ne dynamic model.

Since the transitions between the regions should be gradual than abrupt, f is forced to be

continuous over the whole D . In such a case, the parameter vectors are constrained to satisfy

certain relations stemming from the equality of left and right limits in boundary points common

to di�erent regions. Namely, let x0 be an operating point of both Ri0 and Ri00 . The model f is

continuous only if:

lim
x(t)!x0

x(t)2Ri0

f
�
x(t)

�
= lim

x(t)!x0

x(t)2Ri00

f
�
x(t)

�
(3.26)

i.e. if

[1;xT0 ] a
(i0) = [1;xT0 ] a

(i00) (3.27)

The straightforward application of Equation (3.27) to all the accumulation points common to

two neighboring regions leads to an in�nite number of constraints. Yet, the following theorem

shows that the adoption of regions with straight borders guarantees that only a �nite number

of them is linearly independent.

Theorem 4. Let Bi0;i00 be the set of all the accumulation points common to two neighboring

regions Ri0 and Ri00 . If Bi0;i00 is convex, and p points z1; : : : ; zp 2 Bi0;i00 exist for which (3.27) is

satis�ed, then (3.27) is also satis�ed by any point of their convex hull.
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Proof. If x belongs to the convex hull of z1; : : : ; zp then p non negative scalars �1; : : : ; �p exist

such that

pX
k=1

�k = 1 (3.28)

and

x =

pX
k=1

�kzk: (3.29)

Then the continuity constraints [1 zTk ]a
(i0) � [1 zTk ]a

(i00) = 0 for k = 1; 2; : : : ; p, can be combined

by means of (3.29) and (3.28) to obtain the thesis.

Theorem 4 suggests that regions whose boundary are convex polyhedra should be favored. In

that case, in fact, continuity can be ensured simply setting the value of the local models only on

the vertices of the boundaries. As an l-dimensional local a�ne model can be forced to assume a

certain value in at most l + 1 a�nely independent points, it is surely convenient to triangulate

D , i.e. partition it into l-dimensional simplexes. In particular, it will be assumed that the

triangulation is such that two simplexes are either disjoint, or have a whole k-dimensional face

in common (with k = 0; 1; : : : ; l � 1).

With this we may compound the �nite number of continuity constraints (one for each simplex

vertex) in a �nite matrix C such that the overall model is continuous if and only if

C

2
64

a(1)

...

a(M)

3
75 = 0: (3.30)

3.7 Multiple Model Identi�cation

For each region Ri with x(t) 2 Ri, the set �
(i)
k of all admissible noise variance matrices ~�

(i)
k , i.e.

those making �
(i)
k � ~�

(i)
k positive semide�nite, can be de�ned.

For a SISO model, in an two-dimensional space having �u and �y as coordinates, according

to Section (3.3), �
(i)
k is a convex hypersurface belonging to �rst orthant.

If the noise characteristics are common to all the regions Ri, as the physical nature of the

process generating the noise is independent of the model structure and of the operating point

conditions (i.e. the partition of D into regions) and all assumptions regarding the Frisch Scheme

are ful�lled, for all the regions a common noise matrix ~�k exists which must satisfy:

~�k 2

M\
i=1

�
(i)
k (3.31)

In these circumstances the right-hand side of (3.31) degenerates to a single point in the noise

space. Therefore univocal identi�cation of noise and its complete rejection is allowed.

Existence conditions of an unique common noise matrix (3.31) for all the regions can be

found in the following theorem.
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Theorem 5. Let �
(i)
j be obtained from �(i) deleting its j�th row and column. If for any j0; j00

there are two indices i0; i00 such that

�
det(�

(i0)
j0 )� det(�

(i00)
j0 )

��
det(�

(i0)
j00 )� det(�

(i00)
j00 )

�
� 0 (3.32)

and M > m then the right-hand side of (3.31) degenerates into a single point.

Proof. Multiplying (3.32) by det(�(i0)) det(�(i00)) and dividing it by det(�
(i0)
j0 ) det(�

(i00)
j0 ) det(�

(i0)
j00 )

det(�
(i00)
j00 ), we obtain

0
@det(�(i0))

det(�
(i0)
j0 )

�
det(�(i0))

det(�
(i0)
j00 )

1
A
0
@det(�(i00))

det(�
(i00)
j0 )

�
det(�(i00))

det(�
(i00)
j00 )

1
A � 0 (3.33)

From Theorem 1 in [44] it follows that
det(�(i))

det(�
(i)

j )
is the intersection of �(i) with the j�th axis

of the noise space. Thus the intersection of �(i
0) and �(i

00) with the plane de�ned by the two

axes j0 and j00 are of the kind reported in the Figure 3.2 where the continuity and convexity of

the �(i) surface allow for just a single common point.

j00

j0

det(�(i00))

det(�
(i00)

j00
)

det(�(i0))

det(�
(i0)

j00
)

det(�(i0))

det(�
(i0)

j0
)

det(�(i00))

det(�
(i00)

j0
)

�(i
0)

�(i
00)

Q
(i0i00)
k

Figure 3.2: An example of �(i
0) and �(i

00) surfaces

Yet, if (3.32) holds, then for any other axis j either

�
det(�

(i0)
j )� det(�

(i00)
j )

��
det(�

(i0)
j0 )� det(�

(i00)
j0 )

�
� 0

or

�
det(�

(i0)
j )� det(�

(i00)
j )

��
det(�

(i0)
j00 )� det(�

(i00)
j00 )

�
� 0

so that we can ensure that �(i
0) and �(i

00) have at least m points in common each on a di�erent

coordinate plane. Let us indicate with Q
(i0i00)
1 ; : : : ; Q

(i0i00)
m these intersections.

Note now that each �(i) is included in set of the zeros of det(�(i) � ~�) which is an (m +

1)�linear function of the noise variances. Thus �(i
0) \ �(i

00) is an (m � 1)�dimensional hy-

persurface parametrized by means of m non-linear functions 0 � �
(i0i00)
k (t1; : : : ; tm�1) � 1,
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t1; : : : ; tm�1 2 [0; 1], such that �
(i0i00)
1 (1; 0; : : : ; 0) = 1 while �

(i0i00)
k (1; 0; : : : ; 0) = 0 for k 6= 1,

�
(i0i00)
2 (0; 1; : : : ; 0) = 1 while �

(i0i00)
k (0; 1; : : : ; 0) = 0 for k 6= 2 etc.

This parameterization allows to express any point P 2 �(i
0) \ �(i

00) as

P =

mX
k=1

Q
(i0i00)
k �

(i0i00)
k (t1; : : : ; tm�1)

where the convexity of each �(i) makes each �(i
0i00) monotonic and

Pm
k=1 �

(i0i00)
k � 1.

Since (3.32) holds for any couple of axes we may �nd a set of m + 1 pairs (i0; i00) such that

the corresponding set of points Q(i0i00) have at least two elements on di�erent coordinate planes.

The intersection of all the corresponding �(i) cannot contain more than one point. As the

same intersection cannot vanish the right-hand side of (3.31) degenerate to that single point.

Under these assumptions, as an example, the singularity hypersurfaces regarding two regions Ri

andRj for two di�erent second order local models are depicted in Figure (3.3). The hypersurfaces

share the common point (~�y� ; ~�u�) representing the variances of the noises which a�ect the data.
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��i3��j4

�
�j
3

Figure 3.3: An example of singularity surfaces in two regions Ri and Rj .

The structure k and the parameters a(i) (with i = 1; � � � ;M) of each local dynamic model can

be identi�ed by the following equation

(�(i)
k �

~�k)a
(i) = 0: (3.34)

It is worthy to note how this approach cannot be applied immediately in the identi�cation of

real processes, even if the Frisch Scheme hypotheses still hold, since exact matching of the noise

characteristics from region to region cannot be assumed. The hypersurface intersection in the

right side of (3.31) degenerates in an empty set so that a common noise matrix ~�k cannot be

found.
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Yet, a set of points ~�
(1)

k1
2 �

(1)

k1
; : : : ; ~�

(M)

kM
2 �

(M)

kM
exists each of them very near to the others.

To �nd them we need to solve the optimization problem

J = min~�k

PM
i=1

�
k�min

�
�
�(i)
k

�
k+ k�min

�
�
�(i)

(k+1)

�
k

�
;

s.t. C A = 0;

with (�
(i)
k � ~�

(i)
k )a(i) = 0:

(3.35)

where A = [a(1)
T
; : : : ;a(M)T ]T while �min(�) represents the minimal eigenvalue of the matrices

�
�(i)
k and �

�(i)

(k+1)
. An example of such a situation is depicted in Figure (3.4). The common noise

point (marked with a circle) among singularity surfaces is lost.
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Figure 3.4: Singularity surfaces in two regions Ri and Rj with non-stationary noise.

The described procedure requires the computation of the minimum of the sums of the abso-

lute value of the minimum eigenvalues of two increasing order hypersurfaces, �
�(i)
k and �

�(i)

(k+1)
,

corresponding to local dynamic models, a(i), identi�ed by the Frisch Scheme which yield to a

continuous multiple model, C A = 0. The de�nition of the minimum eigenvalue criterion was

suggested in [75] to estimate model order in linear dynamic identi�cation.

3.8 Simplifying the Optimization Problem

The minimization problem in (3.35) has a simple cost function, J , but quite complex constraints.

The aim of this Section is to discuss the role and structure of such constraints.

Well-known results [42, 43] ensure that, once that the noise is identi�ed, the corresponding

a(i) satisfying (�
(i)
k � ~�k)a

(i) = 0 is unique and can be expressed as an a�ne combination

a(i) =
X
j

w
(i)
j

�
a
(i)

j (3.36)
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of the solutions
�
a
(i)

j , obtained assuming that only the input (~�u� 6= 0) or the output (~�y� 6= 0)

noise variance is non-null. These solutions are nothing but the \dynamic" ordinary least square

solutions of a dynamic regression problem [44].

If w is the weight vector of the solutions
�
a
(i)

j , from (3.36) and (3.30), the following is obtained

C
�

Aw = 0: (3.37)

The null subspace ker(C
�

A) can be computed a-priori and only its elements with non-negative

components give raise to a continuous model. In this simple case, as the weight vector is

constrained by
P

j w
(i)
j = 1 for i = 1; 2; : : : ;M , the subset of continuous model is a manifold

with not more than corank(C
�

A)�M dimensions.

An explicit parameterization of such manifold can be obtained by considering the following

general results for nonlinear algebraic system identi�cation.

Theorem 6. For each region Ri, all the submodels satisfying (3.34) contain the point

�x(i) =
1

Ni

NiX
j=1

x
(i)
j

(3.38)

�y(i) =
1

Ni

NiX
j=1

yj

Proof. Let us consider the Eq. (3.34). In that Equation, the matrix ~�(i) has a the �rst row

with all zero entries, therefore, multiplying the �rst row of the matrix �(i) by the column vector

[a(i) � 1]T , we obtain:

Ni + a(i)
NiX
j=1

x
(i)
j �

NiX
j=1

yj = 0

dividing the above equality by Ni the thesis is proved.

Indicate with z
(i)
1 ; : : : ; z

(i)
m+1 be the vertices of the simplex Ri and indicate with I

(i)
k the set

of values assumed in z
(i)
k by all the submodels satisfying (3.34). The following Theorem holds

Theorem 7. The set I
(i)
k is an interval going from minm+1

j=1 [1 z
(i)
k ]

�
a
(i)

j to maxm+1
j=1 [1 z

(i)
k ]

�
a
(i)

j .

Proof. If the submodel satis�es (3.34), then its parameter vector a(i) satis�es (3.36)

[1 z
(i)
k ]

�
a
(i)
=

m+1X
j=1

w
(i)
j [1 z

(i)
k ]

�
a
(i)

j

Hence, I
(i)
k is a one dimensional convex set, i.e. an interval spanning from the minimum to the

maximum attainable values.
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The two above theorems can be e�ectively exploited in the algebraic case, when m = 1 if

we assume that D is the interval between zmin and zmax. In this case Ri are intervals and can

be sorted so that zmin = z
(1)
1 < z

(1)
2 = z

(2)
1 < z

(2)
2 = z

(3)
1 < : : : < z

(M)
2 = zmax. Theorem 7 also

simpli�es as I
(i)
k goes from minf[1 z

(i)
k ]

�
a
(i)

1 ; [1 z
(i)
k ]

�
a
(i)

2 g to maxf[1 z
(i)
k ]

�
a
(i)

1 ; [1 z
(i)
k ]

�
a
(i)

2 g.

Further on, indicate with �i a transformation such that given an interval I = [�; �] produces

the interval �i(I) = [2�y(i) � �; 2�y(i) � �]. Theorem 6 guarantees that �i(I
(i)
k ) = I

(i)
3�k and that,

for any parameter vector satisfying (3.34) if [1 z
(i)
k ]a(i) 2 I then [1 z

(i)
3�k]a

(i) 2 �i(I). With this

the following Theorem holds

Theorem 8. A model is continuous if and only if it assumes at z
(M)
2 a value in the interval

�M

�
I
(M)
1 \�M�1

�
I
(M�1)
1 \ : : :�2

�
I
(2)
1 \�1

�
I
(1)
1

����
Proof. Proceed by induction on M . For M = 1 the thesis is trivial as all the models satisfying

(3.34) assume at z
(1)
2 a value within I

(1)
2 = �1(I

(1)
1 ).

Assume now that a model is continuous in the �rst M � 1 regions if and only if it assumes

at z
(M�1)
2 a value within �M�1

�
I
(M�1)
1 \ : : :�2

�
I
(2)
1 \�1

�
I
(1)
1

���
.

Yet, all the submodels satisfying (3.34) in the M -th region assume at z
(M)
1 = z

(M�1)
2 values

within I
(M)
1 . As continuity means coincidence of left and right limits, a model is continuous

on the �rst M regions if and only if it assumes at z
(M)
1 a value within the intersection of I

(M)
1

and the above interval. If we �nally apply �M we obtain the set of values characterizing the

continuous models at z
(M)
2 as indicated in the Theorem statement.

The previous observations can be e�ectively exploited to simplify the optimization problem

(3.35). The computation is performed by forcing continuity constraints among the boundaries

of the local models containing the mean value of the data in each region Ri. In fact, as continuity

means coincidence of left and right limits in each region, a multiple model is continuous on the j-

th region if and only if its vertices assume the same values of the local models in the neighboring

regions.

Because di�erent models in each region can be identi�ed according to (3.36) and (3.34),

several continuous piecewise a�ne dynamic models can be built up.

The optimum multiple model is estimated computing the minimum the sum of the minimum

eigenvalues corresponding to the local dynamic models identi�ed by the Frisch Scheme which

form the di�erent continuous multiple models.

In Chapter 5 an example concerning the identi�cation of a nonlinear process using piecewise

a�ne models will be presented.

3.9 Fuzzy Modeling from Noisy Data

This section proposes a novel approach for the identi�cation on nonlinear dynamic processes

using fuzzy models approach. The technique presented concerns the identi�cation and design of

a nonlinear fuzzy inference system based on Takagi-Sugeno (TS) fuzzy models [61].

As the non-fuzzy case, a nonlinear dynamic process can be, in fact, described as a composition

of several TS models selected according to the process operating conditions.
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The following sections also address a method for the identi�cation and the optimal selection

of the local TS models from a sequence of noisy measurements acquired from the process.

3.10 Fuzzy Multiple Inference Identi�cation

In recent years the application of fuzzy logic to control theory has gained increasing attention in

both fundamental research and application. The key idea of this method consists in exploiting

fuzzy set theory to express cause-e�ect relations in expert systems.

The proposed fuzzy technique is mainly useful when an model of the process under investi-

gation has to be estimated. Therefore, the method presented will be used in the model-based

FDI context.

The majority of real industrial processes are, in fact, nonlinear [25, 59] and cannot be modeled

by using a single model for all operating conditions. Since a mathematical model is a description

of system behavior, accurate modeling for a complex nonlinear system is very di�cult to achieve

in practice. Sometime for some nonlinear systems, it can be impossible to describe them by

analytical equations. Instead of exploiting complicated nonlinear models obtained by modeling

techniques, it is also possible to describe the plant by a collection of local linear models [60]

obtained by identi�cation procedures.

In particular, fuzzy logic is exploited to de�ne a TS fuzzy model [61]. The TS fuzzy model

for nonlinear dynamic systems is described by a number of local linear models. Each submodel

approximates the system locally around an operating point and a selection procedure determines

which particular submodel has to be used. As stated previously, such a multimodel structure is

be called multiple model approach [60].

Under such a fuzzy logic scheme, a number of local linear models are designed and the

estimate of outputs is given by a fuzzy fusion of local outputs.

In this algorithm, the di�erent operating points are self-selected with a fuzzy clustering

method [77, 78, 79]. On the basis of knowledge of the operating-point regions, the identi�cation

of the structure and the parameters of each local TS model can be performed [42, 43, 44].

3.11 Fuzzy Model Structure

This section deals with the decomposition of input-output data u(t) and y(t) (t = 1; : : : ; N),

acquired from a nonlinear SISO system, into fuzzy subsets which can be approximated by local

a�ne input-output models. Each submodel represents the system behavior around the operating

point.

Fuzzy clustering can be used as a tool to obtain partitioning of data into subsets, which can

be approximated by local linear models.

It is assumed that the dynamics of the system under observation can be described by the

following EE model [42, 43],

y(t) = f
�
x(t)

�
+ "(t) (3.39)

where y(t) is the system output, x(t) is a collection of a �nite number of inputs and outputs,

xT (t) = [y(t� 1); : : : ; y(t�n); u(t� 1); : : : ; u(t�n)], f(�) describes the input-output link, while

"(t) reects the fact that y(t) is not an exact function of x(t). n is an integer related to the

system order.
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The objective of fuzzy clustering is to partition the set of observed inputs and outputs fx(t)gt
of an unknown dynamic system into a numberM of fuzzy subsets. Each subset, Ri, representing

an operating condition of the dynamic system, can be approximated by a linear dynamic model.

Partition of the data set into fuzzy subset can be achieved, for instance, by using the well-

established Gustafson-Kessel (GK) clustering algorithm in [80].

Each cluster Ri (i = 1; � � � ;M) obtained by fuzzy partitioning is regarded as a local approx-

imation of the nonlinear system. The global EE model (3.39) can be conveniently represented

using local a�ne TS rules [61] yi(t):

x(t) 2 Ri ) yi(t) = �Ti x(t) (3.40)

where �i is the i-th parameter vector of the i-th submodel, with i = 1; � � � ;M .

The TS fuzzy model is a simple way to describe a nonlinear dynamic system using local

linear models. With this TS model a dynamic system can be linearized around a number of

operating points. The global system behavior is described by a fuzzy fusion of all linear model

outputs:

ŷ(t) =

PM
i=1 �i

�
x(t)

�
yi(t)PM

i=1 �i
�
x(t)

� (3.41)

in which ŷ(t) is the estimate of the output y(t) at the instant t. The results of clustering

are M , the membership functions �i(�) and the subsets of input-output data fxi(t)g
M
i=1 with

xi(t) 2 Ri [78]. These subsets can be processed according the Frisch Scheme identi�cation

procedure [41, 44], in order to estimate the �i and n parameters for each submodels.

3.12 Conclusions

In this section o�-line procedures were presented for the identi�cation of both linear and non-

linear static and dynamic system from data a�ected by noise. Linear, piecewise a�ne and fuzzy

models were exploited.

For the case of piecewise a�ne and fuzzy models, the multiple model approach consists in

using several local a�ne submodels each describing a di�erent operating condition of the process.

The identi�cation algorithm exploited to estimate parameters and orders of the local a�ne

submodels is based on the well-established Frisch Scheme method for linear systems.

For the nonlinear case, in order to obtain a continuous piecewise a�ne prototype describing

the input-output behavior of the process, continuity constraints between local linear dynamic

models have to be forced.

For non-fuzzy models, such a continuity constrained problem was solved by using an opti-

mization technique. The properties of the solutions obtained by the Frisch Scheme enhance the

ful�llment of the contraints.

The method proposed requires a priori knowledge of the operating point vector structure as

well as the expected number of local models.



Chapter 4

Residual Generation

4.1 Introduction

The most important task in model-based FDI techniques is the generation of residuals which

are independent of disturbances. The method is based on disturbance decoupling principle. In

this approach, uncertain factors in system modeling or identi�cation are considered to act by

means of an unknown input, the disturbance, on a linear system model.

The disturbance vector is unknown but its distribution matrix is usually assumed known.

However, in the following, it will be shown how to estimate the disturbance distribution matrix,

under the assumption that the system can be identi�ed with an equation error model.

Based on the disturbance distribution matrix, obtained by modeling or identi�cation proce-

dure, the unknown input can be decoupled form the residual.

The principle of the UIO is to make the state (or output) estimation error decoupled from

the unknown inputs or disturbances. Since the residual is a weighted output estimation error,

it may be decoupled from each disturbance.

This approach was originally propose by Watanabe and Himmelblau [37], who considered

the sensor FDI problem for systems with modeling uncertainties. Later, the approach was

generalized by Frank [23, 28] in order to perform the FDI of both sensors and actuators. Very

important contributions to this subject can be found in [24, 35, 47].

The �rst step in the disturbance decoupled residual generation consists in designing an UIO.

This chapter shows how to obtain the structure of a full order UIO for FDI purpose. The design

of an UIO will be presented from a mathematical point of view as well as the necessary and

su�cient existence conditions.

Unlike some other works, in which the reduced order structure is exploited, this chapter is

based exclusively on the use of the full order UIO. In fact, for a full order UIO, there is more

design freedom available to achieve other required performance, after the disturbance decoupling

conditions have been satis�ed. As an example, the remaining design of freedom can be exploited

to obtain directional residuals [24].

UIO or other disturbance decoupling based residual generation approaches require that the

unknown input distribution matrix must be known a priori. The actual unknown input itself

does not need to be known.

When uncertainties are caused by modeling errors, linearization errors, parameter variations,

etc, such a disturbance decoupling approach cannot directly applied because the distribution

63
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matrix is normally unknown. To solve this problem, which is of importance in real industrial

system applications, some investigators have suggested an approach exploiting estimated [24]

distribution matrices. In Section 4.7, the author of this thesis will suggest a method using

identi�ed distribution matrices.

The last approximate strategy has extended the application of disturbance decoupling-based

residual generation to actual process FDI.

Some simulation results applied to a real industrial power plant and using identi�ed distur-

bance distribution matrix technique will be shown in Chapter 5.

Finally, techniques exploiting fuzzy models and NNs are presented in order to perform resid-

ual generation and fault identi�cation, respectively.

4.2 Unknown Input Observer

This section deals with the design of observers for discrete-time, time-invariant, linear dynamic

systems with an additive unknown disturbance term. From a mathematical point of view, these

systems are described by the following model�
x(t+ 1) = Ax(t) + Bu(t) + Ed(t)

y(t) = Cx(t)
(4.1)

where, x(t) 2 <n is the state vector, y(t) 2 <m is the output vector, u(t) 2 <r the known

input vector and d(t) 2 <q the unknown input vector. A, B, C, E are known matrices with

appropriate dimensions.

It is worthy to note how the unknown term Ed(t) can be used to describe an additive

disturbance, di�erent kinds of modeling uncertainties (noise, unmodelled nonlinear terms, time-

varying dynamics, etc.) as well as fault terms.

The unknown term may also appear in the output equation, i.e.

y(t) = Cx(t) + Eyd(t) (4.2)

but this case is not considered because the disturbance term Eyd(t) can be nulled by using a

transformation of the output signal y(t) [24].

For some systems (4.1), there is the term relating the control input u(t) in the output

equation, i.e.

y(t) = Cx(t) + Du(t): (4.3)

However, the term Du(t) is omitted in this thesis since this does not a�ect the generality of the

discussion on the observer design.

De�nition 1. An observer is de�ned as Unknown Input Observer for the system described

by Eqs. (4.1), if its state estimation error vector ex(t) approaches zero asymptotically, regardless

of the presence of the unknown input term in the system.

The problem of designing an observer for unknown inputs has been studied for nearly two

decades and after the paper of Wang [81], many approaches for the design of both full-order
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and reduced-order UIO have been proposed (geometric and algebraic methods, singular value

decomposition and matrix inversion techniques, linear transformation algorithms) [24].

In this chapter, a full-order UIO structure is used and a mathematical method for designing

UIO is presented. The necessary and su�cient conditions for this observer to exist are also

recalled. These conditions are easy to verify and the design procedure is easy to implement.

4.3 UIO Mathematical Description

The full-order UIO has the following mathematical form

�
z(t+ 1) = Fz(t) + TBu(t) + Ky(t)

x̂(t) = z(t) + Hy(t)
(4.4)

where z(t) 2 <n is the state of the UIO, x̂(t) the estimated state vector x(t), whilts F, T, H

and K are matrices to be designed to achieve the unknown input decoupling.

The observer described by Eqs. (4.4) is depicted in Figure (4.1).

Plant

d(t)

u(t) y(t)

TB K H

+

+

z
-1

+

F

z(t) x(t)^

UIO

z(t+1)

Figure 4.1: The UIO structure.

The state estimation error obtained by the UIO (4.4) applied to the system (4.1) is described

by the equation

ex(t+ 1) = [A�HCA�K1C]ex(t) +
�
F� (A�HCA�K1C)

�
z(t)

+
�
K2 � (A�HCA�K1C)

�
y(t)

+
�
T� (I�HC)

�
Bu(t) + (HC� I)Ed(t)

(4.5)

where K = K1 +K2.
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If the following relations hold

(HC� I)E = 0

I�HC = T

A�HCA�K1C = F

FH = K2

(4.6)

the state estimation error will then be

ex(t+ 1) = Fex(t): (4.7)

This means that, if all the eigenvalues of F are stable, ex(t) will approach zero asymptotically,

i.e. x̂! x. Hence, according to the De�nition 1, the observer described by Eqs. (4.4) is an UIO

for the system (4.1).

The design of this UIO consists in solving Eqs. (4.6) and making all eigenvalues of the system

matrix F be stable.

The following theorem states existence conditions for the UIO.

Theorem 1. Necessary and su�cient conditions for the existence of an UIO (4.4) for the sys-

tem de�ned by (4.1) are [24]:

(i) rank(CE) = rank(E),

(ii) (A1;C) is a detectable pair,

where A1 = A� E(CE)+CA.

A special solution for the matrix H in conditions (4.6) is [24]

H� = E(CE)+ (4.8)

where (�)+ is the pseudoinverse of the matrix CE.

It is worthy to note that the number of independent row of the matrix C must not be less than

the number of the independent columns of the matrix E to satisfy condition (i) in Theorem 1.

It means that the maximum number of disturbances which can be decoupled cannot be larger

than the number of the independent measurements. Moreover, without unknown inputs in the

system, by setting T = I, H = 0 and E = 0, the observer (4.4) will be a simple Luenberger

observer. In such a situation, condition (i) in Theorem 1 is clearly hold true and condition (ii)

is equal to the detectability of couple (A;C).

4.4 UIO Design Procedure

It can be seen how K1 is a free matrix of parameters in the design of an UIO. After K1 is

computed, in order to stabilize the dynamic system matrix F, other parameter matrices in the

UIO can be computed by the relation K = K1 +K2 and conditions (4.6). Some design freedom

left in the choice of K1 may be exploited to make the diagnostic residual has directional charac-

teristics. In this thesis, because the input-output link of the MIMO system under investigation
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is obtained by means of the identi�cation of a collection of MISO models, this further degree of

freedom will not be used in the residual design.

Under these assumptions, if the pair (A1;C) is observable, in order to stabilize the system

matrix F = A1 �K1C, the pole placement routine available in the Control System Toolbox for

MATLABr [82] can be used.

If (A1;C) is not observable, an observable canonical decomposition should be applied to the

pair [24]. If (A1;C) is detectable, the matrix F can be stabilized.

4.5 FDI Schemes Based on UIO

The main task of FDI is to generate residual signals which have to be sensitive to faults them-

selves. According to Chapter 2, a system with faults concerning system inputs and outputs can

be represented as �
x(t+ 1) = Ax(t) + Bu(t) + Bfu(t)

y(t) = Cx(t) + fy(t)
(4.9)

where A;B and C are constant matrices of appropriate dimensions obtained by means of the

identi�cation procedures recalled in Chapter 3.

The vectors fu(t) = [fu1(t) : : : fur(t)]
T and fy(t) = [fy1(t) : : : fym(t)]

T assume values di�erent

from zero only in the presence of faults.

Usually these signals are described by step and ramp functions representing abrupt and

incipient faults (bias or drift), respectively.

With reference to Chapter 2, the actual measured signals u(t) and y(t) are modeled as

�
u(t) = u�(t) + ~u(t)

y(t) = y�(t) + ~y(t)
(4.10)

in which, the sequences ~u(t) and ~y(t) are usually described as white, zero{mean, uncorrelated

Gaussian noises.

To univocally isolate a fault concerning one of the system outputs, fy(t), under the hypothesis

that inputs are fault{free, (fu(t) = 0), a bank of classical dynamic observers or KF is used

(Figure (4.2)).

This observer con�guration represents the Dedicated Observer Scheme (DOS) [23].

The number of these estimators is equal to the numberm of system outputs, and each device

is driven by a single output and all the inputs of the system.

In this case a fault on the i{th output a�ects only the residual function of the output observer

or �lter driven by the i{th output.

To univocally isolate a fault concerning one of the system inputs, fu(t), under the assumption

that outputs are fault-free, (fy(t) = 0), a bank of UIO or UIKF is used (Figure (4.3)).

Such a solution is known as Generalized Observer Scheme (GOS) [23].

The number of these devices is equal to the number r of control inputs.

The i-th device is driven by all but the i{th input and all outputs of the system and generates

a residual function which is sensitive to all but the i{th input fault.
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Figure 4.2: Bank of estimators for output residual generation.
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Figure 4.3: Scheme for system inputs FDI.

In this way the detection of single input measurement faults is possible, since a fault on the

i{th input a�ects all the residual functions except that of the device which is insensitive to the

i-th input.

In order to summarize the isolation capabilities of the presented schemes, Table (4.1) shows

the \fault signatures" in case of a single fault in each input{output signal.
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u1 u2 : : : ur y1 y2 : : : ym

rUIO1
0 1 : : : 1 1 1 : : : 1

rUIO2
1 0 : : : 1 1 1 : : : 1

...
...

...
...

...
...

...
...

...

rUIOr 1 1 : : : 0 1 1 : : : 1

rO1
1 1 : : : 1 1 0 : : : 0

rO2
1 1 : : : 1 0 1 : : : 0

...
...

...
...

...
...

...
...

...

rOm 1 1 : : : 1 0 0 : : : 1

Table 4.1: Fault signatures.

The residuals which are a�ected by the input and output faults are marked with the presence

of `1' in the correspondent table entry, while an entry `0' means that the input or output fault

does not a�ect the correspondent residual.

Note how multiple faults in the system outputs can be isolated since a fault on the i{th

output signal a�ects only the residual function rOi
of the output observer driven by the i{th

output, but all the UIO or UIKF residual functions rUIOi
. On the other hand, multiple faults

on the inputs can not be isolated by means of this technique since all the residual functions are

sensitive to faults regarding di�erent inputs.

With reference to Figure (4.2), in order to diagnose a fault on the i{th system output when

the measurement noises are negligible (~u(t) �= 0, ~y(t) �= 0) and fu(t) = 0 the model of the i{th

observer (i = 1; 2; : : : ;m) has the form

xi(t+ 1) = Aixi(t) + Biu(t) + Ki
�
yi(t)� Cixi(t)

�
(4.11)

where xi(t) is the observer state vector and the triple (Ai; Bi; Ci) is a minimal state{space

representation (completely observable) of the link among the inputs of the process and its i{th

output yi(t). Such a triple can be obtained by means of the realization procedure, summarized

in Chapter 3, starting from a MISO identi�ed model.

The entries of Ki must be designed in order to assign to the (Ai � KiCi) matrix stable

eigenvalues chosen suitably within the unit circle.

In this situation and in the absence of faults, i.e. fy(t) = 0, it can be veri�ed that for the

i-th output residual limt!1 ri(t) = limt!1

�
yi(t) � Cixi(t)

�
= 0 and the rate of convergence

depends on the position of the eigenvalues of the (Ai �KiCi) matrix inside the unit circle.

In the presence of a fault (step or ramp signal) on the i{th process output only the i{th

output residual reaches a value di�erent from zero and this situation leads to a complete failure

diagnosis.

With reference to the devices for the FDI of the inputs, depicted in Figure (4.3), the structure

of the i-th UIO (i = 1; 2; : : : ; r) for residual generation [24], under the assumptions ~u(t) �= 0,

~y(t) �= 0 and fy(t) = 0, is the following8<
:

zi(t+ 1) =
�
TiA�KiC

�
zi(t) + Jiu(t) + Siy(t)

ri(t) = Li1z
i(t) + Li2y(t)

(4.12)
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where zi(t) 2 <n denotes the observer state vector, ri(t) 2 <m is the residual vector and

Fi, Ji, Si, Li1 and Li2 are matrices to be designed with appropriate dimensions. Let Ti be a

linear transformation of the state x(t) of the system and de�ne the state estimation error as

eix(t) = zi(t) � Tix(t). On the suppositions ~u(t) = 0, ~y(t) = 0, and fy(t) = 0, it can be shown

that the dynamics of the state estimation error becomes

eix(t+ 1) = Fieix(t) +
�
FiTi

� TiA+ SiC
�
x(t) + (Ji � TiB)u(t) �TiBfu(t); (4.13)

whilst the residual vector is given by

ri(t) = Li1e
i
x(t) + (Li1T

i + Li2C)x(t): (4.14)

It can be seen that if 8<
:

FiTi � TiA + SiC = 0;

Ji = TiB;

Li1T
i + Li2C = 0;

(4.15)

Equations (4.13) and (4.14) become�
eix(t+ 1) = Fieix(t) + TiBfu(t);

ri(t) = Li1ei(t):
(4.16)

The matrices Ti, Ki, Ji, Si, Li1 and Li2 can be constructed satisfying the following equations.

Under the hypothesis of observability of the system and in the absence of input faults, it

can be seen that the i-th residual vector reaches zero as t approaches in�nity and the rate of

convergence depends on the position of the eigenvalues of Fi matrix inside the unit circle.

The hypothesis of system observability always holds because the transformation of the ARX

input-output model into state-space representation leads to completely observable systems [33].

If the linear transformation Ti is chosen as [83]

Ti = In � Bi(CBi)
+C (4.17)

where Bi is the i-th column of B matrix and Ki is selected such that Fi = TiA � KiC is

asymptotically stable, then, the solutions to (4.15) are obtained as8>>>><
>>>>:

Fi = TiA�KiC;

Si = Ki +FiBi(CBi)
+;

Ji = TiB;

Li1 = �C;

Li2 =
�
Im � (CBi)(CBi)

+
�
:

(4.18)

The selection of the Bi matrix in Equations (4.17) and (4.18) sets to zero the i-th column of

the Ji matrix. That is, the estimation error and then the residual of the i-th UIO become

independent of the i-th system input.

Under the hypothesis of observability of the system (4.9) and in the absence of input fault

(fu(t) = 0), it can be seen that the i{th residual vector reaches zero as t approaches in�nity and

the rate of convergence depends on the position of the eigenvalues of TiA �KiC matrix inside

the unit circle.
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In the presence of a fault on the i{th input, the i{th residual reaches asymptotically zero

while the residuals of the r � 1 remaining observers are sensitive to the fault signal and this

situation leads to a complete fault diagnosis for the process inputs.

The design of these UIO requires the knowledge of a minimal form model (A;B;C) for the

system (4.9). Such a triple can be computed by using a realization procedure from a MIMO

identi�ed model. On the other hand, if the process in mathematically described by m MISO

models, the triple (A;B;C) can be directly obtained by grouping the (Ai;Bi;Ci) representations

(i = 1; 2; : : : ;m).

4.6 Kalman Filtering and FDI from Noisy Measurements

With reference to Eqs. (4.10), when the signal to noise ratios ku�(t)k22=k~u(t)k
2
2 and ky

�(t)k22=k~y(t)k
2
2

are low, a bank of KF must be employed to improve the performance of the FDI system. Even

in this situation, the mathematical formulation of the classical KF and of the UIKF is similar

to the one described by Equations (4.11) and (4.12) [24].

The essential di�erence regards the feedback matrix Ki which becomes time{dependent and

is computed by solving a Riccati equation. The solution of this equation requires the knowledge

of the covariance matrices of the input and the output noises which can be identi�ed by means

of the dynamic Frisch scheme [84].

With reference to the time-invariant, discrete-time, linear dynamic system described by

Eq. (2.1) the i-th KF for the i-th output has the structure [38]

xiF (t+ 1jt) = AxiF (tjt) +Bu(t) (4.19)

yiF (t+ 1jt) = Cix
i
F (t+ 1jt) (4.20)

P (t+ 1jt) = AP (tjt)AT +Q (4.21)

Ki(t+ 1) = P (t+ 1jt)CT
i

�
CiP (t+ 1jt)CT

i +R
��1

(4.22)

xiF (t+ 1jt+ 1) = xiF (t+ 1jt) +Ki(t+ 1)
�
yi(t+ 1)� ŷiF (t+ 1jt)

�
(4.23)

P (t+ 1jt+ 1) =
�
I �Ki(t+ 1)Ci

�
P (t+ 1jt)

�
I �Ki(t+ 1)Ci

�T
+

+Ki(t+ 1)RKT
i (t+ 1):

(4.24)

The variables xiF (t + 1jt) and yiF (t + 1jt) are the one step prediction of the state and of the

output of the process, respectively. xiF (tjt) is the state estimation given by the �lter, Ci the

i-th row of the output distribution matrix C, P (t + 1jt) is the covariance matrix of the one

step prediction error x(t+ 1)� xiF (t+ 1jt) whilst P (tjt) is the covariance matrix of the �ltered

state error x(t)�xiF (tjt). Q is the covariance matrix of the input vector noise ~u(t) and R is the
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variance of the i-th component of the output noise ~y(t). Ki(t + 1) is the time-variant gain of

the �lter and yi(t) is the i-th component of the measured output y(t).

It can be proved that the innovation ei(t+1) = yi(t+1)�y
i
F (t+1jt) = yi(t+1)�Cix

i
F (t+1jt) is

a zero-mean white process when all the assumptions regarding the system (2.1) and the statistical

characteristics of the noises (2.4) are completely ful�lled. A Riccati equation is obtained by

substituting Eq. (4.21) into Eq. (4.24). The solution of this equation converges to a steady

state solution when the pair (A;Ci) is completely observable and the pair (A;D) is completely

reachable, where D is a matrix such that Q = DDT .

In the presence of a fault on the i-th output (fyi(t) 6= 0), the stochastic properties (mean-

value, variance and whiteness, etc) of the innovation process ei(t) change abruptly so that the

fault detection can be based on these variations [85].

Finally, note how multiple faults in outputs can be isolated since a fault on the i-th output

a�ects only the innovation of the KF driven by the i-th output and all the innovation of the

�lters with unknown input.

On the other hand, with reference to UIKF [39, 40], a single fault on the i-th input a�ects

all the �lter innovations except that of the �lter with unknown input which is insensitive to the

i-th input. UIKF design procedure similar to (4.18) can be found in [39, 40].

4.7 Residual Robustness to Disturbances

All model-based FDI methods use a model of the monitored system to produce the symptom

generator. If the system is not complex and can be described accurately by the mathematical

model, FDI is directly performed by using a simple geometrical analysis of residuals.

In real industrial systems however, the modeling uncertainty is unavoidable. The design of

a reliable FDI scheme should take into account of the modeling uncertainty with respect to the

sensitivity of the faults.

The model-based FDI technique requires a high accuracy mathematical description of the

monitored system. The better the model represents the dynamic behavior of the system, the

better will be the FDI precision. If a FDI method can be developed which is insensitive to

modeling uncertainty, a very accurate model is not necessarily needed.

All uncertainties can be summarized as disturbances acting on the system. Although the

disturbance vector is unknown, its distribution matrix can be obtained by an identi�cation

procedure. Under this assumption, the disturbance decoupling principle can be exploited to

design a fault detection scheme using UIOs.

Under the hypothesis that the system can be described as an equation error model, this

section has studied the method of obtaining the disturbance distribution matrix from the fault-

free system data, by taking into account the equation error term.

The UIO performing the disturbance decoupling can be designed from the equation error

model.

In the following, in fact, it is assumed that the monitored system, depicted in Figure (4.4),

can be described by a linear, discrete-time equation error model of the type

y�i (t) =

nX
k=1

�iky
�

i (t� k) +

rX
j=1

nX
k=1

�ikju
�

j(t� k) + "i(t): (4.25)
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where y�i (t) (i = 1; : : : ;m) is the i-component of the system output vector y�(t), whilts u�j the

j-component of the control input vector u� 2 <r. n, �ik and �ikj are the parameters to be

determined by an identi�cation approach. The term "i(t) takes into account the modeling error,

which is due to process noises, parameter variations, etc.

As depicted in Figure (4.4), in real applications the input and output sensor signals u(t) and

y(t) are a�ected by faults.

Process

u*(t) y*(t) y(t)

f (t)
y

+

Output sensors
+

f (t)u

u(t)

Input sensors

Figure 4.4: The monitored system.

By using the transfer function description, system (4.25) can be rewritten in the form

y�i (t) = Fi(z)u
�(t) + Gi(z)"i(t) (4.26)

and its structure is depicted in Figure (4.5), in which z is the unitary advance operator.

Σ
+

+

u*(t)

ε (t)i

iy*(t)

G (z)i

F (t)
i

Figure 4.5: The structure of the equation error model.

The symptom generation is implemented by means of dynamic observers with unknown inputs,

in order to produce a set of signals from which it will be possible to diagnose faults associated

to outputs. This choice should minimize the e�ects of disturbances, which act as a source of

false alarms.

The design of the UIO requires the knowledge of a state-space model of the system under

investigation. In particular, in this section, in order to design the UIO, the identi�cation of

a number of MISO models (m = 1), of the type of (4.26) equal to the number of the output

variables has been chosen.

Under no-fault conditions, it can be proved that a state-space formulation of the input-output

equation error model (4.25) for the i-th output becomes�
xi(t+ 1) = Aixi(t) + Biu(t) + Ei"i(t)

yi(t) = Cixi(t) + Fi"i(t); t = 1; 2; : : :
(4.27)

where the matrices Ai(n � n), Bi(n � r), Ci(1 � n), Ei(n � 1) and Fi are functions of the �ik
and �ikj parameters [33].
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If the vector "i(t) is considered as a disturbance and Ei, Fi its distribution matrices, terms

Ei"i(t) and Fi"i(t) represent uncertainties acting upon the system.

The i-th residual (symptom) generator using an UIO is thus described as�
zi(t+ 1) = Nizi(t) + Liyi(t) + Giu(t)

ri(t) = yi(t)� Ci

�
zi(t)�Diyi(t)

� (4.28)

where zi(t) 2 <
n denotes the i-th observer state vector, Ci

�
zi(t)�Diyi(t)

�
represents the estimate

of yi(t) whilst ri(t) is the residual vector. A design procedure is used for �nding suitable matrices

Ni, Li, Gi and Di with appropriate dimension.

With the choices 8>><
>>:

Di = �Ei(CiEi)
�1;

Pi = I + DiCi;

Gi = PiBi;

Li = PiAiEi(CiEi)
�1;

(4.29)

if Ni can be chosen suitably, so that

LiCi � PiAi = �NiPi (4.30)

ri(t) will asymptotically approach zero in the absence of faults, fu(t) = 0 and fy(t) = 0.

4.8 Residual Generation via Parameter Estimation

With reference to an input-output SISO EIV model of order n in the form

nX
i=0

�iy(t� i) =

nX
i=1

�iu(t� i) (4.31)

in which u(t) represents the input, y(t) the output, a KF can be used to estimate �i and �i
model parameters.

The KF, in fact, used as parameter estimator [86], can be exploited in order to detect changes

in parameters �i and �i due to faults which a�ect input and output measurements u(t) and y(t).

The system to design the �lter is the following�
�(t+ 1) = �(t) + !(t)

y(t) = �(t)P (t) + "(t)
(4.32)

where the vector � = [�n; : : : ; �1; �n; : : : ; �1] collects the model parameters and the measure-

ment vector P (t) = [y(t � n); : : : ; y(t � 1); u(t � n); : : : ; u(t � 1)]. !(t) is a white process, in

order to take into account the parameter variations for non stationary processes whilst "(t) the

output error term.

Residuals can be generated, for instance, by comparing the estimate of the parameters � given

by Ordinary Least Squares (OLS) or Recursive Least Squares (RLS) and the one computed by

the KF (4.32). On the other hand, fault free and faulty parameters �(t) computed by (4.32) in

fault free and faulty conditions can be compared.

Standard deviation of the "(t) process can be evaluated via OLS, while the one of the !(t)

white process has to be tuned in order to obtain an accurate parameter estimate.

An application of such a method will be shown in Section 5.8.
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4.9 Residual Generation via Fuzzy Models

This section exploits the approach for FDI in nonlinear dynamic processes using multiple model

approach. In particular, as described in Section 3.11, the method uses Takagi-Sugeno (TS) fuzzy

models.

The nonlinear dynamic process is, in fact, described as a composition of several Takagi-

Sugeno models selected according to the process operating conditions.

The FDI scheme adopted to generate residuals from the measured noisy sequences u(t) and

y(t) is designed by means of the nonlinear TS fuzzy identi�ed models.

In the following, it is assumed that the monitored system, depicted in Figure (4.6), can be

described by a model of the type (3.39) in Section 3.11. y(t) 2 <m is the system output vector

and u(t) 2 <r the control input vector.

u(t)

y*(t) y(t)

Plant

Output sensors

+
+

u*(t)

+

+

f (t)
u

f (t)
y

Input sensors

Figure 4.6: The structure of the monitored system.

In real applications measured variables u�(t) and y�(t) are a�ected by noise. fu(t) and fy(t) are

faults a�ecting system inputs and outputs.

As presented in Chapter 2, there are di�erent approaches to generate the residuals from

which it will be possible to diagnose faults associated to system inputs and outputs. In this

thesis, fuzzy models are used to estimate the outputs of the system from the input-output

measurements.

As depicted in Figure (4.7), residuals can be generated by the comparison of measured y(t)

and estimated ŷ(t) outputs

r(t) = y(t)� ŷ(t): (4.33)

The symptom evaluation is obtained by a logic device which processes the redundant signals

computed by the residual generation in order to detect when a fault occurs. In such a case,

faults can be detected by using a simple thresholding logic.

4.10 Fault Identi�cation Using Neural Networks

This section presents the problem of the estimation of the size of faults occurring in the inputs

and outputs of a dynamic system.

The fault detection and identi�cation system involves a bank of dynamic observers and

utilizes NNs in order to classify observer residuals into fault classes.
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Figure 4.7: The residual generation scheme.

A NN is exploited in order to �nd the connection from a particular fault regarding system

inputs and outputs to a particular residual. In such a way the observers generate a residual

outputs which not depend on the dynamic characteristics of the plant, but only on faults.

Therefore, the NN classify static patterns of residuals, which are uniquely related to particular

fault conditions independently from the plant dynamics.

Moreover, in the following, the structure of the NN used for fault classi�cation is detailed.

NN may be classi�ed as supervised, in which a teacher is used to train the network, and as

unsupervised, in which input patterns are clustered into groups collecting similar inputs.

An important member of the �rst class of NN is the MultiLayer Perceptron (MLP), which

can approximate any mapping f : <n 7! <m with arbitrary degree of accuracy. A multilayer per-

ceptron comprises several layers of simple computation units called neurons. The mathematical

description of a neuron is:

yi = fa(wi

Tp+ bi)

where p is the input pattern and bi, wi are the parameter vectors of the neuron and yi is neuron

output. The function fa is an activation function, generally nonlinear.

Another kind of NNs, namely Radial Basis Function (RBF) networks, belonging to the class

of the Generalized Regression Network, has been considered.

The hidden layer is composed of radial basis neurons performing a nonlinear mapping of the

input space. Unnormalized Gaussian functions given by the equation,

G = e�kx�ck
2=�2 (4.34)

in which k � k denotes the Euclidean norm, x is the m-dimensional input vector, c the centers

and � the width of the gaussian functions, are the most common functions in the hidden node,

but several other functions have been proposed [66].

In the output layer linear neurons have to be used in order to perform the function approx-

imation. The parameters of NNs are obtained with the training procedure.

Centers of the Gaussian functions are the most troublesome values to tune. In particular, the

network architecture can be implemented by using a \non-exact" solution. An \exact" design

solution requires one hidden neuron for each training pattern.
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4.11 Summary

The purpose of this chapter has been the study of UIO-based residual generation methods and

a full-order UIO structure has been recalled.

The existence conditions and design procedures for such UIO have also been presented.

The design procedure proposed in the chapter is very easy to verify and implement, since

the pole placement routine in Control System Toolbox for MATLAB can be used.

The main advantage of the full-order UIO is that there is more design freedom available

(even if it is not exploited in this thesis) after the unknown input decoupling conditions have

been satis�ed. The remaining freedom may be used to generate directional residuals for fault

isolation.

UIO-based FDI methods have been studied for many year but the number of applications is

very limited. The main problem is, in fact, that the unknown input distribution matrix, required

for designing UIOs, is unknown for most real systems.

Under simple assumptions, the chapter has shown how UIO-based disturbance decoupling

technique can be used in practical systems, in which the disturbance distribution matrix is not

known.

When measurements are a�ected by noises, KF and UIKF can be exploited.

Finally, a residual generation technique exploiting fuzzy models was presented while the

identi�cation of faults concerning system inputs and outputs can be performed by means of

static NNs.
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Chapter 5

Fault Diagnosis Applications

5.1 Introduction

In the following section, several simulated and real application examples are presented in order

to test the FDI techniques studied in Chapter 4 in connection with identi�cation procedures

presented in Chapter 3.

Complete design procedures for fault detection, isolation and identi�cation of actuators,

components, input and output sensors of industrial processes described in Chapters 2 and 4 are

applied.

The fault diagnosis is performed by using banks of dynamic observers and UIO or, when the

measurement noises are not negligible, banks of KF and UIKF [87].

Single faults on the actuators, components, input and output sensors and multiple faults on

the output sensors are considered and simulated on the monitored systems.

As explained in Chapter 3, FDI methods applied do not require any physical knowledge of the

processes under observation since the input{output links are obtained by means of identi�cation

schemes using EE and EIV models.

In case of noisy measurements, the identi�cation technique (Frisch scheme) recalled in Chap-

ter 3 for EIV models gives also the variances of the input{output noises, which are required in

the design of the KF.

The procedure has been applied to di�erent models of a real and simulated power plants.

In order to analyze the diagnostic e�ectiveness of the FDI system in the presence of abrupt

changes or drifts in measurements, faults modeled by step or ramp functions have been generated.

The results obtained by this approach indicate that the minimal detectable faults on the

various sensors are of interest for the industrial diagnostic applications.

The following processes are described.

� MIMO Simulinkr model of a real single-shaft industrial gas turbine with variable Inlet

Guided Vane (IGV) angle working in parallel with electrical mains.

� MIMO real 120MW power plant of Pont sur Sambre. It is a double-shaft industrial gas

turbine working in parallel with electrical mains.

� MIMO Simulink prototype of a real single-shaft industrial gas turbine.

79
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5.2 FDI of an Industrial Gas Turbine using Dynamic Observers

The technique for input-output sensor FDI presented in this thesis is applied to the model of a

real single-shaft industrial gas turbine with variable IGV angle working in parallel with electrical

mains in a cogeneration plant [88].

Concerning the machine layout shown in Figure (5.1), the input control sensors are used for

the measurement of:

u1(t), Inlet Guide Vane (IGV) angular position (�);

u2(t), fuel mass ow rate (Mf ).

The output sensors are those used for the measurement of the following variables:

y1(t), pressure at the compressor inlet (pic);

y2(t), pressure at the compressor outlet (poc);

y3(t), pressure at the turbine outlet (pot);

y4(t), temperature at the compressor outlet (Toc);

y5(t), temperature at the turbine outlet (Tot);

y6(t), electrical power at the generator terminal (Pe).

CC

C T

1u = α
y = p1 ic

IGV

y = p
y = T

oc

oc

ID ED

y = pot

y = Tot

3

5

2

4

u = M

EG

y = P6 e

f2

Figure 5.1: Layout of the single-shaft industrial gas turbine with highlighted the monitored

sensors.

The gas turbine main features under ISO design conditions are shown in Tab. (5.1).

The measurement sensor of gas turbine rotational speed are not considered since the operation

of the machine in parallel with electrical mains is at constant rotational speed.

The measurements of ambient temperature and relative humidity were also not considered,

since they are not directly used by the gas turbine control system. The ambient temperature in

particular, which is an important parameter for gas turbine performance, is taken into account

by the machine control system by means of the measurements of compressor outlet pressure.
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Air mass ow rate [kg/s] 24:4

Cycle pressure ratio (Poc=Pic) 9:1

Electrical power (Pe) [kW] 5220

Exhaust temperature (Tot)[K] 796

Fuel mass ow rate (Mf ) [kg/s] 0:388

IGV angle range (��) [deg] 17

Table 5.1: Gas turbine main cycle parameters (ISO design conditions).

This pressure indeed depends on the compressor mass ow rate which, in turn, depends on

ambient temperature [88].

The design of the di�erent observer con�gurations necessary to isolate a fault regarding one

of the input-output sensors requires the knowledge of a state-space model of the system under

investigation.

The �rst step was the identi�cation of a number of input-output models MISO equal to the

number of the output variables.

The i-th model (i = 1; : : : ; 6) is driven by u1(t) and u2(t) and gives the prediction ŷi(t) of

the i-th output yi(t).

Other model input variables should be the boundary conditions (i.e., ambient pressure and

temperature, fuel lower heating value and composition); they were not considered as model

inputs since they were assumed to be constant.

The time series of data used to identify the models were generated with a nonlinear dy-

namic model which simulates the gas turbine operation. The nonlinear model was previously

developed and validated by means of measurements taken during transients on a gas turbine in

operation [88] and presents an accuracy of less than 1% for all the measured variables and for a

range of ambient temperature 0� 40oC and load conditions 70� 100%.

The time series of data generated with the nonlinear dynamic model simulates measurements

taken on the machine with a sampling rate of 0:1 s and without noise due to measurement

uncertainty which, instead, is always present in the real measurement systems.

In order to simulate the measurements taken on the actual instrumentation, the following

noise signals were �xed:

� IGV angular position measurement:

standard deviation of ~u1(t) = 1% of the mean value of the signal u1(t) (�);

� fuel mass ow rate measurement:

standard deviation of ~u2(t) = 2% of the mean value of the signal u2(t) (Mf );

� pressure measurements:

standard deviations of ~y1(t), ~y2(t), ~y3(t) = 0:4% of the mean values of the signals y1(t)

(pic), y2(t) (poc) and y3(t) (pot), respectively;

� compressor outlet temperature measurement:

standard deviation of ~y4(t) = 0:6% of the mean value of the signal y4(t) (Toc);
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� turbine outlet temperature measurement:

standard deviation of ~y5(t) = 0:7% of the mean value of the signal y5(t) (Tot);

� electrical power measurement:

standard deviation of ~y6(t) = 0:5% of the mean value of the signal y6(t) (Pe);

These noise levels are typical of the standard instrumentation of the real industrial gas turbine

used to validate the nonlinear dynamic model [87].

The procedure used to transform the input-output MISO model into state{space represen-

tation is available in literature [33].

Since these six state-space descriptions are driven by the same two inputs, they can be easily

aggregated into a single MIMO model which is the starting point for the design of the di�erent

observer con�gurations.

This model was tested in di�erent operating condition and it has always provided an output

reconstruction error variable in the range of 10�3 � 10�9.

The parameters of each input-output model have shown remarkable properties of robustness

with respect to the amplitudes of the noises corrupting the data. As an example, Table (5.2)

shows the parameter variations of the input-output model relative to the pic measurement versus

the measurement noise. In this situation, the di�erent measurement noises were assumed all of

equal size.

Moreover, di�erent time series of data generated by the gas turbine nonlinear model were

exploited in order to identify the input-output models. These models have always provided an

output reconstruction error lower than 10�3.

Noise 0 % 2 % 10 % 20 %

�2 �0:9963 �0:9941 �0:9513 �0:9325

�1 1:9963 1:9949 1:9712 1:9486

�11 0:9205 0:9368 0:9680 0:9458

�12 �0:9176 �0:9455 �0:9682 �0:9864

�21 0:0044 0:0178 0:0176 0:0220

�22 �0:0044 �0:0092 �0:0108 �0:0197

Table 5.2: Parameter variation of the pic ARX model versus measurement noise.

In order to assess the technique for diagnosing sensor faults, gas turbine operating conditions

with di�erent sensor faults were simulated by using the nonlinear dynamic model of the machine.

Faults in single input-output sensors were generated by producing positive and negative

variations (step functions of di�erent amplitudes) in the input-output signals. A positive and

negative fault occurring respectively at the instant of the minimum and maximum values of

the observer residuals were chosen since these conditions represent the worst case in failure

detection.

Moreover, it was decided to consider a fault during a transient since, in this case, the residual

error due to model approximation is maximum (see Figures (5.2) and (5.5)) and therefore it

represents the most critical case.



5.2. FDI OF AN INDUSTRIAL GAS TURBINE USING DYNAMIC OBSERVERS 83

The fault occurring on the single sensor causes alteration of the sensor signal and of the

residuals given by observers using this signal as input. These residuals indicate fault occurrence

according to whether their values are lower or higher than the thresholds �xed in fault-free

conditions.

In order to determine the thresholds above which the faults are detectable, the simulation of

di�erent amplitude faults in the sensor signals was performed. The threshold value depends on

the residual error amount due to the ARX model approximation and on the real measurement

noises ~u(t) and ~y(t). In Table (5.3) the values �xed for the observer residual thresholds are

shown.

measurement positive threshold negative threshold

Toc +0.85 -0.85

Tot +0.20 -0.22

pot +0.022 -0.024

poc +0.55 -0.65

pic +0.022 -0.0225

Pe +2.0 -2.2

Mf +1.1 -1.1

� +0.27 -0.41

Table 5.3: Fault detectability thresholds.

The positive and negative thresholds were settled on the basis of fault-free residuals generated

by di�erent time series of simulated data. A margin of 10% between the positive and negative

thresholds and the maximum and minimum values were respectively imposed.

In Figures (5.2), (5.3) and (5.4) an example of the residuals given by UIO (Section 4.2) for

the diagnosis of Mf input sensor is shown.

In particular, Figure (5.2) shows the fault-free residual generated by the input observer

driven by the signal of Mf input sensor and insensitive to the signal of IGV input sensor. In

this condition, it is possible to determine the thresholds above which the fault on the Mf sensor

can be detected.

The eigenvalues of the state distribution matrix of the UIO are placed near to 0:2 in order to

maximize the fault detection sensibility and promptness and to minimize the occurrence of false

alarms.

Figure (5.3) shows how a fault of +4% on the mean value of Mf signal at the instant of

minimal residual value causes an abrupt change of the residual.

In Figure (5.4) the change of the residual at the instant of its maximum is instead due to a fault

of �4% on the mean value of Mf signal. These fault amplitudes are the minimal detectable in

order to identify the fault as soon as it occurs.

Figures (5.5), (5.6) and (5.7) illustrate an example of the diagnostic technique for output sensor

fault regarding the pot signal.

Figure (5.5) shows the fault-free residual obtained from the di�erence between the values

computed by the observer (Section 4.5) of the output y3(t) (pot signal) and the one given by the

sensor.

Obviously, the non zero value of the residual is due to the identi�ed model approximation
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Figure 5.2: Fault-free residual function of the UIO driven by the Mf signal with minimum

positive (`+') and negative (`-') thresholds.
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Figure 5.3: Residual function of the UIO driven by the Mf signal in the presence of positive

failure.

and actual measurement noise.

The eigenvalues of the state distribution matrix of output observers are placed between 0 and

0:2 in order to maximize the fault detection sensibility and promptness and to minimize the

occurrence of false alarms.

In Figure (5.6) the abrupt change of pot residual caused by a fault of +5% on the mean value

of pot signal occurring at the instant of the minimum residual value is shown.

Figure (5.7) shows the behavior of the residual with the same fault as the previous case (changed

sign) occurring when the residual itself assumes maximal value.

The instantaneous peaks which appear in Figures (5.6) and (5.7) are generated by the abrupt

change related to the fault occurrence and may be used as incipient detector of anomalous
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Figure 5.4: Residual function of the UIO driven by the Mf signal in the presence of negative

failure.
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Figure 5.5: Fault-free residual function of output observer driven by pot signal with minimum

positive (`+') and negative (`-') thresholds.

behavior of the sensors.

In order to analyze the diagnostic e�ectiveness of the FDI system in the presence of drifts in

measurements, faults modeled by ramp functions were generated.

In Figures (5.8) and (5.9) the residual functions of the UIO observer driven by � signal and

of the output observer regarding the Toc signal are shown as an example. The two ramp faults

start at the sample 2500 and reach constant �nal values at the sample 4000. These values are

equal to 4% of the mean values of � and to 5% of the mean values Toc.

To summarize the performance of the FDI technique, the minimal detectable faults on the

various sensors referred to the mean signal values are collected in Table (5.4), in case of step

faults, and in Table (5.5), in case of ramp faults.
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Figure 5.6: Residual function of output observer driven by pot signal with positive failure.
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Figure 5.7: Residual function of output observer driven by pot signal with negative failure.

� Mf pic poc pot Toc Tot Pe

4% 4% 5% 7% 5% 5% 2.5% 1.7%

Table 5.4: Minimal detectable step faults.

The minimum values shown in Table (5.4) are relative to the case in which the fault must be

detected as soon as it occurs. If a delay in detection is tolerable the amplitude of the minimal

detectable fault is lower.

Table (5.5) shows how ramp faults can not be immediately detected, since the delay in the

corresponding alarm normally depends on fault mode.
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Figure 5.8: Residual function of the UIO driven by the � signal in the presence of a drift in the

� measurement.
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Figure 5.9: Residual function of the output observer regarding the Toc signal in the presence of

a drift in the Toc measurement.

5.3 FDI of the Gas Turbine using Kalman Filters

In this section, a bank of KF is presented in order to diagnose malfunctions of the gas turbine

sensors. This technique seems to be robust with respect to the modeling uncertainties, the

system parameter variations and the measurement noise, which can obscure the performance of

a fault detection system by acting as a source of false alarms [89].

The procedure exploited in this section requires the design of di�erent KF con�gurations

and the basic scheme is the standard one: a set of measured variables of the system is compared

with the corresponding signals estimated by �lters to generate residual functions.

The diagnosis can be performed by detecting the changes of these residuals caused by a fault.
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measurement fault detection delay [s]

Toc 5 % 50

Tot 3 % 100

pot 5.5 % 75

poc 7.5 % 0

pic 6 % 50

Pe 6 % 100

Mf 4 % 150

� 4 % 100

Table 5.5: Minimal detectable ramp faults.

The fault diagnosis of input sensors uses a number of KF equal to the number of input variables.

Each �lter is designed to be insensitive to a di�erent input of the system. Output sensor faults

a�ecting a single residual are detected by means of a classic KF, driven by a single output and

all the inputs of the system.

The results and improvements obtained by using this technique are compared with the ones

presented in Section 5.2.

Also the design of the di�erent KF con�gurations necessary to isolate a fault in one of

the input-output sensors requires the knowledge of a state-space model of the system under

investigation.

Measurement noises ~u(t) and ~y(t) with standard deviations reported in Table (5.6) were

then added to the input-output time series generated with the nonlinear model.

� Mf pic poc pot Toc Tot Pe

1:08 deg 0:0076 kg/s 0:41 KPa 3:66 kPa 0:41 kPa 3:59 K 5:59 K 23:90 kW

Table 5.6: Measurement noise standard deviation.

As recalled in Section 4.5, the detection strategy which is commonly chosen in connection with

KF methods for failures detection, consists in monitoring the residuals or KF innovations.

Because of the linear property of the model and because of the additive e�ect of the faults

on the system, it may easily be shown that the e�ect of the change on the innovation is also

additive.

Any abrupt change in measurements due to a fault is reected in a change in the mean value

and in the standard deviation of innovations.

In particular, since the KF produces zero-mean and independent white residuals with the

system in normal operation, a method for FDI consists in testing how much the sequence of

innovations has deviated from the white noise hypothesis. As explained in Section 2.7, the tests

which are performed on the innovations r(t) are the usual ones for zero-mean and variance, as

cumulative sum algorithms

r(t) = E[r(t)] =
1

t

tX
j=1

r(j) (5.1)
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and

�2r(t) = E[r2(t)] =
1

t

tX
j=1

r2(j) (5.2)

and independence, as �2-type

Rt
r(�) =

1

t

tX
j=1

r(j)r(j + �);

�Mr (t) =
t

Rt
r(0)

2

MX
�=1

�
Rt
r(�)

�2
(5.3)

computed in a growing window. The parameter �Mr (t) is a chi-squared random variable withM

degrees of freedom.

If a system abnormality occurs, the statistics of r(t) change, so the comparison of r(t) and

�Mr (t) with a threshold � �xed under no faults conditions, becomes the detection rule (2.14).

In particular, such threshold can be settled as in a Section 5.2 or, with the aid of chi-squared

tables, � = �2�(M) can be computed as a function of the false-alarms probability � and of the

window size M .

As in Section 5.2, in order to determine the thresholds above which the faults are detectable,

the simulation of di�erent amplitude faults in the sensor signals was performed. Now threshold

values depend on the residual error amount due to the model approximation and on the real

measurement noises ~u(t) and ~y(t).

In Figures (5.10), (5.11) and (5.12) the examples of the statistical tests (5.1), (5.2) and (5.3),

respectively, of the residual generated by the KF with unknown input for the diagnosis of �

input sensor are shown.

In particular, Figure (5.10) shows the mean value computed by Eq. (5.1) and generated by

the KF driven by the signal of � input sensor and insensitive to the signal of the Mf input

sensor. A fault of 3% on the maximal value of � signal causes an abrupt change in the mean

value of the residual computed in a growing window.

Such fault also a�ects the standard deviation of the same residual, as depicted in Figure (5.11).

The standard deviation was computed by using Eq. (5.2) in a growing window. The thresholds

(marked with `+' and `-') were �xed in fault-free conditions as well as by imposing an acceptable

false-alarms rate.

Figure (5.12) shows how the same fault causes a change in the whiteness of the residual given

by Eq. (5.3). The whiteness value of 20:1 was calculated by assuming that M = 8 and � = 0:05.

Under this condition, it is possible to determine the limit values above which the fault on

the � sensor (and also the Mf sensor) can be detected.

It is important to note that, in order to achieve the maximal input fault detection capability,

the residual corresponding to the most sensitive �lter to a failure on the � input was selected.

Figures (5.13), (5.14) and (5.15) illustrate an example of the previous statistical tests for the

output sensor fault of 2% on the maximal value of pic signal occurring at the sample t = 1500.

Figure (5.13) shows the mean value (5.1) of the residual obtained from the di�erence between

the values computed by the KF regarding the output y1(t) (pic signal) and the ones measured
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Figure 5.10: Mean value of the residual computed by using KF with unknown input in a growing

window.
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Figure 5.11: Standard deviation of the residual computed by using a KF with unknown input

in a growing window.

by the sensor. Obviously, the non-zero value of the residual in fault-free conditions is due to the

model approximation and to the actual measurement noise.

Figure (5.14) shows the behavior of the standard deviation (5.2) of the residual with the same

fault as the previous case.

Figure (5.15) shows the abrupt change in the whiteness (5.3) of pic residual.

Tables (5.7) and (5.8) summarize the performance of the enhanced fault detection and isolation

technique and collect the minimal detectable fault on the various sensors, in case the mean value

and the whiteness of the residuals are respectively monitored.

The minimal detectable fault values in Tables (5.7) and (5.8) are expressed as percentage of

the maximal signal values and are relative to the case in which the occurrence of a fault must

be detected as soon as possible.
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Figure 5.12: Whiteness of the residual computed by using a KF with unknown input in a growing

window.
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Figure 5.13: Mean value of pic residual computed by using a growing window.

� Mf pic poc pot Toc Tot Pe

3% 3% 2:5% 4% 1:5% 2% 2:5% 3%

Table 5.7: Minimum detectable faults by monitoring residual mean value .

� Mf pic poc pot Toc Tot Pe

2% 2:5% 0:75% 1% 0:75% 2% 0:8% 1:5%

Table 5.8: Minimum detectable faults by monitoring residual whiteness.
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Figure 5.14: Standard deviation of pic residual computed by using a growing window.
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Figure 5.15: Whiteness of pic residual computed by using a growing window.

In order to compare improvements with this fault detection and isolation technique, the minimal

detectable faults obtained by using observers and geometrical analysis of residuals collected in

Table (5.4) in Section 5.2 have to be considered.

It ensues that the values of the faults obtained by using statistical tests on KF innovations,

collected in Tables (5.7) and (5.8), are lower than the ones reported in Table (5.4).

5.4 Sensor Fault Identi�cation Using Neural Networks

In this section, the problem of detect and isolate the occurrence of faults regarding control

sensors of the single shaft industrial gas turbine is studied [90, 91].

Faults modeled by step functions create changes in several residuals obtained by using dy-

namic observers of the process under examination.
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A NN is exploited in order to �nd the connection from a particular fault regarding input

and output sensors to a particular residual. In such a way the observers generate a residual

outputs which not depend on the dynamic characteristics of the plant, but only on sensors

faults. Therefore, the NN classify static patterns of residuals, which are uniquely related to

particular fault conditions independently from the plant dynamics.

A NN is exploited in order to �nd the connection from a particular fault regarding input

and output sensors to a particular residual. In such a way the observers generate a residual

outputs which not depend on the dynamic characteristics of the plant, but only on sensors

faults. Therefore, the NN classify static patterns of residuals, which are uniquely related to

particular fault conditions independently from the plant dynamics.

A number of residuals equal to the number of the outputs of the process is obtained by

di�erence between the values computed by observers and the ones measured by the sensors.

The detection and isolation of output sensor faults is indeed very easy, since each output

measurement is directly connected to a single residual generator. This lucky situation does not

hold for the inputs, and the relation between input faults and residuals should be determined.

Solution of such problem was obtained by monitoring changes in residuals by means of a

geometrical analysis of residuals or it can be implemented by using special testing methods, e.g.

a whiteness and a chi-squared test of the residual of the KF. A solution instead exploiting the

learning capability of NN is presented.

In order to �nd the relationships existing between input sensor faults and residuals, the NN

is applied in order to classify the residual computed by observers according to the operation of

the process. In such a case the decision methods by using classi�cation do not need to take into

account the dynamic property of the process, as the observers residuals not depend on it.

The classi�cation method is typically an o�-line procedure in which the fault mode is �rst

de�ned and the data (residuals) is collected.

The classi�cation of process residuals can be carried out in accordance to the information

about di�erent faults. Then, it is known that certain residual patterns correspond to the normal

operation and other patterns correspond to the faulty operation. With this kind of data the

training of the NN is performed.

The NN implemented by the Neural Network Toolbox for MATLAB are Multilayer Percep-

tron and Radial Basis Function NN described in Section 4.10. They are both able to approximate

any continuous function with an arbitrary degree of accuracy, provided with a su�cient number

of neurons.

The technique for input-output sensor fault detection, isolation and identi�cation presented

in this section was applied to the gas turbine simulated model of Figure (5.1) introduced in

Section 5.2.

Firstly, a RBF network has been considered.

The simulations basically concern two aspects, namely the generation of pattern for the NN

training and the fault diagnosis validation. The �rst step regarded the generation of pattern of

residuals and fault signals.

The training set includes simulated faults on the sensors of variables Mf and IGV. A six

inputs-one output RBF network has been trained by using steady-state residual sequences com-

posed of 1100 samples and shown in Figures (5.16) and (5.17).

Figure (5.16) shows the six steady-state residuals used as inputs for the training of the network

whilst Figure (5.17) corresponds to the output target.
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Figure 5.16: NN input pattern
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Figure 5.17: Output pattern of the NN.

The sequences considered comprise 11 fault conditions, namely no fault and faults varying from a

5%, 10% to 90% of the maximum value of input measurements. Each fault condition is composed

of 100 samples.

The network training is performed with a trial and error procedure to arrange the number

of hidden neurons in respect to the network output error. Even if an output error goal (SSE)

of less than 0:1 was reached (sometimes with more than 100 hidden neurons), generalization

properties were unsatisfactory.

A di�erent supervised NN architecture was then considered, namely a feed-forward MLP

network [90]. Such a NN consists of an input layer, one or more hidden layers and an output

layer. A six inputs-one output MLP network was designed with one hidden layer. Since the

network is used as function approximator, in the input and hidden layers sigmoidal neurons were

implemented, whilst the output layer was made of a single linear neuron. A back-propagation
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algorithm with adaptive learning rate was exploited to update network parameters.

The training patterns were the ones used for the RBF network. The selection of training

parameters in the back-propagation algorithm as well as the tuning of the number of hidden

neurons of the network were di�cult. In particular the convergence of the network depends on

the number of the neuron in the hidden layer. The momentum term has varied in a range of

0:7� 0:9.

In the Tables (5.9) and (5.10), the results of training sessions regarding the inputs Mf and

IGV are shown, respectively, for di�erent values of neurons and epochs.

Input layer Hidden layer SSE after 70000 epochs

15 15 0.27

15 20 0.264

20 50 0:127

Table 5.9: Training results concerning the Mf sensor.

Input layer Hidden layer SSE after 70000 epochs

15 15 0.17

15 20 0.24

20 30 0:108

Table 5.10: Training results concerning the IGV sensor.

Even if the SSE value is usually �xed in a range of 0:01�0:001, due to the noisy environment, the

network architectures providing the lowest SSE were chosen. These values allow estimating the

input sensor fault amplitude with an accuracy of at least 1%. Minimal fault values concerning

both input sensors are collected in the Table (5.11). They are indicated by (NN). These minimum

detectable faults can be compared with the ones obtained by using statistical tests on KF

innovations as well as geometrical analysis of residuals generated by means of output dynamic

observers.

Method Mf IGV

(NN) 3% 2.5%

Table 5.11: Minimal detectable step faults.

The fault sizes are expressed as per cent of the mean signal values.

It can be noted how the values of the faults obtained by using statistical tests on KF innova-

tions are lower than the ones obtained with geometrical analysis of dynamic observer residuals

and they appear comparable to the ones estimated by NN. However, the minimal detectable

faults on the various input sensors seem to be adequate to the industrial diagnostic applications.

The improvements achieved are not free of charge: they have been obtained with a procedure

of greater complexity and, consequently, with a growing computational cost.
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5.5 Power Plant of Pont sur Sambre Identi�cation and FDI

The technique for robust output sensor FDI introduces in Section 4.7 was applied to real data

from the 120MW power plant of Pont sur Sambre [92]. It consists of a double-shaft industrial

gas turbine working in parallel with electrical mains.

The block-diagram of the plant is shown in Figure (5.18) where the numbers refer to: 1

- super heater (radiation), 2 - super heater (convection), 3 - super heater, 4 - reheater, 5 -

dampers, 6 - condenser, 7 - drum, 8 - water pump and 9 - burner.

Cb
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Figure 5.18: The structure of the power plant.

The available data from the control inputs were 2200 samples from normal operating records of

Cb (gas ow), Os (turbine valves opening), Qd (super heater spray ow), Ry (gas dampers) and

Qa (air ow). The data from the output sensors were the corresponding values of Pv (steam

pressure), Ts (main steam temperature) and Trs (reheat steam temperature). The sampling

time was of 10 seconds and since this value is very little with respect to the time constants of

the plant, it has been increased to about 60 seconds. The number of samples has thus been

reduced to 367. Their plots are reported in Figures (5.19) and (5.20).

The computational procedure which has been performed on the data is the identi�cation of the

triple (Ai,Bi,Ci) and of disturbance distribution matrix Ei (4.27) from the equation error model

(i = 1; : : : ;m) corresponding to the MISO subsystem (4.27) which links each output with the

�ve (r = 5) inputs (see Chapter 3). Moreover, the triple (A,B,C) from the EIV model and the

estimation of the input-output noise variances were obtained. The matrices A, B and C were

obtained by grouping the Ai, Bi and Ci (i = 1; : : : ;m) corresponding to the MISO subsystem

which links each output with the �ve (r = 5) inputs. Three subsystems (m = 3) with order two

have thus been considered.

The design of the UIO (4.28) requires, in fact, the knowledge of a minimal form model
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Figure 5.19: First four input of the power plant.

(A;B;C) for the system under investigation.

The determination of the order of every subsystem has been performed by considering the

FPE, AIC and MDL identi�cation criteria [33].

Faults in a single output sensor were generated by producing positive and negative variations

(step and ramp functions of di�erent amplitudes) in the output signals. A positive and negative

fault occurring respectively at the instant of the minimum and maximum values of the observer

were chosen since these conditions represent the worst case in failure detection.

Moreover, it was decided to consider a fault during a transient since, in this case, the residual

error due to model approximation is maximum and therefore it represents the most critical case.

The fault occurring on the single sensor causes alteration of the sensor signal and of the

residuals given by observers and �lters using this signal as input. These residuals indicate fault

occurrence according to whether their values are lower or higher than the thresholds �xed in



98 CHAPTER 5. FAULT DIAGNOSIS APPLICATIONS

0 50 100 150 200 250 300 350 400
−800

−600

−400

−200

0

200

400

(a) Fifth input, Qa

0 50 100 150 200 250 300 350 400
−1200

−1000

−800

−600

−400

−200

0

200

400

600

(b) First output, Pv

0 50 100 150 200 250 300 350 400
−200

−100

0

100

200

300

400

500

600

700

800

(c) Second output, Ts

0 50 100 150 200 250 300 350 400
−600

−400

−200

0

200

400

600

(d) Third output, Trs

Figure 5.20: Last input and three output of the power plant.

fault-free conditions.

In order to determine the thresholds above which the faults are detectable, the simulation

of di�erent amplitude faults in the sensor signals was performed. The threshold value depends

on the residual error amount due to the model approximation. These thresholds were settled

on the basis of fault-free residuals. A margin of 10% between the thresholds and the residual

values was imposed.

In Figures (5.21) and (5.22) an example of the residuals given by UIO (4.28) for the diagnosis

of Os input sensor is shown.

In particular, Figure (5.21) shows the fault-free residual generated by the input observer

driven by the signal of Os input sensor u2(t) and insensitive to the signal of Cb input sensor

u1(t). In this condition, it is possible to determine the thresholds above which the fault on the

Os sensor can be detected.

The eigenvalues of the UIO state distribution matrix (Equations (4.18) with i = 1) of the
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Figure 5.21: Fault-free residual function r1(t) of the UIO driven by the Os signal with minimum

positive (`+') and negative (`-') thresholds.

input observer are placed near to 0:2 in order to maximize the fault detection sensibility and

promptness and to minimize the occurrence of false alarms.

Figure (5.22) shows how a fault of 25% on the mean value of Os signal at the sample T = 150

causes an abrupt change of the residual.
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Figure 5.22: Residual function r1(t) of the UIO driven by the Os signal in the presence of a

failure.

Figures (5.23) and (5.24) illustrate an example of the diagnostic technique for output sensor

fault regarding the Trs signal.

Figure (5.23) shows the fault-free residual (Eq. (4.11)) obtained from the di�erence between

the values computed by the observer of the output y3(t) (Trs signal) and the one given by the sen-

sor y3(t). Obviously, the non zero value of the residual is due to the ARX model approximation

and actual measurement noise.

The eigenvalues of the state distribution matrix (matrix (Ai �KiCi) in Eq. (4.11) with i = 3)
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Figure 5.23: Fault-free residual function r3(t) of output observer driven by Trs signal with

minimum positive (`+') and negative (`-') thresholds.

of output state observer are placed between 0 and 0:2 in order to maximize the fault detection

sensibility and promptness and to minimize the occurrence of false alarms.

In Figure (5.24) the abrupt change of Trs residual caused by a fault of 10% on the mean

value of Trs signal occurring at the instant of T = 150 is shown.
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Figure 5.24: Residual function r3(t) of output observer driven by Trs signal with a failure.

The instantaneous peaks which appear in Figures (5.22) and (5.24) are generated by the abrupt

change related to the fault occurrence and may be used as incipient detector of anomalous

behavior of the sensors.

To summarize the performance of the FDI technique using classical observers and UIO, the

minimal detectable failures on the various sensors referred to the mean signal values are collected

in Table (5.12), in case of step and ramp faults.

Finally, Table (5.13) reports the mean square values of the output estimation errors correspond-

ing to the state{space systems obtained by the equation errors models in deterministic case.
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Sensor Cb Os Qd Ry Qa Pv Ts Trs

Step 30% 25% 20% 40% 45% 15% 5% 10%

Ramp 40% 30% 35% 55% 50% 40% 20% 30%

Table 5.12: Minimal detectable step and ramp faults with classical observers and UIO.

An improvement on the performance of the FDI device was obtained by using classical KF

and UIKF. The noises a�ecting the input{output measurements were identi�ed by using the

Frisch scheme method.

Output Pv Ts Trs

Equation error 0:0146 0:0273 0:0051

Table 5.13: The three output estimation errors with equation error models.

Also in this case, the comparison of the residuals with the thresholds �xed under no fault

conditions remains the detection rule.

Table (5.14) shows the minimal detectable faults in stochastic case.

Sensor Cb Os Qd Ry Qa Pv Ts Trs

Step 25% 15% 12% 35% 35% 10% 3% 5%

Ramp 35% 20% 20% 45% 40% 30% 5% 8%

Table 5.14: Minimal detectable step and ramp faults with classical KF and UIKF.

Table (5.15) reports the mean square values of the output estimation errors when EIV models

identi�ed by the dynamic Frisch scheme are used.

Output Pv Ts Trs

EIV 0:0026 0:0018 0:0012

Table 5.15: The three output estimation errors with EIV models.

Compared with the ones concerning the deterministic case, the output estimation errors with

EIV models are smaller because the noise rejection is achieved by means of the dynamic Frisch

scheme. Consequently, the residuals obtained by KF are more sensitive to a fault occurring on

the sensors. Moreover, smaller thresholds can be placed on the residual signals to declare the

occurrence of faults.

5.6 Disturbance Decoupled Observers for Sensor FDD

Under the hypothesis that the system under investigation can be described as an equation error

model, this section has presented the method of obtaining the disturbance distribution matrix
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from the fault-free system data, by taking into account the equation error term. The UIO

performing the disturbance decoupling can be designed from the equation error model [93].

The identi�cation scheme exploited to extract the disturbance distribution matrix from

input-output data was illustrated in Section 4.7. In previous section the characteristics of the

industrial process, such as the 120MW power plant of Pont sur Sambre, used to illustrate the

method proposed in this thesis, were shown. The results obtained by using UIO which perform

the diagnosis of faults regarding output sensors are shown below. These results can be compared

with the ones obtained without disturbance decoupling recalled in Section 5.5.

Table (5.16) reports the mean square values of the output estimation errors given by the

FDI observers without disturbance decoupling. These values are very large and they cannot be

used to detect faults reliability.

Slight better results than the previous ones have been obtained by using a technique presented

in [89] where the process was described as an errors-in-variables model and the Frisch scheme

dynamic system identi�cation was performed (Section 3.3).

KF were exploited to detect step and ramp faults.

Pv Ts Trs

581:25 51:46 55:88

Table 5.16: The three output estimation errors without disturbance decoupling.

The mean square errors of the output estimation errors obtained by using the KF are collected

in Table (5.17).

Output Pv Ts Trs

KF 181:92 28:42 33:69

Table 5.17: The three output estimation errors with KF.

A meaningful improvement on the performance of the FDI device was obtained by using the

UIO exploiting the disturbance decoupling technique presented in Section 4.7.

Table (5.18) shows the minimal detectable faults concerning system outputs in case of dis-

turbance decoupling.

Sensor Pv Ts Trs

Step 5% 1% 1:7%

Ramp 20% 4:5% 4:7%

Table 5.18: Minimal detectable step and ramp faults with UIO.

Table (5.19) reports the mean square values of the output estimation errors when UIO is used.

Compared with the ones concerning classical observers, residuals are very small because

disturbance decoupling is achieved, and consequently, their increase can be signi�cantly detected

when a fault occurs on the sensors. Moreover, smaller thresholds can be placed on the residual

signals to declare the occurrence of faults.
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This demonstrates the improved e�ciency of the FDI technique when decoupling of distur-

bances is performed.

Output Pv Ts Trs

UIO 20:45 12:24 15:55

Table 5.19: The three output estimation errors with disturbance decoupling.

5.7 Fuzzy Models and Fault Diagnosis of an Industrial Process

This section proposes an approach for FDI in the power plant of Pont sur Sambre using the

multiple model approach presented in Section 3.11.

Such a technique concerns the identi�cation and design of a fuzzy system based on Takagi-

Sugeno fuzzy models.

The nonlinear dynamic process is, in fact, described as a composition of several TS models

selected according to the process operating conditions.

The FDI scheme adopted to generate residuals exploits the nonlinear TS fuzzy model [94].

With reference to the fuzzy identi�cation method presented in Section 3.11 and implemented

using the Fuzzy Modeling and Identi�cation Toolbox for Matlab [79] the GK clustering algorithm

was used with M = 4 clusters for each output (operating conditions) and n = 3 the number of

shifts of inputs and outputs.

After clustering, the system parameters �i, with i = 1; � � � ;M for each output, were estimated

using the dynamic Frisch scheme identi�cation method. The model was then validated on a

separate data set.

In fault-free conditions, Table (5.16) reported the mean square values of the output estima-

tion errors r(t) given by classical observers using a single model for all operating conditions.

These values are very large and they cannot be used to detect faults reliability.

A meaningful improvement has been obtained by using the identi�cation technique presented

in Section 3.11 where the process is described as a collection of fuzzy TS models identi�ed using

Frisch scheme method.

The i-th output yi(t) of the plant (i = 1; � � � ;m and m = 3) can be characterized as a TS

fuzzy multiple-input single-output (MISO) model (3.41) with r = 5 inputs.

The mean square errors of the output estimation errors r(t), under no-fault conditions, are

collected in Table (5.20).

Output Pv Ts Trs

Multiple model approach 10:46 8:90 6:91

Table 5.20: The three output estimation errors with fuzzy multiple model.

The corresponding results are shown in Figures (5.7), (5.7) and (5.7).

These �gures compares the outputs of the plant calculated using the fuzzy multiple model with

the actual process outputs on a validation data set.
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Figure 5.25: Predicted and measured Pv(t) output.
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Figure 5.26: Predicted and measured Ts(t) output.

Therefore, as depicted in Figure (5.28), residuals can be generated by the comparison of the

measured and estimated outputs.

r(t) = ŷ(t)� y(t): (5.4)

The dashed line corresponds to the i-th predicted output (i = 1; � � � ; 3), ŷi(t), and the solid

line to the measured one, yi(t). The fuzzy multiple model approximates the real process very

accurately.

The results indicate that the composite model can serve as reliable predictor for the real

process. Using this model, a model-based approach for fault diagnosis can be exploited and

applied to the actual power plant.

Single faults were generated by adding step and ramp signals in the input and output mea-

surements. It was decided to consider fault occurrences during a transient since, in this case,

the residual error due to model approximation is maximum and therefore it represents the most
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Figure 5.27: Predicted and measured Trs(t) output.
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Figure 5.28: The residual generation scheme.

critical case in failure detection.

The fault occurring on the system output causes alteration of the signal y(t) and of the

residuals r(t) given by the predictive model (3.41) using u(t) as input. Residuals indicate fault

occurrence according to (2.14) whether their values are lower or higher than the thresholds �xed

in fault-free conditions.

To summarize the performance of the FDI technique, the minimal detectable faults on the

various outputs, expressed as per cent of the mean values of the relative signals, are collected in

Table (5.14), in case of step and ramp faults.

The minimum values shown in Table (5.14) are relative to the case in which the fault must

be detected as soon as it occurs.

The results were obtained by using a single model for all operating conditions. If a delay in

detection is tolerable the amplitude of the minimal detectable fault is lower.

It can be noted how faults modeled by ramp functions may not be immediately detected,

since the delay in the corresponding alarm normally depends on fault mode.

An improvement of the FDI performance has been obtained by using the fuzzy multiple
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model. Model parameters were identi�ed under the assumptions of the dynamic Frisch scheme.

Table (5.21) summarize the performance of the enhanced FDI technique and collect the

minimal detectable fault on the various output signals. The fault sizes are expressed as per cent

of the signal mean values.

Sensor Pv Ts Trs

Step 3% 1% 2%

Ramp 10% 8% 6%

Table 5.21: Minimal detectable step and ramp faults with multiple model.

The values shown in Table (5.21) are relative to the case in which the occurrence of a fault

must be detected as soon as possible.

The residuals obtained by using multiple model approach are more sensitive to a fault occur-

ring on the system outputs, since the corresponding output estimation errors are smaller. Noise

rejection is, in fact, achieved by means of the dynamic Frisch Scheme identi�cation method.

Moreover, smaller thresholds can be placed on the residual signals to declare the occurrence of

faults.

It results that the values of the faults obtained by using fuzzy multiple model approach,

collected in Table (5.21), are lower than the ones reported in Table (5.14).

Moreover, the minimal detectable faults on the various sensors seem to be adequate to the

industrial diagnostic applications, by considering also that the minimal detectable faults can be

reduced if a delay in detection promptness is tolerable. However, these improvements are not free

of charge: they have been obtained with a procedure of greater complexity and, consequently,

with a growing computational cost.

5.8 Actuator, Process and Sensor FDD of a Turbine Prototype

In this section the application of output observers designed in both deterministic and stochastic

environments for FDI of a prototype of a real single-shaft industrial gas turbine is presented [95].

The method uses classical output observers designed using ARX models in case of high

signal to noise ratios, or KF obtained by means of EIV models. As shown in Chapter 3, the

last situation the identi�cation technique is based on the rules of the Frisch scheme, based on

the traditional application to the analysis of economic systems. This approach gives a reliable

model of the plant under investigation, as well as providing variances of the input-output noises.

The Simulink prototype, depicted in Figure (5.29), can be described by the closed-loop

scheme in Figure (5.30), in which the faults fu, fs, fc and fy are likely to occur in the real plant.

They represent actuator, system, controller component and output sensor multiplicative faults,

respectively. In particular, they can be modeled as ramp functions.

The problem considered regards the detection and isolation of the faults on the basis of

the knowledge of the measured yi(t) and estimated ŷi(t) sequences concerning the i-th turbine

output.

The structure of the fault detection device is depicted in Figure (5.31).
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Figure 5.29: Turbine Simulink prototype.
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Figure 5.31: Logic diagram of the residual generator.

The residual generator is implemented by means of dynamic observers or KF, in order to produce

a set of signals from which it will be possible to isolate faults associated to actuators, components

and sensors.
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The isolation is obtained by processing the most sensitive output measurement yi(t) to a

particular fault. With this technique, it will be possible to univocally detect faults.

With reference to Figure (5.31) the residual signal ri(t) (i = 1; : : : ;m) are di�erences between

estimated signal ŷi(t) (given by observer or KF) and the actual one yi(t) supplied by the i-th

output sensor.

Moreover, it is assumed that only a single fault may occur in the actuators, components or

output sensors of the plant.

The time series of data used to identify the models were generated with the nonlinear

Simulink prototype and they simulate measurements taken on the machine with a sampling

rate of 0:08s with noise due to measurement uncertainty of the real measurement systems.

The nonlinear Simulink model of the gas turbine was validated in steady state conditions

against engine measurements where available, and against the prediction of a more rigorous

steady state gas turbine model where measurements were not available. The Simulink model

variables were found to be within 5% of the measured and rigorous modeled values. For the

majority of variables the accuracy was within 1%.

In the dynamic case no model validation has been carried out as yet.

Input dynamics are shown in Figures (5.32) and (5.33). Input measurements present an

accuracy of 5%.
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Figure 5.32: First input for the turbine.

Among all the output measurements available from the Simulink model (m = 28), only four

output signals (m = 4) were chosen. They correspond to the output signals which are the most

sensitive to an actuator, component or output sensor fault.

Four dynamic third order (n = 3) MISO models, each corresponding to the most sensitive

output to a di�erent fault, were identi�ed. The i-th model (with i = 1; : : : ;m, r = 2 and m = 4)

is driven by u(t) and and gives the prediction of the i-th output ŷi(t).

Each model was tested in di�erent operating conditions and it has always provided an output

reconstruction error lower than 1%.

Four gradually developing faults were considered as follows:

1. Compressor contamination, fs(t);
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Figure 5.33: Second input for the turbine.

2. Thermocouple sensor fault, fy(t);

3. Turbine seal damage, fs(t);

4. Actuator damage, fu(t).

These slowly developing multiplicative faults were modeled by ramp functions.

Failure case 1 represents fouling of the surfaces of the compressor blades, which reduces air

ow modifying the blade aerodynamics and consequently changes the surface roughness.

The signal corresponding to compressor air ow is depicted in Figure (5.34), while the fault

signal is shown in Figure (5.35).
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Figure 5.34: Compressor air ow rate.

The fault detection of a fault fs(t) regarding the compressor was performed by using the output

observer con�guration exploited for the FDI of output sensor faults. The inputs u(t) and the

output yi(t) feed the observer to estimate the signal ŷi(t) itself. The poles of the output observer

for the signal were chosen near to 0:4.
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Figure 5.35: Dynamics of the compressor fault.

Figure (5.36) shows the fault-free (solid line) and the faulty residual (dotted line) generated

by the �rst output observer.

Time (s)

r(t)

Figure 5.36: Fault-free and faulty residual.

Failure case 2 represents the malfunctioning of a thermocouple in the gas path leading to a

slowly increasing or decreasing reading over time (5.37).

In order to diagnose a single fault fy(t) on the i-th output temperature sensor, an output

observer driven by u(t) and by the output temperature signal yi(t) is designed. The output

signal is depicted in Figure (5.38).

Figure (5.39) shows the fault-free (continuous line) and faulty (dotted line) residual obtained

from the di�erence between the values computed by the observer related to the output and

the one given by the sensor. Obviously, the non zero value of the residual is due to the model

approximation.
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Figure 5.38: Output signal from the temperature sensor.

The step appearing in Figure (5.39), is generated by the instantaneous di�erence between

measured and estimated output and at the instant related to the fault occurrence.

Failure case 3 represents failure fs(t) of a component of the turbine. This results in a reduction

in turbine e�ciency. The fault is modeled as a gradual reduction in turbine e�ciency over time.

In order to detect such a fault, an output observer fed by the inputs u(t) and the yi(t) output

measurement concerning a pressure signal and sensitive to the fault, is designed. In Figure (5.40)

the signal fs(t) representing the turbine component fault is depicted.

Figure (5.41) depicts the output signal yi(t) which drives the observer to estimate ŷi(t). Its

eigenvalues were chosen near 0:2.

The fault free and the faulty residual generated by the system depicted in Figure (5.31) are

shown in the Figure (5.42).

Failure case 4, fu(t), depicted in Figure (5.43), represents a malfunction of the turbine actuator.

For the diagnosis of the actuator, fu(t), the output measurement represented in Figure (5.44),
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Figure 5.40: Turbine fault signal.

was considered. In particular, the inputs of the turbine, u(t) and the outputs yi(t), a�ected by

fu(t), drive the output observer to estimate the signal ŷi(t).

In such a case, because of the dynamics of the signal fu(t), the e�ects of the fault on the output

measurement, as well as the fault shape, can not be described by using a ramp function.

Figure (5.45) shows how the fault occurring on the single sensor causes alteration of the

residuals given by the output observer using the signal u(t) and yi(t) as inputs. These residuals

indicate a fault occurrence when their values are lower or higher than the thresholds �xed in

fault-free conditions.

Figure (5.45) the shows the fault-free (solid line) and faulty (dotted line) residual obtained

from the di�erence between the value computed by the observer ŷi(t) related to the output yi(t)

and the one given by the sensor yi(t) itself.

In order to improve the fault detection capabilities of the proposed method regarding the case
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Figure 5.41: Turbine output signal.
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Figure 5.42: Turbine output signal.

4, the technique presented in Section 4.8 is exploited. It concerns the use of a KF as parameter

estimator, in order to detect changes in parameters due to faults a�ecting input and output

measurements.

With reference to system (4.32), Figure (5.46) depicts the recursive estimation of the most

sensitive parameter in �(t) to a fault concerning the input of the turbine. Solid line (KF)

represents the estimate given by the KF, while, the dotted one (OLS) is the one computed by

the OLS method. Note how the real process, with and as inputs u(t) and yi(t) as output, is non

stationary and the estimates are di�erent.

Figure (5.47) shows the change of the most sensitive parameter due a fault, by using the KF

for a third order ARX model (4.31), with covariance matrices for the "(t) and !(t) processes

estimated from the OLS.
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Figure 5.43: Turbine actuator fault.
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Figure 5.44: Turbine output measurement.

In the following, the FDI technique based on KF designed in case of noisy measurement is

presented. Such a design is enhanced by processing the noisy data according to the identi�cation

method presented in Chapter 3.

In Figures (5.48), (5.49), (5.50) and (5.51) the examples of the turbine FDI performed by

using the residual generated by the KF with two inputs u(t) and one output yi(t) are shown.

In particular, Figure (5.48) shows the fault-free and faulty residuals generated by the KF for

the i-th output measurement when a fault fs(t) case 1 occurs. The i-th �lter is driven by the

input sensor signals u(t) and the signal yi(t) itself. A fault of 5% on the value of the signal at

the instant t = 15s causes a change in the value of the residual computed in fault-free condition.

It is important to note that, in order to achieve the maximal fault detection capability, the

residual corresponding to the most sensitive �lter to a failure on the measurement was selected.

Figure (5.49) concerns the fault fy(t) a�ecting the temperature output sensor and occurring

at the instant t = 15s case 2. Its amplitude is 5% of the output signal yi(t). It shows the

fault free and faulty residuals regarding the signal obtained from the di�erence between the
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estimate of ŷi(t) computed by the KF in Equations (4.19) and the ones measured by the sensor,

yi(t). Obviously, the non-zero value of the residual in fault-free conditions is due to model

approximation and to the actual measurement noise.

Figure (5.50) shows the behavior of the residuals when a fault fs(t) case 3 occurs at the instant

t = 15s. Fault amplitude is 5% of the monitored signal for the FDI of a component of the

turbine. It depicts the fault-free residual and its change due to the fault occurrence, as the

previous cases.

Finally, Figure (5.51) shows the change in the fault-free residual concerning the actuator fault

fu(t) case 4. The fault is 5% of the monitored signal yi(t) and it occurs at the instant t = 15s.

The faulty residuals is also shown.

Table (5.22) summarizes the performance of the FDI technique both in the deterministic and
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Figure 5.48: KF residuals when a fault fs(t) case 1 occurs.

stochastic environment. The table collect the minimal detectable fault on the four output

measurements, if residual or innovation values are monitored using a geometrical test and �xed

thresholds.

The minimal detectable fault values in Table (5.22) are expressed as percentage of the signal

values and are relative to the case in which the occurrence of a fault must be detected as soon

as possible.

It is worthy to note how the values of the faults obtained by using geometrical analysis on KF

innovations, collected in Table (5.22), are di�erent than the ones reported in the same table and

computed in the deterministic environment exploiting classical observers.

Table (5.22) shows also that faults modeled by ramp functions may not be immediately

detected, since the delay in the corresponding alarm normally depends on fault mode.

The minimal detectable fault can be found by �xing a detection delay, de�ned in Fig-
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Figure 5.49: KF residuals in case of output case 2 sensor fault fy(t) occurrence.
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Figure 5.50: Component case 3 fault fs(t) and KF residuals.

Fault Case Noise-free measurements Noisy measurements Detection delay

Case 1 0:5% 1:0% 30s

Case 2 10:0% 12:0% 30s

Case 3 5:0% 7:0% 60s

Case 4 1:0% 3:0% 10s

Table 5.22: Minimum detectable faults by monitoring residual and innovation values.

ure (5.52). If a longer delay in detection is tolerable, the amplitude of the minimal detectable

fault is lower.

The minimal detectable faults on the various sensors seem to be adequate to the industrial

diagnostic applications, by considering also that the minimal detectable faults can be reduced
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Figure 5.51: Actuator fault fu(t) and KF residuals case 4.
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Figure 5.52: Detection delay de�nition.

if a delay in detection promptness is tolerable.

5.9 Conclusion

In this chapter, several simulated and real examples were presented in order to test the FDI

techniques presented in Chapter 4.

Complete design procedures for the detection, isolation and identi�cation of faults concerning

actuators, components, input and output sensors of industrial processes were described.

The fault diagnosis was performed by using banks of dynamic observers and UIO or, when

the measurement noises are not negligible, banks of KF and UIKF.

Single step and ramp faults on the actuators, components, input and output sensors and

multiple faults on the output sensors were considered on the real and simulated processes.
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The FDI methods exploited in the chapter do not require any physical knowledge of the

processes under observation since the input{output links were obtained by means of identi�cation

methods.

Under this assumption, identi�cation techniques recalled in Chapter 3 were applied in order

to obtain suitable models of the processes under investigation.

The procedures were applied to di�erent models of industrial gas turbines.

The results obtained by this approach indicate that the minimal detectable faults on the

various sensors are of interest for the industrial diagnostic applications.
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Chapter 6

Conclusions and Further Research

This thesis concludes by �rst summarizing the contributions concerning the development of a

comprehensive methodology for model-based fault detection, isolation and identi�cation. After

the summary, topics for future researches, which come to light during this work are suggested.

6.1 Introduction

The main challenge in model-based FDI is to diagnose incipient and abrupt faults in complex

dynamic systems under the assumption that input and output measurements are a�ected by

noises.

The thesis has set the main objective to present and apply model-based diagnostic method-

ologies for complex and uncertain processes by identifying a reliable model of the system under

investigation from noisy input-output time series of data. Moreover, these FDI techniques were

demonstrated on real and simulated industrial plants.

This task was developed by means of a number of intermediate stages to be achieved:

1. To present a general framework for model-based FDI methods and give some basic de�ni-

tions.

2. To show existing strategies for model-based residual generation, such as unknown input

observers, dynamic observers and Kalman �lters.

3. To develop theory and techniques for identifying a model of the monitored system from

noisy input-output data.

4. To present a new method for generating robust residuals using decoupling techniques.

5. To overcome the problem of the di�erence between theoretical assumptions and practical

reality.

6. To demonstrate and apply FDI techniques in real and simulated industrial processes.

The results presented in the previous chapters indicate that these goals have been met and that

the overall objective of the thesis has been achieved.

Results arising from the presented researches have been and continue to be published in the

open literature.

121
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It is important to note that, the results obtained are of a general nature and are applicable

not only to particular systems but to a wide class of linear and nonlinear dynamic systems.

In the following, the main topics and contributions are summarized chapter by chapter.

Chapter 1 presented an introduction to the fault diagnosis problem and outlined the structure

of the thesis. Briey, the international nomenclature concerning the FDI theory was

recalled. Moreover, the chapter tried to comment on some developments in the �eld

of fault detection and diagnosis based on papers selected during 1991-1998. Therefore,

by going through the literature, the chapter recalled main FDI applications in order to

understand the goals of the contributions and to compare the di�erent approaches.

Chapter 2 presented the basic principles and general framework for model-based FDI. The

residual generation was identi�ed as the essence of this framework and some basic de�nition

concerning residual properties were given. The distribution of all possible faults in systems

was also studied. This chapter has provided comments upon some commonly used residual

generation approaches. Examples of their applicability have been discussed and suggestions

for the selection of methods have also been given. The problem of disturbances a�ecting

residuals was briey introduced. The chapter concluded with a discussion on integrating

di�erent diagnostic methods for FDI in complex dynamic systems using neural networks

and fuzzy models. The contribution of this chapter was to give a general view of main

FDI methods.

Chapter 3 investigated the problem of identifying an accurate model of the monitored system

in order to apply model-based FDI techniques. In the chapter, di�erent procedures were

presented for the identi�cation of both linear and nonlinear dynamic system from data

a�ected by noise. Linear, piecewise a�ne and fuzzy models were also exploited. For

the case of piecewise a�ne and fuzzy models, the multiple model approach consists in

using several local a�ne submodels each describing a di�erent operating condition of the

process. The identi�cation algorithms exploited to estimate parameters and orders of the

local a�ne submodels are based on the well-established Frisch Scheme method for linear

systems. For the nonlinear case, in order to obtain a continuous piecewise a�ne prototype

describing the input-output behavior of the process, continuity constraints between local

linear dynamic models have to be forced. The most important contribution of this chapter

was the proposal of methods for nonlinear system identi�cation by means of piecewise

a�ne dynamic approximators.

Chapter 4 has given a development of unknown input observers for residual generation. This

chapter presented the full-order unknown input observer structure, its existence conditions

and design procedure. Using its structure, the residuals can be also made to have direc-

tional properties. The remaining design freedom can be exploited to satisfy disturbance

decoupling conditions. Moreover, the design of classical dynamic observers in deterministic

environment, Kalman �lters and Kalman �lters with unknown inputs, when measurements

are a�ected by noises, was shown and applied for FDI goals. Actuator, component, input

and output fault detection, isolation and identi�cation schemes were �nally given in this

chapter. The main contribution of this chapter was to show how to develop model-based

FDI techniques which uses mathematical description of the monitored system obtained by

means of identi�cation techniques.
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Chapter 5 presented several simulated and real examples in order to test the FDI techniques

developed in previous chapter. Complete design procedure for the detection, isolation and

identi�cation of faults concerning actuators, components, input and output sensors of in-

dustrial processes were described. The fault diagnosis was performed by using unknown

input and dynamic observers or, when the measurement noises are not negligible, Kalman

�lters. Step and ramp faults on the actuators, components, input and output sensors

and multiple faults on the output sensors were considered on the real and simulated pro-

cesses. The FDI methods exploited in the chapter do not require any physical knowledge

of the processes under observation since the input-output links are obtained by means of

identi�cation methods. The results obtained by this approach indicate that the minimal

detectable faults on the processes are of interest for the industrial diagnostic applications.

Chapter 6 recalled how model-based FDI is a very rich research �eld and that there is a

large scope for new contributions. The author has, through collaboration with colleagues,

studied di�erent problems in this �eld. Evidence of this can be clearly seen through the

publications referenced at the end of the thesis. Some of the research were conducted by

the author beyond the scope of this thesis. To conclude the thesis, some directions for

future studies are suggested in the following sections, some of which are already topics

being published by the Automatic Control Group of the Department of Engineering at the

University of Ferrara.

6.2 Suggestion for Future Research

Model-based FDI has been studied for over 20 years, however is still an open research domain and

many problems are awaiting to be solved. The research developed in this thesis has inevitably

had to end before all the interesting topics for future FDI research could be explored. In the

following, those directions which, in the author's opinion, are the most important topics for

future research are therefore listed.

6.3 Frequency Domain Residual Generation

The design of a residual generator in the frequency domain was �rstly based on the factorization

of the transfer function matrix of the monitored system. The method was later extended and

developed by Ding and Frank [20].

In its early development, such an FDI approach o�ered only an alternative interpretation of

the residual generator, depicted in Figure (2.1), and hence it is equivalent to the time-domain

design such as observers (see Chapter 4).

The frequency domain FDI design technique really demonstrated its power when was incor-

porated into the H1 optimization method.

As recalled in this thesis, there are many ways for eliminating or minimizing disturbance

e�ects on residuals, such as the unknown input observer, eigenstructure assignment, optimal

robust parity equations [24].

While these techniques are di�erent, one feature is common among them, the original frame-

work of these methods was developed for ideal systems or with special uncertainty structure.

Furthermore, e�orts have been made to include nonideal or more general uncertainties.
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In contrast, H1 is a design method with the original motivation rooted in the consideration

of various uncertainties. H1 optimization has been developed from the beginning with the

understanding that no design goal of a system can be perfectly achieved without being compro-

mised by an optimization in the presence of uncertainty. Hence, this technique is very suitable

to tackle uncertainty issue. After several years of development, it is now playing a leading role

in tackling the robustness problem in control systems.

The aim of this research is to maximize the following performance index [24]

J = supQ(s)
k Q(s)Gf (s) k1
k Q(s)Gd(s) k1

(6.1)

over a frequency range. Q(s)Gf (s) is the transfer matrix between the residual and fault, whilts

Q(s)Gd(s) the transfer matrix between the residual and disturbance.

Solutions for this optimization problem were given and revised, in order to obtain ro-

bust FDI technique. Unfortunately, it was shown that k Q(s)Gf (s) k1 may be smaller than

k Q(s)Gd(s) k1 in certain frequency range even their ratio (6.1) has been maximized. This

can cause di�culties in fault diagnosis. A new strategy which guarantees the lower bound of

k Q(s)Gf (s) k1 is above the upper bound of k Q(s)Gd(s) k1 in the required frequency range

was suggested to solve robust FDI design problem. This o�er a better diagnostic performance

in the presence of disturbance.

It should be pointed that the transfer function matrix Gd(s) can only be de�ned for distur-

bance, hence the technique presented can only deal with robustness against disturbance. The

robust problem with respect to modeling errors has still not been solved. The only solution

suggested is to calculate the residual bound and set and adaptive threshold.

Few progresses were made solving the robust FDI problem against modeling errors when �

synthesis with H1 optimization is incorporated. Robust FDI design based on H1 optimization

and � synthesis is still in its early development, even if some research is still needed. This could

be a direction for future research which has great potential.

In connection with frequency domain FDI techniques can exploit a di�erent identi�cation

approach from the one presented in Chapter 3.

An identi�cation method based on the frequencial approach for errors-in-variable models and

its application to the dynamic Frisch scheme estimation technique in still in development [72, 74].

Such a procedure can provide an accurate estimation of the transfer matrices Q(s), Gf (s) and

Gd(s) from input-output measurements a�ected by white, mutually uncorrelated and correlated

noises.

This general method, using the frequencial approach, allows to uniquely determine both the

characteristics of the noise a�ecting the data (Gd(s)) as well as the transfer matrices (Q(s) and

Gf(s)) of the process under investigation. A comparison between time-domain and frequency-

domain approach can be found in [73].

6.4 Adaptive Residual Generators

The system dynamics and parameters may vary or to be perturbated during the system opera-

tion. A fault diagnosis system designed for system model given at the nominal condition may

not perform well when applied to the system with perturbated conditions.
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To overcome this problem, instead of using complex nonlinear models, residual generator

scheme using adaptive observers were proposed. The idea is to estimate and compensate system

parameter variations. Figure (6.1) illustrates the basic principle of this approach. It can be

applied to linear systems with parametric variations if stability and convergence conditions are

satis�ed.
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y(t)^ r(t)

u(t)
System

Observer
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B(t)
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Figure 6.1: Residual generator with adaptive observer.

Adaptive residual generation schemes for both linear and nonlinear uncertain dynamic systems

using adaptive observers were proposed in literature [23]. Unfortunately, the disadvantage of

this approach is the complexity.

Chen and Patton [24] presented an alternative way to generate adaptive symptoms using a

method to estimate the bias term in the residuals due to modeling errors, then compensate it

adaptively. This technique decreases the e�ects of uncertainties on residuals. The approach to

estimate such a bias term in residuals rather than computing modeling errors themselves avoids

complicated estimation algorithms.

The state x̂(t), and parameters, Â(t), B̂(t) simultaneous estimation algorithms presented in

[33, 67] can be also used to generate adaptive residuals. With reference to Figure (6.1), observer

parameters are linked by the relations

�
x̂(t+ 1) = Â(t)x̂(t) + B̂(t)u(t)

ŷ(t) = Cx̂(t):
(6.2)

An adaptive residual generation algorithm normally involves both state and x̂(t) and parameter

Â(t); B̂(t) estimation can be considered as a combination observer and identi�cation based FDI

approaches. Hence, complementary advantages in both approaches can be gained.

For all adaptive methods, the main problem to be tackled is that fault e�ects may be com-

pensated as well as the compensation of modeling errors and parameter variations. This makes

the detection for incipient faults almost impossible while for abrupt ones can be acceptable. To

overcome this problem, the e�ect of faults can be considered as a slow varying parameter which

can be estimated along with parameters. Under the assumption that parameters and faults

varying in di�erent speed, two �lters with di�erent gains can be used. However, much research

e�ort is still needed in the theory and application of adaptive residual generation methods.
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6.5 Integration of Identi�cation, FDD and Control

A conventional feedback control design for complex systems may result in unsatisfactory perfor-

mance in the event of malfunction in input-output sensors, actuators and system components.

A fault tolerant closed-loop control system is very attractive because can tolerate failures main-

taining desiderable performances.

The conventional approach to the design of a fault-tolerant control includes di�erent steps

and separate modules: modeling or identi�cation of the controlled system, design of controller

and FDI scheme, recon�guration technique. Identi�cation and design of the controller can

be performed separately or using combined methods. Hence, FDI and controller are linked

through the recon�guration module. The fundamental problem with such a system lies in the

identi�cation stage, in the independent design of the control and FDI modules. Signi�cant

interactions occurring among these modules can be neglected. There is therefore a need for a

research study into the interactions among system identi�cation, control design, FDI stage and

fault tolerant strategy.

6.6 Fault Identi�cation

Fault identi�cation is very important among all fault diagnosis tasks. When a fault is estimated,

detection and isolation can be easily achieved since the fault nature can improve the diagnosis

process. However, the fault identi�cation problem has not gained enough research attention.

Most fault diagnosis techniques, such as parameter identi�cation, parity space and observer-

based methods cannot directly be used to identify faults in sensors and actuators.

Very little research has been done to overcome the fault identi�cation problem. Kalman

�lter used in connection with statistic tests and fault estimation �lters were proposed [23] but

they presented very high computation demand.

Recently, fault identi�cation scheme solving a system inversion problem was recently pro-

posed [90, 24, 91]. In the scheme depicted in Figure (6.2) fault identi�cation is performed by

estimating the nonlinear relationship between residuals and fault sizes. This is possible because

robust residuals should only contain fault information.

Such a nonlinear function approximation and estimation can be performed by using neural

networks or an inversion of the transfer matrix between residuals and faults.

6.7 Fault Diagnosis of Nonlinear Dynamic Systems

The central task in model-based fault detection is the residual generation. Most residual gen-

eration technique are based on linear system models. For nonlinear systems, the traditional

approach is to linearize the model around the system operating point. However, for systems

with high nonlinearity and a wide dynamic operating range, the linearized approach fails to give

satisfactory results.

One solution is to use a large number of linearized models corresponding to a range of oper-

ating points. This means that a large number of FDI schemes corresponding to each operating

points is needed.

Hence, it is important to study residual generation techniques which tackle nonlinear dynamic

systems directly. There are some research studies on the residual generation of nonlinear dynamic
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Figure 6.2: Fault estimation scheme.

systems. There have been some attempts to use nonlinear observers to solve nonlinear system

FDI problem [24], e.g. nonlinear unknown input observers including, adaptive observers and

sliding mode observers. If the class of nonlinearities can be restricted, observers for bilinear

systems were also proposed [24].

On the other hand, the analytical models, which the nonlinear observer approaches are based

on, are not easy to obtain in practice. Sometimes, it is impossible to model the system using

an explicit mathematical models. To overcome this problem, it is desiderable to �nd a universal

approximate model which can be used to represent the real system with an arbitrary degree of

accuracy. Di�erent approaches were proposed and they are currently under investigation: neural

networks [24, 90, 91], fuzzy models [24, 96, 97, 98, 94] and hybrid models [99, 100, 101].

Neural networks are a powerful tool of handling nonlinear problems. One of the most impor-

tant advantages of neural networks is their ability to implement nonlinear transformations

for functional approximation problems. Therefore, neural networks can be used in a num-

ber of ways to tackle fault diagnosis problems for nonlinear dynamic systems. In early

publications, they were mainly exploited as fault classi�er with steady state processes.

Other potential of neural networks have not been fully used. Recently, neural networks

have been used as residual generators, as models of nonlinear dynamic systems [24] and

as nonlinear function approximators [90, 91, 102].

Fuzzy models can be used to design a novel FDI scheme based on model-based methods. The

main idea is to exploit TS models, presented in Section 3.9, to build an FDI scheme based

on fuzzy observers. Estimated outputs and residuals are computed as fuzzy fusion of local

observer output and residuals. The main problem concerns the stability of the global

observer. A linear matrix inequality method was proposed by Patton [24] using Lyapunov

theorem. The main problem of such a method regards existence condition ful�llment. Less

conservative and more general stability conditions have been currently investigated by the

Automatic Control Group of the Department of Engineering at the University of Ferrara

and new results are to be published [103].
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Hybrid models can describe the behavior of any nonlinear dynamic process if they are de-

scribed as a composition of several local a�ne models selected according to the process

operating conditions. Instead of exploiting complicated nonlinear models obtained by

modeling techniques, it is possible to describe the plant by a collection of a�ne models.

Such a compound system requires the identi�cation of the local models from data. Several

works proposed by the author [99, 100, 101] addressed a method for the identi�cation and

the optimal selection of the local a�ne models from a sequence of noisy measurements

acquired from the process. The developed techniques were also applied to simulated mod-

els. A novel research �eld applying these models in FDI of nonlinear systems is also under

development by the Automatic Control Group [104, 105, 106], but many studies are still

to be done.

6.8 Conclusion

This chapter concludes the thesis by �rst summarizing the contributions concerning the design of

tools for model-based detection, isolation and identi�cation of faults on actuators, components

and input-output sensors of the system under investigation.

After the summary, topics for future researches, which came to light during this work are

suggested.

In particular, the chapter briey discussed the extension of observer-based approaches for

linear systems to nonlinear ones. To tackle with nonlinear systems, techniques which do not

critically depend on analytical models are needed. Neural networks, fuzzy and hybrid models

were discussed.

Finally, this thesis concerned mainly the development of a comprehensive methodology for

FDI of dynamic systems by using a state estimation approach, in conjunction with residual

processing schemes The �nal result consists in a fault FDI strategy based on fault diagnosis

schemes to generate redundant residuals.

The suggested method does not require any physical knowledge of the process under observa-

tion since, instead of exploiting complicated nonlinear models obtained by modeling techniques,

linear models obtained by means of identi�cation schemes using EE and EIV models were ex-

ploited.

This thesis regarded mainly the application of the presented FDI techniques to real and

simulated power plants, whose linear mathematical description is obtained by using identi�cation

procedures. It is very di�cult, in fact, to �nd in literature practical applications of FDI for real

nonlinear dynamic system.
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