
SIMULINK
Dynamic System Simulation for MATLAB

Modeling

Simulation

Implementation

Simulink 2.1 New Features



How to Contact The MathWorks:

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
24 Prime Park Way
Natick, MA 01760-1500

http://www.mathworks.com Web
ftp.mathworks.com Anonymous FTP server
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
subscribe@mathworks.com Subscribing user registration
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

Simulink 2.1 New Features
 COPYRIGHT 1990 - 1997 by The MathWorks, Inc. All Rights Reserved.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

U.S. GOVERNMENT: If Licensee is acquiring the software on behalf of any unit or agency of the U. S.
Government, the following shall apply:

(a) for units of the Department of Defense:
RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the Government is subject to restric-
tions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software Clause
at DFARS 252.227-7013.
(b) for any other unit or agency:
NOTICE - Notwithstanding any other lease or license agreement that may pertain to, or accompany the
delivery of, the computer software and accompanying documentation, the rights of the Government
regarding its use, reproduction and disclosure are as set forth in Clause 52.227-19(c)(2) of the FAR.
Contractor/manufacturer is The MathWorks Inc., 24 Prime Park Way, Natick, MA 01760-1500.

MATLAB, Simulink, Handle Graphics, and Real-Time Workshop are registered trademarks and Stateflow
and Target Language Compiler are trademarks of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: May 1997 First printing

☎
FAX

✉

@

Contents
1
Simulink 2.1 New Features

Creating a Model . 1-2
Undo Command . 1-2
Libraries . 1-2
New Block Callback Parameters . 1-6
Displaying Line Widths . 1-6
Changing the Font of a Signal Label . 1-7
Print Dialog Box . 1-7

Running a Simulation . 1-9
Changing Parameters During a Simulation 1-9
Running a Simulation Using Commands 1-9
The simget Command . 1-9

Masking . 1-11
Masking Subsystems . 1-11
Accessing User-Written Help Documentation 1-11
Using NaN and inf in Plot Commands 1-11
Aligning Text on a Block Icon . 1-12
Rotating a Masked Block . 1-12
Accessing Masked Block Parameters . 1-12
Looking Under Mask from Command Line 1-12

Conditionally Executed Subsystems 1-13

S-Functions . 1-14
Revised sfuntmpl Template . 1-14
Using Function-Call Subsystems . 1-14
Instantaneous Update of S-function Inputs 1-15
Output and Work Vector Widths . 1-15
Unconnected Dynamically-Sized S-Functions 1-15
Nonsampled Zero Crossings for Continuous

S-Functions . 1-15
New Mode Work Vector . 1-16
Parameter Changes . 1-16
Improved Error Handling . 1-16
i

ii Contents
Exception Handling . 1-16
Normal or Real-Time Workshop Simulation 1-17
Removing Ports When No Inputs and/or Outputs 1-17
Sample Times and Input/Output Port Widths 1-17
Additional Macros in mdlInitializeSizes 1-17

Blocks . 1-18
Discrete Pulse Generator Block . 1-19
Manual Switch Block . 1-19
Math Function Block . 1-19
Product Block . 1-20
Random Number Block . 1-21
Rate Limiter Block . 1-21
Rounding Function Block . 1-22
Trigger Block . 1-22
Trigonometric Function Block . 1-22
Uniform Random Number Block . 1-23
Change to Extras Library . 1-23

Additional Topics . 1-24
Zero Crossings – A Clarification . 1-24
Invariant Constants . 1-24

Model Construction Commands . 1-26
Vectorization of get_param Command 1-26
Changes to find_system Command . 1-26
New gcbh Command . 1-27
Changes to slupdate Command . 1-27

The Model Browser . 1-28
Contents of the Browser Window . 1-28
Interpreting List Contents . 1-29

Documentation Errata . 1-31

2
Simulink 2.0 New Features

Introduction . 2-2
Loading Simulink 1.3 Models . 2-2
Changes to the Simulink User Interface 2-3
Improved Documentation . 2-3

Creating a Model . 2-4
Starting Simulink . 2-4
Model and Block Parameters . 2-4
Working with Blocks . 2-4
Working with Lines . 2-6
Labeling Ports . 2-6
Copying a Model to the PC Clipboard . 2-6

Running a Simulation . 2-7
Expanded Simulation Parameters Dialog Box 2-7
State-of-the-Art Integrators . 2-7
Running a Simulation from the Command Line 2-8

Using Masks to Customize Blocks . 2-9
Executing a Callback Routine when Opening a Masked Block . 2-9

Conditionally Executed Subsystems 2-10

S-Functions . 2-11

Simulink Blocks . 2-12
Online Block Reference Browser . 2-12
Revised Block Dialog Boxes . 2-12
Vectorization of Blocks . 2-12
New, Enhanced, and Renamed Blocks 2-13
Obsoleted Blocks . 2-18

Additional Topics . 2-19
Algebraic Loops . 2-19
Zero Crossing Detection . 2-19

Model Construction Commands . 2-20

Model File Format . 2-21
iii

iv Contents

Introduction
Introduction
This document provides a brief description of the significant new features
included in Simulink® 2.0 and Simulink 2.1. The manual contains two
chapters:

• Chapter 1 describes features new to Simulink 2.1. If you are upgrading from
Simulink 2.0 to Simulink 2.1, read this chapter.

• Chapter 2 describes features new to Simulink 2.0. If you are upgrading from
Simulink 1.3 to Simulink 2.1, read both chapters.

The organization of sections in each chapter and the chapter titles reflect the
order and titles of the chapters in Using Simulink.
v

vi

Creating a Model 1-2

Running a Simulation 1-9

Masking . 1-11

Conditionally Executed Subsystems 1-13

S-Functions . 1-14

Blocks . . 1-18

Additional Topics 1-24

Model Construction Commands 1-26

The Model Browser 1-28

Documentation Errata 1-31
1

Simulink 2.1 New
Features

1 Simulink 2.1 New Features

1-2
Creating a Model

Undo Command
You can cancel the effects of up to 101 separate operations by choosing Undo
from the Edit menu. You can undo these operations:

• Adding or deleting a block.

• Adding or deleting a line.

• Adding or deleting a model annotation.

• Editing a block name.

You can reverse the effects of the Undo command by choosing Redo from the
Edit menu.

Libraries
Simulink 2.1 provides support for user libraries. This feature enables users to
copy blocks into their models from external libraries and automatically update
the copied blocks when the source library changes.

In previous releases, Simulink supported this feature only for built-in blocks
(built-in blocks are blocks provided in Simulink block libraries that are not
masked blocks). When you copied a Simulink built-in block into your model and
upgraded Simulink to a new version, your models would be updated
automatically to include the new built-in blocks.

This feature allows users who develop their own block libraries, or who use
those provided by others (such as blocksets), to ensure that their models
automatically include the most recent versions of these blocks.

Terminology
It is important to understand the terminology used with this feature.

Library – A collection of library blocks. A library must be explicitly created
using New Library from the File menu.

Library block – A block in a library.

Reference block – A copy of a library block. While the reference block remains
linked to the library block, the reference block is updated whenever the library
block changes.

Creating a Model
Link – The connection between the reference block and its library block that
allows Simulink to update the reference block when the library block changes.

Copy – The operation that creates a reference block from either a library block
or another reference block.

This figure illustrates the terminology used in this feature:

Creating a Library
To create a library, select Library from the New submenu of the File menu.
Simulink displays a new window, labeled Library: untitled. If an untitled
window already appears, a sequence number is appended.

If, in previous versions of Simulink, you provided customized blocks using a
model, you can copy the contents of the model into the library.

The library must be named (saved) before you can copy blocks from it.

You can create a library from the command line using this command:

new_system('newlib', 'Library')

This command creates a new library named 'newlib'. To display the library,
use the open_system command. These commands are described in Chapter 11
of Using Simulink.

Modifying a Library
When you open a library, it is automatically locked and you cannot modify its
contents. To unlock the library, select Unlock Library from the Edit menu.
Closing the library window locks the library.

Copying a Library Block into a Model
When you copy a library block into a model or another library, Simulink creates
a link to the library block in the library. The reference block is a copy of the
library block. You can modify block parameters but you cannot mask the block

link

copy
library
block

reference
block

Library (Source) Model or Library (Destination)
1-3

1 Simulink 2.1 New Features

1-4
or, if it is masked, edit the mask. Also, you cannot set callback parameters for
a reference block. If you look under the mask of a reference block, Simulink
displays the underlying system for the library block.

The library and reference blocks are linked by name; that is, the reference block
is linked to the specific block and library whose names are in effect at the time
the copy is made.

If Simulink is unable to find either the library block or the source library on
your MATLAB® path when it attempts to update the reference block, the link
becomes unresolved. Simulink issues an error message and displays these
blocks using red dashed lines. The error message is:

Failed to find block "source-block-name"
in library "source-library-name"
referenced by block
"reference-block-path".

The unresolved reference block is displayed like this (colored red):

To fix a bad link, you must either:

• Delete the unlinked reference block and copy the library block back into your
model, or

• Add the directory that contains the required library to the MATLAB path
and select Update Diagram from the Edit menu, or

• Double-click on the reference block and, on the dialog box that appears,
correct the pathname and click on Apply or Close.

All blocks have a new parameter called LinkStatus that indicates whether the
block is a reference block. Possible values for the parameter are:

• 'none' indicates that the block is not a reference block.

• 'resolved' indicates that the block is a reference block and that the link is
resolved.

• 'unresolved' indicates that the block is a reference block but that the link
is unresolved.

Creating a Model
Updating a Linked Block
Simulink updates reference blocks in a model or library at these times:

• When the model or library is loaded.

• When you select Update Diagram from the Edit menu or run the simulation
in these circumstances:

- When the library containing the library blocks is unlocked

- When the model contains a reference block with an unresolved link

• When you query the LinkStatus parameter of a block using the set_param
command (see the next section)

• When you use the find_system command

Breaking a Link to a Library Block
You can break the link between a reference block and its library block to cause
the reference block to become an unlinked copy of the library block. When you
break the link, changes to the library block no longer affect the block. Breaking
links to library blocks enables you to transport a model as a stand-alone model,
without the libraries.

To break the link between a reference block and its library block, select the
block, then choose Break Library Link from the Edit menu. You can also
break the link between a reference block and its library block from the
command line by changing the value of the LinkStatus parameter to 'none'
using this command:

set_param('refblock', 'LinkStatus', 'none')

You can save a system and break all links between reference blocks and library
blocks using this command:

save_system('sys', 'newname', 'BreakLinks')

Finding the Library Block for a Reference Block
To find the source library and block linked to a reference block, select the
reference block, then choose Go To Library Link from the Edit menu. If the
library is open, Simulink selects the library block (displaying selection handles
on the block) and makes the source library the active window. If the library is
not open, Simulink opens it and selects the library block.
1-5

1 Simulink 2.1 New Features

1-6
Getting Information About Library Blocks in a System
Use the libinfo command to get information about reference blocks in a
system. The syntax of the command is:

libdata = libinfo(sys)

where sys is the name of the system. The command returns a structure of size
n-by-1, where n is the number of library blocks in sys. Each element of the
structure has four fields:

• Block, the block path

• Library, the library name

• ReferenceBlock, the reference block path

• LinkStatus, the link status, either 'resolved' or 'unresolved'

New Block Callback Parameters
Simulink 2.1 provides these new block callback parameters:

• InitFcn executes before the block diagram is compiled and before the block
parameters are evaluated.

• StartFcn executes after the block diagram is compiled and before the
simulation starts.

• StopFcn executes at any termination of a simulation.

• UndoDelete executes when a block delete is undone.

Displaying Line Widths
You can display the widths of all lines in a model by turning on Line Widths
from the Format menu. Simulink indicates the width of each signal at the
block that originates the signal and the block that receives it.

When you start a simulation or update the diagram and Simulink detects a
mismatch of input and output ports, it displays an error message and shows
line widths in the model.

Changing the Font of a Signal Label
You can change the font of a signal label by selecting the signal, choosing Font
from the Format menu, then selecting a font from the Set Font dialog box.

Creating a Model
Print Dialog Box
This release provides a Print dialog box that enables you to selectively print
systems within your model. Using the dialog box, you can:

• Print the current system only

• Print the current system and all systems above it in the model hierarchy

• Print the current system and all systems below it in the model hierarchy,
with the option of looking into the contents of masked and library blocks

• Print all systems in the model, with the option of looking into the contents of
masked and library blocks

The portion of the Print dialog box that supports selective printing is similar
on supported platforms. This figure shows how it looks on a Microsoft Windows
system. In this figure, only the current system is to be printed:

When you select either the Current system and below or All systems option,
two check boxes become enabled. In this figure, All systems is selected.

The Look Under Mask Dialog check box prints the contents of masked
subsystems when encountered at or below the level of the current block. (When
1-7

1 Simulink 2.1 New Features

1-8
printing all systems, the top-level system is considered the current block so
Simulink looks under any masked blocks encountered.)

The Expand Unique Library Links check box prints the contents of library
blocks when those blocks are systems. Only one copy is printed regardless of
how many copies of the block are contained in the model. For more information
about libraries, see “Libraries” on page 1-2.

You can choose to print the print log, which lists the blocks and systems
printed. To print the print log, select the Include Print Log check box.

Running a Simulation
Running a Simulation

Changing Parameters During a Simulation
A useful feature of Simulink is the ability to change block parameter values
during a simulation. Simulink 2.1 enables you to change block parameters in
the workspace and update the block diagram with those values. To do this,
after making the changes in the command window, make the model window
the active window, then choose Update Diagram from the Edit menu.

Running a Simulation Using Commands
You can use the set_param command to start, stop, pause, or continue a
simulation, or update a block diagram. Similarly, you can use the get_param
command to check the status of a simulation.

The format of the set_param command for this use is:

set_param('sys', 'SimulationCommand', 'cmd')

where 'sys' is the name of the system and 'cmd' is 'start', 'stop', 'pause',
'continue', or 'update'.

The format of the get_param command for this use is:

get_param('sys', 'SimulationStatus')

Simulink returns 'stopped', 'initializing', 'running', 'paused',
'terminating', and 'external' (used with Real-Time Workshop®).

The simget Command
If you use the simget command to get the value of a model parameter whose
value is set by a variable, the variable must exist in the workspace. If the
variable is undefined, Simulink returns an error message.
1-9

1 Simulink 2.1 New Features

1-1
For example, these commands set the value of the Refine model parameter for
the vdp system to var, then use simget to determine the value of the
parameter. If var is not defined, Simulink returns an error message.

vdp;
set_param('vdp','Refine','var');
simget('vdp','Refine')
??? Error using ==> simget
All variables used in the Parameters dialog must be defined in the
workspace.
The following parameters have variables which are undefined:

Refine
0

Masking
Masking
Simulink 2.1 provides these enhancements to the masking feature:

Masking Subsystems
The Create Mask menu item has been changed to Mask Subsystem. You can
now mask only Subsystem blocks. Masked blocks that are not subsystems will
continue to work properly but in the future, Simulink will support masked
subsystems only.

Accessing User-Written Help Documentation
You can include user-written documentation for a masked block’s help. You can
specify any of the following for the masked block help text:

• URL specification (a string starting with http:, www, file:, ftp:, or
mailto:)

• web command (launches a browser)

• eval command (evaluates a MATLAB string)

• Static text displayed in the web browser (the option previously supported)

Simulink examines the first line of the masked block help text. If it detects a
URL specification, web command, or eval command, it accesses the block help
as directed; otherwise, the full contents of the masked block help text are
displayed in the browser.

These examples illustrate several acceptable commands:

web([docroot '/My Blockset Doc/' get_param(gcb,'MaskType') '.html'])
eval('!Word My_Spec.doc')
http://www.mathworks.com
file:///c:/mydir/helpdoc.html
www.mathworks.com

Using NaN and inf in Plot Commands
Plot commands used to generate the block icon can include NaN and inf. When
NaNs or infs are encountered, Simulink stops drawing, then begins redrawing
at the next numbers that are not NaN or inf.
1-11

1 Simulink 2.1 New Features

1-1
Rotating a Masked Block
Rotating a masked block causes Simulink to execute the block’s initialization
commands. Also, if you turn on block rotation for a masked block having a
graphical icon, the icon rotation is consistent with the block port rotation.

Accessing Masked Block Parameters
You can now access parameters for masked blocks the same way you access
parameters for blocks that are not masked. For example, this system, called
mysys, has a simple masked subsystem. The masked subsystem’s dialog box
includes a prompt for the Gain block’s Gain parameter.

On the mask dialog box for the subsystem, the variable k is associated with the
Gain parameter. This command sets the Gain parameter:

set_param('mysys/Subsystem', 'k', '10')

When this model is simulated, the Display block shows the value 80.

Looking Under Mask from Command Line
You can look under a block mask or OpenFcn callback from the command line
using the open_system command. Specify 'force' as the second argument. For
example, this command displays the underlying blocks that make up the Ramp
block in the mymodel system:

open_system('mymodel/Ramp', 'force')
2

Conditionally Executed Subsystems
Conditionally Executed Subsystems
Simulink 2.1 enables you to create a triggered subsystem whose execution is
determined by logic internal to an S-function, instead of by the value of a
signal. The subsystems are called function-call subsystems. To use them, you
must use a new macro in the S-function and change the trigger type of the
Trigger block.

To implement a function-call subsystem:

• In the Trigger block, select the function-call value for the Trigger type
parameter.

• In the S-function, use the ssCallSystem macro to call the triggered
subsystem. For more details, see “Using Function-Call Subsystems” on page
1-14.

• In the model, connect the S-Function block output directly to the trigger port.

Function-call subsystems are not executed directly by Simulink. The
S-function determines when to execute the subsystem. When the subsystem
completes execution, control returns to the S-function. This figure illustrates
the interaction between a function-call subsystem and an S-function:

Function-call subsystems are generally used by Stateflow™ blocks. For more
information on their use, see the Stateflow documentation.

mdlOutputs()
...
ssCallSystem(S,outputElement)
next statement
...

f()

function-call
subsystem
1-13

1 Simulink 2.1 New Features

1-1
S-Functions
Simulink 2.1 provides numerous enhancements to S-functions. All items below
apply to C MEX S-functions unless otherwise noted.

Revised sfuntmpl Template
The S-function template has been revised for this release. The template,
sfuntmpl.c, is located in simulink/src. For an amply commented version of
the template, see sfuntmpl.doc in the same directory.

Using Function-Call Subsystems
Subsystem trigger ports now have a fourth option function-call selection. A
subsystem that contains a trigger port configured as a function-call is referred
to as a function-call subsystem. These subsystems can be connected only to
S-functions configured to execute function-call subsystems. To configure an
S-function to call a function-call subsystem:

1 Specify which elements are to execute the function-call system in
mdlInitializeSampleTimes. For example:
ssSetCallSystemOutput(S,0); /* call on 1st element */
ssSetCallSystemOutput(S,2); /* call on 3rd element */

2 Execute the subsystem in the appropriate mdlOutputs, mdlUpdates, or
mdlDerivatives routine. For example:

static void mdlOutputs(...)
{

if (((int)u[0]) % 2 == 1) {
ssCallSystem(S,0);

} else {
ssCallSystem(S,2);

}
...
}

sfun_fcncall.c illustrates an S-function configured to execute function-call
subsystems.
4

S-Functions
Instantaneous Update of S-Function Inputs
You can now get instantaneous updates of S-function inputs by accessing the
inputs through pointers. This is required for execution of function-call
subsystems whose inputs feed back into your S-function. To configure your
S-function to use input pointers, set, in mdlInitializeSizes:

ssSetOptions(S,SS_OPTION_USING_ssGetUPtrs)

Then, in all the routines where you access the input, include

UPtrsType uPtrs = ssGetUPtrs(S);

The ith input is then *uPtrs[i].

Output and Work Vector Widths
For S-functions with dynamically sized inputs and outputs, you can now
configure your output width to be a function of your input width and vice versa.
To do this, define these routines:

int mdlGetInputPortWidth(int outputWidth) /* return input width */
int mdlGetOutputPortWidth(int inputWidth) /* return output width */

Also, you can now configure your work vector widths based on the input width,
output width, or sample times. To do this, define a mdlSetWorkWidths routine.

sfun_dynsize.c demonstrates how to use the mdlSetInputPortWidth,
mdlSetOutputPortWidth, and mdlSetWorkWidths optional methods to
configure the input port width, output port width, and real work vector length
based on the size of the signal driving the S-function.

Unconnected Dynamically Sized S-Functions
Dynamically sized S-functions can now determine when they aren’t connected
using the ssGetInputConnected(S) and ssGetOutputConnected(S) macros.

Nonsampled Zero Crossings for Continuous
S-Functions
Continuous S-functions can now register nonsampled zero crossings.
Nonsampled zero crossings are used to “hone-in” on state events (i.e.,
discontinuities in the first derivative) of some signal, usually a function of an
1-15

1 Simulink 2.1 New Features

1-1
input to your S-function. To register nonsampled zero crossings, set the
number of nonsampled zero crossings in mdlInitializeSizes using:

ssSetNumNonsampledZCs(S, num)

Then, define the mdlZeroCrossings routine to return the nonsampled zero
crossings. sfun_zc.c shows how to use nonsampled zero crossings.

New Mode Work Vector
There is support for a new work vector, referred to as the mode vector.
Elements are integer values that are typically used with nonsampled zero
crossings. Specify the number of mode vector elements in mdlInitializeSizes
using ssSetNumModes(S,num). You can then access the mode vector using
ssGetModeVector.

Parameter Changes
S-functions can now be notified of parameter changes. To be notified of
parameter changes, your S-function must register a mdlCheckParameters
routine. This routine will be called any time after mdlInitializeSizes has
been called.

Improved Error Handling
Error handling has been improved to work consistently across Real-Time
Workshop and Simulink. To report an error, S-functions should include these
statements:

ssSetErrorStatus(S, "Error string");
return;

It is important that Error string be persistent memory, not a stack variable.

sfun_errhdl.c shows how to perform error checking. The S-function checks to
see that required parameters are of the correct format.

Exception Handling
Each time an S-function is invoked, Simulink performs overhead tasks
associated with exception handling. If the S-function does not contain any
routines that can generate exceptions, you can improve the performance of the
simulation.
6

S-Functions
If you are not using routines that can throw an exception, set this option in
mdlInitializeSizes:

ssSetOption(S, SS_OPTION_EXCEPTION_FREE_CODE);

Do not specify the SS_OPTION_EXCEPTION_FREE_CODE option if the S-function
contains any routines that can throw an exception:

• All routines that start with mex can throw an exception.

• Routines that start with mx can throw an exception, except routines that get
a pointer or determine the size of parameters, such as mxGetPr, mxGetData,
mxGetNumberOfDimensions, mxGetM, mxGetN, and mxGetNumberOfElements.

If the S-function must allocate memory, avoid using mxCalloc. Instead, use the
stdlib.h calloc routine directly and perform your own error handling, then
free the memory in mdlTerminate.

Normal or Real-Time Workshop Simulation
S-functions can now determine if they are running in a normal simulation or
as part of Real-Time Workshop code generation or as part of external mode.
This is done using ssGetSimMode(S).

Removing Ports When No Inputs and/or Outputs
Any C MEX, Fortran MEX, or M-file S-function that indicates it has no input
and/or outputs will have the corresponding port(s) removed from the
S-Function block icon. The port is removed when the simulation starts or when
you choose Update Diagram from the Edit menu.

Sample Times and Input/Output Port Widths
Sample times can now be a function of the input/output port widths. In
mdlInitializeSizes, you can specify that sample times are a function of
ssGetNumInputs and ssGetNumOutputs.

Additional Macros in mdlInitializeSizes
The ssGetPath, ssGetModelName, and ssSetStatus macros work in
mdlInitializeSizes.
1-17

1 Simulink 2.1 New Features

1-1
Blocks
This release makes numerous changes to the block libraries. The new and
revised blocks are described in more detail below.

• The new Discrete Pulse Generator block (in the Sources library) is a discrete
version of the Pulse Generator block.

• The Signal Generator block no longer permits the use of the Random Noise
signal and produces a warning message when the Random Noise signal is
selected. The Signal Generator block has a continuous sample time, so using
this block to generate random noise in a purely discrete system is inefficient.
Consider using either the Random Number block or the new Uniform
Random Number block, described below, and set the sample time.

• The Sine Wave block now defaults to a continuous sample time, although you
can set the sample time. The signal displayed on the block icon indicates
whether the sample time is continuous or discrete.

• The Random Number block (in the Sources library) now provides greater
control of its signal. You can specify the mean and standard deviation for the
random numbers. Also, the block now has a continuous sample time.

• The new Uniform Random Number block (in the Sources library) enables you
to add uniformly distributed random noise to your system. You can specify
the interval of the random numbers. By default, the block has a continuous
sample time.

• The Scope block now displays up to 30 lines. The Scope cycles through the six
colors in the order described in Using Simulink. Also, floating Scopes can
auto-scale their input only during a simulation.

• The Elementary Math block is replaced by three blocks: the Math Function
block, the Rounding Function block, and the Trigonometric Function block.
Each block provides related functions; this release also provides additional
functions.

• The new Manual Switch block (in the Nonlinear library) enables you to
switch input by double-clicking on the block icon.

• The Product block (in the Nonlinear library) now multiplies or divides its
inputs or input elements.

• The Rate Limiter block limits the rate at which the block output reaches the
block input. The block works the same as it did in Simulink 1.3.
8

Blocks
Discrete Pulse Generator Block
The new Discrete Pulse Generator block generates pulses at regular intervals.
The Period, Pulse width, and Phase delay parameters are all expressed in
terms of the number of samples.

Manual Switch Block
The Manual Switch block enables you to switch between two inputs by
double-clicking on the block during a simulation. The block has no dialog box.

Math Function Block
The Math Function block provides these general mathematical functions: exp,
log, 10u, log10, square, sqrt, pow, reciprocal, hypot, rem, and mod.
1-19

1 Simulink 2.1 New Features

1-2
You select the function from the Function list. The block icon displays the
name or a representation of the selected function. Simulink automatically
draws the appropriate number of input ports (one input port for all functions
except pow, hypot, rem, and mod, which have two ports). For more information
about these functions, see the MATLAB documentation or the online MATLAB
Function Reference.

Product Block
The Product block now enables you to multiply or divide block inputs or
elements of a single vector input.

You can specify the Number of inputs parameter in three ways:

• An integer value causes the block to generate output that is the product of
the inputs.

• A value of 1 or * causes the block to generate output that is the product of all
elements of the input vector. A value of / causes the block to output the
reciprocal of the product of all elements of the input vector.

• A combination of * and / symbols causes the block to generate output that is
the product of the inputs, where each input associated with the backslash is
converted to its reciprocal first. See the example below for an illustration.
0

Blocks
This example shows a simple model that illustrates the use of * and / symbols.
The value of the Number of inputs parameter is **/*:

Random Number Block
The Random Number block, which generates normally distributed random
numbers, now enables you to specify the mean and standard deviation of the
random numbers it generates. You can also specify a sample time.

Rate Limiter Block
The Rate Limiter block has been modified to limit the rate of change of the
block output. At each time step, Simulink computes the difference between the
current block input and the previous block output. The block output is then
limited by block parameters. The rate is expressed by this equation:

rate
u i() y i 1–()–
t i() t i 1–()–
------------------------------------=
1-21

1 Simulink 2.1 New Features

1-2
Rounding Function Block
The Rounding Function block provides these rounding functions: floor, ceil,
round, and fix.

You select the function from the Function list. The block icon displays the
name of the selected function.

Trigger Block
The Trigger block now provides a fourth Trigger type parameter choice,
function-call. Choosing this trigger type causes the triggered subsystem to act
as a function that executes immediately after being called by an S-function.
This feature is used primarily with Stateflow and Real-Time Workshop.

Trigonometric Function Block
The Trigonometric Function block provides these trigonometric functions: sin,
cos, tan, asin, acos, atan, atan2, sinh, cosh, and tanh.

You select the function from the Function list. The block icon displays the
name of the selected function.
2

Blocks
Uniform Random Number Block
The Uniform Random Number block enables you to add uniformly distributed
random noise to your system. You can specify the range of the random
numbers.

Change to Extras Library
The Flip-Flop sublibrary has been moved to the Blocksets & Toolboxes library
in the Simulink Extras sublibrary.

The Set-point PID Controller block has been removed from the Additional
Linear sublibrary.
1-23

1 Simulink 2.1 New Features

1-2
Additional Topics

Zero Crossings – A Clarification
The description in Chapter 10 of Using Simulink does not describe a situation
where a zero crossing is not detected.

If the zero crossing occurs within a time step, such that the values at the
beginning and end of the step do not indicate a zero crossing, the solver will
step over the crossing without detecting it.

If you suspect this is happening, tighten the error tolerances to force the solver
to take smaller steps. For more information about error tolerances, see
Chapter 4 of Using Simulink or the online help for the Simulation
Parameters dialog box.

Invariant Constants
Blocks either have explicitly defined sample times or inherit their sample
times from blocks that feed them or are fed by them.

Simulink assigns Constant blocks a sample time of infinity, also referred to as
a constant sample time. Other blocks have constant sample time if they receive
their input from a Constant block and do not inherit the sample time of another
block. This means that the output of these blocks does not change during the
simulation unless the parameters are explicitly modified by the model user.

For example, in this model, both the Constant and Gain blocks have constant
sample time:

Because Simulink supports the ability to change block parameters during a
simulation, all blocks, even blocks having constant sample time, must generate
their output at the model’s effective sample time.

Because of this feature, all blocks compute their output at each sample time
hit, or, in the case of purely continuous systems, at every simulation step. For
blocks having constant sample time whose parameters do not change during a
simulation, evaluating these blocks during the simulation is inefficient and
slows down the simulation.
4

Additional Topics
Simulink 2.1 provides the new Invariant Constants feature that removes all
blocks having constant sample times from the simulation “loop.” The effect of
this feature is twofold: first, parameters for these blocks cannot be changed
during a simulation; and second, simulation speed is improved. The speed
improvement depends on model complexity, the number of blocks with
constant sample time, and the effective sampling rate of the simulation.

You can apply the invariant constant feature to your model by entering this
command in the MATLAB command window:

set_param('model_name', 'InvariantConstants', 'on')

You can turn off the feature by issuing the command again, assigning the
parameter the value of 'off'.

You can determine which blocks have constant sample time by turning on
Sample Time Colors from the Format menu. Blocks having constant sample
time are colored magenta.
1-25

1 Simulink 2.1 New Features

1-2
Model Construction Commands

Vectorization of get_param Command
The get_param command now accepts a cell array of full path specifiers,
enabling you to get the values of a parameter common to all objects specified in
the cell array.

The format of the command is:

get_param({ objects }, 'ParameterName')

For example, these commands display the block types of all blocks in the vdp
system:

>> blks = find_system(gcs, 'Type', 'block');
>> get_param(blks, 'BlockType')

ans =

'Fcn'
'Integrator'
'Integrator'
'SubSystem'
'SubSystem'
'Gain'
'Mux'
'Product'
'Scope'
'Sum'
'Outport'
'Outport'

Changes to find_system Command
The find_system command now enables you to search within a masked system
(unless the mask consists only of an icon) or follow a link into a library. The
syntax for each constraint is:

find_system('LookUnderMasks', 'on', ...)
find_system('FollowLinks', 'on', ...)
6

Model Construction Commands
The default value for both constraints is 'off'. If the default values for these
constraints are in effect, the search does not extend into the masked systems
or linked blocks.

New gcbh Command
The new gcbh command gets the handle of the current block. You can use the
command to identify or address blocks that have no parent system. The
command should be most useful to blockset authors.

Changes to slupdate Command
In this release, slupdate replaces the Elementary Math block with either the
Math Function block, the Rounding Function block, or the Trigonometric
Function block, depending on the selected function. It also fixes a bug in the
mask for the Look-Up Table (2D) block.
1-27

1 Simulink 2.1 New Features

1-2
The Model Browser
Simulink 2.1 provides a model browser that enables you to:

• Navigate a model hierarchically.

• Open systems in a model directly.

• Determine the blocks contained in a model.

To open the Browser, select Show Browser from the File menu. The Browser
window appears, displaying information about the current model. This figure
shows the Browser window displaying the contents of the clutch system:

Contents of the Browser Window
The Browser window consists of:

• The systems list. The list on the left contains the current system and the
subsystems it contains, with the current system selected.

• The blocks list. The list on the right contains the names of blocks in the
selected system. Initially, this window displays blocks in the top-level
system.

• The File menu, which contains the Print, Close Model, and Close Browser
menu items.

Current
system and
subsystems
it contains

Blocks in
the selected
system
8

The Model Browser
• The Options menu, which contains these menu items: Open System, Look
Into System, Display Alphabetical/Hierarchical List, Expand All, Look
Under Mask Dialog, and Expand Library Links.

• Options check boxes and buttons: Look Under [M]ask Dialog and Expand
[L]ibrary Links check boxes, and Open System and Look Into System
buttons. By default, Simulink does not display contents of masked blocks and
blocks that are library links. These check boxes enable you to override the
default.

• The block type of the selected block.

• Dialog box buttons: Help, Print, and Close.

Interpreting List Contents
Simulink identifies masked blocks, reference blocks, blocks with defined
OpenFcn parameters, and systems that contain subsystems using these
symbols before a block or system name:

• A plus sign (+) before a system name in the systems list indicates that the
system is expandable, which means that it has systems beneath it.
Double-click on the system name to expand the list and display its contents
in the blocks list. When a system is expanded, a minus sign (–) appears
before its name.

• [M] indicates that the block is masked, having either a mask dialog box or a
mask workspace. See Chapter 6 of Using Simulink for more information
about masking.

• [L] indicates that the block is a reference block. For more information, see
“Libraries” on page 1-2.

• [O] indicates that an open function (OpenFcn) callback is defined for the
block. For more information about block callbacks, see Chapter 3 of Using
Simulink.

• [S] indicates that the system is a Stateflow block.
1-29

1 Simulink 2.1 New Features

1-3
Opening a System
You can open any block or system whose name appears in the Blocks list. To
open a system:

1 In the systems list, select by single-clicking on the name of the parent
system that contains the system you want to open. The parent system’s
contents appear in the blocks list.

2 Depending on whether the system is masked, linked to a library block, or
has an open function callback, you open it as follows:
If the system has no symbol to its left, double-click on its name or select its
name and click on the Open System button.

If the system has an [M] or [O] before its name, select the system name and
click on the Look Into System button.

Looking into a Masked System or a Linked Block
By default, the Browser considers masked systems (identified by [M]) and
linked blocks (identified by [L]) as blocks and not subsystems. If you click on
Open System while a masked system or linked block is selected, the Browser
displays the system or block’s dialog box (Open System works the same way as
double-clicking on the block in a block diagram). Similarly, if the block’s
OpenFcn callback parameter is defined, clicking on Open System while that
block is selected executes the callback function.

You can direct the Browser to look beyond the dialog box or callback function
by selecting the block in the blocks list, then clicking on Look Into System. The
Browser displays the underlying system or block.

Displaying List Contents Alphabetically
By default, the systems list indicates the hierarchy of the model. Systems that
contain systems are preceded with a plus sign (+). When those systems are
expanded, the Browser displays a minus sign (–) before their names. To display
systems alphabetically, select the Display Alphabetical List menu item on the
Options menu.
0

Documentation Errata
Documentation Errata
The Using Simulink manual contains several errors. Note that these errors
have been corrected in the most recent online copy of the manual.

• Dead Zone block: The paragraph that describes the output signal when the
lower and upper limits are the same is incorrect. Instead, the behavior of the
output obeys the rules described in the three bulleted sentences that appear
above the paragraph on the block reference page.

• From File and From Workspace blocks: The rules that determine how the
blocks handle two or more columns at the same time value are incorrect. The
rule stated in the first bullet is correct and applies to all situations in which
time values are repeated. Please disregard the second bullet.

• Random Number block: The sample time for this block is continuous and the
default Sample time parameter value is 0. (The block dialog box has been
revised and is described elsewhere in this chapter.)

• Relational Operator block: In the table that lists operators and the output
they produce, the != operator should be ~=.

• Scope block: The sample time for this block is inherited from the driving
block but can be set from the Settings page of the Properties dialog box.

• Sine Wave block: The sample time for this block is continuous and the
default Sample time parameter value is 0.
1-31

1 Simulink 2.1 New Features

1-3
2

Introduction . 2-2

Creating a Model 2-4

Running a Simulation 2-7

Using Masks to Customize Blocks 2-9

Conditionally Executed Subsystems 2-10

S-Functions . 2-11

Simulink Blocks 2-12

Additional Topics 2-19

Model Construction Commands 2-20

Model File Format 2-21
2

Simulink 2.0 New
Features

2 Simulink 2.0 New Features

2-2
Introduction
This chapter provides a brief description of many of the significant new
features included in Simulink 2.

Loading Simulink 1.3 Models
Simulink 2 loads Simulink 1.3 models without any problems, although it issues
a warning message that indicates you are loading a model created by a
previous version. Simulink automatically converts older models to the new
model file format and marks a loaded model as modified; when you close a
model, Simulink asks whether you want to save the modified file.

Updating Simulink 1.3 Models
The new slupdate command updates Simulink 1.3 models containing specific
blocks to Simulink 2 format. If your model includes any of these blocks, run
slupdate to convert them:

• The From Workspace block’s default value for the buffer parameter has been
changed to inf.

• The Graph scope’s function has been replaced with the new Scope block.

• The Hit Crossing block is now a built-in block.

• The Memory block is now a built-in block.

• The Pulse Generator block has been rewritten.

• The Quantizer block is now a built-in block.

• The 2-D Table Look-Up block is now a built-in block and has been renamed
Table Look-Up (2-D).

Also, slupdate calls addterms to terminate any unconnected input and output
ports by attaching Ground and Terminator blocks, respectively. These blocks
are described in Using Simulink.

To update a Simulink 1.3 model, open the model, then enter

slupdate('sys')

where sys is the model name.

For each out-of-date block, Simulink asks whether you want to update it.

Introduction
Loading Models Containing Reset Integrator Blocks
Although the function performed by the Reset Integrator block has been built
into the Integrator block, slupdate does not replace Reset Integrator blocks
with Integrator blocks. It is difficult to automatically configure the new
Integrator block to satisfy all the different ways the Reset Integrator block
could be used in Simulink 1.3 models. The Reset Integrator block is not
available in the Linear library; we encourage you to apply the Integrator block
instead.

Changes to the Simulink User Interface
Simulink 2 has a substantially new look, with a new menu structure,
redesigned block dialog boxes, and revised block library layout.

All Simulink commands are organized under four top-level menus: File, Edit,
Simulation, and Format. The menu items are described in the sections of the
manual that discuss the functions they perform.

The Simulation Parameters dialog box is new for Simulink 2. Changes are
discussed in “Running a Simulation” on page 2-7.

The Mask Editor dialog box has been redesigned, making it easier to mask
blocks. Changes to masking are described in “Using Masks to Customize
Blocks” on page 2-9.

Improved Documentation
Using Simulink has been completely rewritten and has been improved in many
ways:

• The new manual combines the previous edition of the Simulink User’s Guide
and the Simulink Version 1.3 Release Notes into a single book.

• An expanded chapter on building models provides clearer and more complete
instructions. A useful table of keyboard shortcuts offers a quick guide for
more experienced users.

• Additional chapters and appendices provide information not previously
available.
2-3

2 Simulink 2.0 New Features

2-4
Creating a Model
For more information about the features discussed in this section, see
Chapter 3 of Using Simulink.

Starting Simulink
You can start Simulink 2 in these ways:

• Enter a model file name to display the block diagram for that model (the
same way you did using Simulink 1.3).

• Enter simulink in the MATLAB command window to display the Simulink
block library.

• Microsoft Windows and Macintosh users can click on the Simulink toolbar
button to display the Simulink block library and get a new model window.
The toolbar button looks like this:

Macintosh users can launch MATLAB by double-clicking on a model file icon.

Model and Block Parameters
Many model and block parameter names have changed in Simulink 2. If you
use the set_param command to set model or block parameters, you need to
make sure the parameter names are correct. Chapter 11 of Using Simulink
discusses the set_param command and Appendix A lists model and block
parameters.

Working with Blocks
Simulink 2 provides many enhancements for blocks and block libraries.

Changes to the Block Libraries
The Simulink block libraries have been modified. Each library has a new icon
that depicts the kind of blocks it contains. Also, the layout of block icons within
each library has been modified to make it easier to find the block you want.
Many block icons have been changed and icon sizes are more consistent.

Creating a Model
The Extras Library
The Extras block library, which contains blocks that supplement built-in
blocks, has been moved to the new Blocksets and Toolboxes library. When you
open that icon, Simulink searches through your installed software and displays
icons for any blocksets and toolboxes it finds. The Extras library always
appears in the list. To examine blocks in the Extras library, open that icon.

Blocks in the Extras library are not documented.

The Demos Library
A separate and expanded Demos library provides more demo models that
illustrate Simulink 2 and MATLAB 5 features.

Changes to Block Dialog Boxes
All block dialog boxes have been redesigned. Block descriptions (these appear
below the block type on the dialog box) have been rewritten to provide more
useful information. The Help button now accesses the online reference page for
the block, using the new Simulink Block Browser, described on page 2-12.

Block Callback Routines
Simulink 2 provides additional callback parameters that enable you to define
callback routines that execute when a particular action is performed on a block
or model. For example, you can define a callback routine associated with a
block’s ModelCloseFcn parameter that executes when the model is closed.

See Chapter 3 of Using Simulink for more information.

Moving a Block Name
You can move a block name to the opposite side of the block by dragging the
name. This is equivalent to using the Flip Name menu item from the Format
menu.

Additional Colors
Simulink 2 provides more colors for the screen background and the block
background and foreground. The new colors are light blue, dark green, orange,
and gray.
2-5

2 Simulink 2.0 New Features

2-6
Working with Lines
Simulink 2 provides many enhancements for lines.

Drawing Lines Between Blocks
Simulink 2 draws connecting lines either as straight lines or as perpendicular
horizontal and vertical line segments. If you hold down the Shift key while
drawing a connecting line, Simulink draws a straight diagonal line that snaps
to the target input port. When you draw a line to connect blocks, if the cursor
is within the target block, the line is connected to the closest input port.

Labeling Signals
In Simulink 2, you can label signals to annotate your model. Signal labels can
be located at either end or at the center of one or more line segments. Labels
remain attached to lines as they are moved. Labels themselves can be copied or
moved using drag-and-drop techniques.

Signal Label Propagation
Signal label propagation is the automatic labeling of a line carrying a signal
that is labeled someplace else in a model. Simulink 2 supports the propagation
of signal labels through connecting blocks, stored in the Connections block
library.

Labeling Ports
Simulink 2 labels ports on Subsystem blocks using the Inport and Outport
block names in the underlying subsystem.

Copying a Model to the PC Clipboard
Microsoft Windows users can copy the block diagram into the clipboard for use
with another application. Choose Copy Model from the Edit menu. The default
copy format is Windows Metafile. You can change the format by choosing
Preferences from the MATLAB command window File menu. Then, select the
Copying Options tab.

Running a Simulation
Running a Simulation
Simulink 2 provides many improvements in this area. All features discussed in
this section are described in detail in Chapter 4 of Using Simulink.

Expanded Simulation Parameters Dialog Box
A new Simulation Parameters dialog box provides more information about
solvers and gives you more error control. Also, it is now easier to manage
workspace I/O and levels of diagnostic messages and intervention.

The Simulation Parameters dialog box consists of three “pages.” The Solver
page enables you to select a solver and specify its parameters. The Workspace
I/O page enables you to manage input from and output to the workspace. The
Diagnostics page enables you to control the level of intervention for certain
events.

In Simulink 1.3, to provide output at specified times, you would use the
HitTimes parameter. In Simulink 2, you select the Produce additional output
choice on the Output options list, on the Solver page.

State-of-the-Art Integrators
Simulink 2 incorporates the set of integration algorithms developed for the
MATLAB ODE suite. These solvers provide faster, more accurate simulation
results. The ODE suite includes variable-order and fixed-step nonstiff and stiff
solvers. Selecting the appropriate solver is easier with the improved
Simulation Parameters dialog box.

An important additional benefit of the new solvers is that it is no longer
necessary, or even advisable, to adjust step size to get better granularity in the
simulation results. The variable-step solvers automatically set step sizes to
provide accurate results. Also, because Simulink 2 provides fixed-step solvers,
it is no longer necessary to set minimum and maximum step sizes to the same
value to force the use of a fixed-step solver.
2-7

2 Simulink 2.0 New Features

2-8
This table indicates, for each integration method supported in Simulink 1.3,
the corresponding solver provided in Simulink 2.

Running a Simulation from the Command Line
In Simulink 2 you can use the sim and simset commands to run a simulation
from the command line. These commands give you more control of simulation
parameters and provide command line access to all parameters that can be set
on the Simulation Parameters dialog box. The simget command enables you
to obtain values of simulation parameters and solver properties for a model.

Table 2-1: Simulink 1.3 Integrators and Simulink 2 Solvers

If you used this integrator in
Simulink 1.3

Consider using this solver in
Simulink 2

linsim ode45 (nonstiff) or ode15s (stiff)

rk23 ode23

rk45 ode45

adams ode113

gear ode15s

euler ode1

Using Masks to Customize Blocks
Using Masks to Customize Blocks
Masking enables users to create block dialog boxes or customize block icons.

Simulink 2 provides these enhancements to masking:

• A new user interface

• An easier way to define dialog box prompts, including a more direct way to
associate a variable to a block parameter

• The ability to add pop-up menus and check boxes to the mask dialog box

• An improved way to define initialization commands, including the ability to
assign a user-entered value to a variable without evaluating it

• A separate workspace for each masked block (similar to an M-file function)

• A simpler way to examine a block’s mask

• The ability to examine the blocks in a masked subsystem without destroying
the mask

• New plotting options

• New options for controlling the appearance of icons

In Simulink 2, mask parameter names have changed. Simulink preserves the
integrity of masked blocks created using all prior Simulink versions. Masking
is described in Chapter 6 of Using Simulink, and mask parameters are listed
in Appendix A.

Executing a Callback Routine when Opening a
Masked Block
In Simulink 1.3, to execute a MATLAB command when the user double-clicked
on a masked block, you entered an eval command in the mask’s Dialog String
parameter. To do this in Simulink 2, you associate a callback routine with the
block’s OpenFcn parameter. Any Simulink 1.x blocks that use eval commands
in way are automatically converted to use the OpenFcn parameter instead. See
Chapter 3 of Using Simulink for more information.

You can assign the callback routine to the block’s OpenFcn parameter using the
set_param command. For more information, see Chapter 11 of Using Simulink.
2-9

2 Simulink 2.0 New Features

2-1
Conditionally Executed Subsystems
Conditionally executed subsystems are subsystems whose execution depends
on their input. Conditionally executed subsystems are described in Chapter 7
of Using Simulink.

Simulink 2 provides support for three types of conditionally executed
subsystems:

Conditionally executed subsystems are useful in a variety of applications. For
example, in the automotive industry, triggered subsystems can be used to
model the dynamics of an internal combustion engine. In the aerospace
industry, enabled subsystems can be used to model complex flight control laws,
where different controllers are enabled during different flight regimes.

Enabled subsystem Executes while the control signal is
positive, starting execution at the
simulation step where the control signal
crosses zero (from the negative to the
positive direction) and continuing execution
while the control signal remains positive.

Triggered subsystem Executes at the simulation step when a
trigger event occurs. A trigger event can
occur on the rising edge, falling edge, or
either of a trigger signal.

Triggered and enabled
subsystem

Executes once on the simulation step when
a trigger event occurs if the enable control
signal has a positive value at that step.
0

S-Functions
S-Functions
If you are writing C MEX-file S-functions and place an S-function in an enabled
subsystem configured to reset its states, the mdlInitializeConditions
function is called upon reset. To figure out if mdlInitializeConditions is
called from a reset or at simulation start, use the ssIsFirstInitCond(S)
macro.

It is now possible to write variable step S-functions. An optional function,
mdlGetTimeOfNextVarHit, provides the time of the next hit for the S-Function
block.

Otherwise, S-functions work as they did in Simulink 1.3.

For more information about S-functions, see Chapter 8 of Using Simulink.
2-11

2 Simulink 2.0 New Features

2-1
Simulink Blocks
This section discusses new, revised, and obsoleted blocks. All blocks are
described in Chapter 9 of Using Simulink.

Online Block Reference Browser
The current reference pages for Simulink blocks are available as online help.
You can access these pages in two ways:

• By clicking on the Help button on any block dialog box. The reference page
for the block is displayed.

• By accessing the MATLAB Help Desk, then selecting Simulink Blocks from
the Simulink Topics area.

- You can access the MATLAB Help Desk on any supported platform by
entering the helpdesk command in the MATLAB command window.

- If you’re using Microsoft Windows or a Macintosh, you can also access the
MATLAB Help Desk by clicking on the Help toolbar button (a question
mark appears on the icon) or selecting the Help Desk menu item from the
MATLAB Help menu.

Revised Block Dialog Boxes
All block dialog boxes have been redesigned for Simulink 2. In addition to a
more visually appealing layout, each dialog box includes an Apply button to
accept current settings and keep the dialog box open, a Revert button to
restore the original settings when the block was most recently opened, a Close
button that applies the changes and closes the dialog box, and a Help button
that accesses the Online Block Reference Browser, described above.

The block descriptions have been rewritten.

Vectorization of Blocks
A vectorized block can accept a vector input signal or generate a vector output
signal, or both. In Simulink 2, almost all blocks are vectorized. To find out
whether a block is vectorized, consult the online Block Browser or check the
reference page for the block in the manual. At the end of each block reference
page a table provides information about block characteristics, including
whether the block is vectorized.
2

Simulink Blocks
New, Enhanced, and Renamed Blocks
Simulink 2 provides several new blocks, enhanced versions of existing blocks,
and renamed blocks. All blocks are described in detail in Chapter 9 of Using
Simulink and in the online Block Browser.

Algebraic Constraint
The Algebraic Constraint block constrains the input signal f(z) to zero and
outputs an algebraic state z. The block outputs the value necessary to produce
a zero at the input. The output must affect the input through some feedback
path. This enables you to specify algebraic equations for index 1 differential/
algebraic systems (DAE’s).

Backlash
The Backlash block no longer has an Initial input parameter. The initial
center of the deadband width is defined by the Initial output parameter.

Data Store Memory, Data Store Read, and Data Store Write
The Data Store Memory, Data Store Read, and Data Store Write blocks enable
the model to write and read data to and from a memory region during a
simulation.

Discrete-Time Integrator
The Discrete-Time Integrator block enables you to define limits on the
integration, which provides the capabilities of the (obsoleted) Discrete-Time
Limited Integrator. The block supports these integration methods: Forward
Euler, Backward Euler, and Trapezoidal.

Display
The Display block shows the value of its input signal. You can control the
display format and the frequency of the display. You can use the block as a
floating Display to probe different signals during a simulation.

Enable
The Enable block is used with conditionally executed subsystems. Adding an
Enable block to a subsystem creates an enabled subsystem. Adding both an
Enable and a Trigger block creates a triggered and enabled subsystem. For
2-13

2 Simulink 2.0 New Features

2-1
more information about conditionally executed subsystems, see page 2-10 of
this book or Chapter 7 of Using Simulink.

Fcn
The rules of precedence for operations for the Simulink 1.3 Fcn block did not
conform to the C language standard. The Simulink 2 Fcn block conforms to
these standards.

Filter
The Filter block has been renamed Discrete Filter.

From
The From block, when used with a Goto block, provides a convenient way to
pass a signal from one block to another without physically connecting the
blocks.

Goto
The Goto block, when used with a From block, provides a convenient way to
pass a signal from one block to another without physically connecting the
blocks.

Goto Tag Visibility
The Goto Tag Visibility block defines the scope of a Goto block tag.

Ground
Connecting a Ground block to a block’s input port prevents Simulink from
issuing a warning message about the block’s unconnected port. The block
outputs a zero-valued signal.

Hit Crossing
A rewritten Hit Crossing block accurately enables you to detect when the input
signal crosses a particular value.

IC
The IC block enables you to define an initial value for a signal. You can also use
the IC block to provide an initial guess to the algebraic loop solver, described
on page 2-19.
4

Simulink Blocks
Inner Product
The Inner Product block has been renamed Dot Product.

Integrator
The revised Integrator block now combines features included in the now
obsoleted Limited Integrator and Reset Integrator blocks. In addition, you can
add a port on the block to output the state. Also, you can specify the absolute
tolerance for the block’s state.

Memory
You can choose whether or not the Memory block’s sample time is inherited
from its driving block. The block dialog box contains a check box labeled
Inherit sample time. If the check box is selected, the block inherits its sample
time from the driving block. If the box is not selected, the block’s sample time
is continuous.

All Memory blocks in existing models have a sample time of continuous,
although the default sample time for Memory blocks copied from the Nonlinear
library is inherited. For Memory blocks to work as they did in Simulink 1.3
(with continuous sample time), make sure the check box described above is not
selected.

MinMax
The MinMax block detects either the minimum or maximum of its input
signal(s).

Multiport Switch
The Multiport Switch block chooses a block input from among multiple inputs.
An integer-valued control input determines which input to pass through to the
output port.

Note
The Note block has been removed. You can provide model annotations by
creating an annotation, described in Chapter 3 of Using Simulink. Simulink
automatically converts Note blocks to annotations in existing models.
2-15

2 Simulink 2.0 New Features

2-1
Outport
The Outport block adds an option that, when used in a conditionally executed
subsystem, allows the block to control whether its output is reset to an initial
value or held at its most recent value while the subsystem is disabled.

Pulse Generator
The Pulse Generator block parameters have changed: The Pulse period
parameter is now Period, the Pulse width parameter is now Duty cycle, the
Pulse height parameter is now Amplitude, and the Pulse start time
parameter is now Start time. You can use slupdate to replace old Pulse
Generator blocks. slupdate converts the Pulse width parameter to the Duty
cycle parameter.

Ramp
The Ramp block provides a signal that starts at a specified time and value and
changes by a specified rate.

Rate Limiter
The Rising slew rate and Falling slew rate parameters now accept values of
inf and –inf, respectively. These values pass the input through the block
without applying limits.

Relay
The Relay block Input for on and Input for off parameters have been renamed
to Switch on point and Switch off point.

Scope
An enhanced oscilloscope-like Scope block provides vastly improved graphical
display of signals. The Scope block allows you to zoom in on the block input in
the x (time) direction, y direction, or both directions; display all the input to the
block; limit the data displayed; and save the signal data to the workspace at
the end of simulation.

Selector
The Selector block acts like a patch panel for cross wiring of input vector
elements. You enter a vector parameter that indicates the input vector
elements that make up the block output.
6

Simulink Blocks
Signal Generator
The Signal Generator’s dialog box has been rearranged to simplify choosing a
wave form and defining signal parameters. The default frequency is now Hertz.

Step Fcn
The Step Fcn block has been renamed Step.

Terminator
Connecting a block’s output port to a Terminator block prevents Simulink from
issuing warning messages about unconnected ports. The block does not process
the signal.

To File
The To File block provides Decimation and Sample time parameters to limit
the amount of data written to the file.

To Workspace
The To Workspace block provides Decimation and Sample time parameters to
limit the amount of data written to the workspace variable.

Trigger
The Trigger block is used with conditionally executed subsystems. Adding a
Trigger block to a subsystem creates a triggered subsystem. Adding both an
Enable and a Trigger block creates a triggered and enabled subsystem. These
special subsystems are described in Chapter 7 of Using Simulink.

2-D Look-Up Table
The 2-D Look-Up Table has been renamed Look-Up Table (2-D).

Variable Transport Delay
In Simulink 1.3, the Initial input parameter was not being set. This has been
corrected in the current release.

Width
The Width block generates as output the width of the input vector.
2-17

2 Simulink 2.0 New Features

2-1
Obsoleted Blocks
Several blocks are no longer available. The functions they perform are included
in other blocks:

• The Discrete-Time Limited Integrator block has been replaced by the
Discrete-Time Integrator block.

• The Limited Integrator block has been replaced by the Integrator block.

• The Note block has been replaced by the model annotation feature.

• The Reset Integrator block has been replaced by the Integrator block.

In addition, the renamed blocks: Filter, Inner Product, Step Fcn, and 2-D
Look-Up Table, are no longer available.
8

Additional Topics
Additional Topics

Algebraic Loops
The algebraic loop solver has been improved for Simulink 2 and is able to solve
a larger class of algebraic loops. It can now attempt to solve algebraic loops that
have multirate components, as well as loops containing blocks with nonsmooth
outputs (such as the Abs, Saturation, or Quantizer blocks).

Algebraic loops and the algebraic loop solver are described in Chapter 10 of
Using Simulink.

Zero Crossing Detection
A zero crossing occurs when a signal makes a transition to zero, crosses zero,
or makes a transition from zero. A zero crossing also occurs when a signal
reaches some defined threshold (not necessarily at zero), such as an upper limit
in a Saturation block.

Many Simulink blocks have built-in (intrinsic) detection of zero crossings.
Simulink can detect the point where a signal crosses zero to within computer
tolerance. This feature, which results in more accurate simulations, is
discussed in Chapter 10 of Using Simulink.
2-19

2 Simulink 2.0 New Features

2-2
Model Construction Commands
Several model construction commands have been added:

• find_system, which finds a Simulink system or block

• gcb, which gets the path of the current block

• gcs, which gets the path of the current system

• save_system, which saves a Simulink system

These commands are described in Chapter 11 of Using Simulink.

Also, the new Lines property enables you to obtain a structure array of all the
lines in a block diagram:

get_param('sys','Lines')

returns a structure array of all the lines in the model named sys. The fields of
each structure in the array are:

• Handle is the handle to the line

• Name is the line’s name

• Parent is the handle to the subsystem or block diagram owning the line

• SrcBlock is the handle to the source block driving the line

• SrcPort is the port number of the source block driving the line

• DstBlock is the handle to the block being driven by the line

• DstPort is the port number of the destination block

• Points is the array of points describing the line

• Branch is the structure array of any branch lines on this line
0

Model File Format
Model File Format
Simulink 2 saves models in a structured file format, which results in faster
loading and saving of models, and produces more readable model files. Also,
model files are now easier to post-process or transfer to other applications.

The model file format is described in Appendix B of Using Simulink.
2-21

2 Simulink 2.0 New Features

2-2
2

	Introduction
	Simulink 2.1 New Features
	Creating a Model
	Undo Command
	Libraries
	Terminology
	Creating a Library
	Modifying a Library
	Copying a Library Block into a Model
	Updating a Linked Block
	Breaking a Link to a Library Block
	Finding the Library Block for a Reference Block
	Getting Information About Library Blocks in a Syst...

	New Block Callback Parameters
	Displaying Line Widths
	Changing the Font of a Signal Label
	Print Dialog Box

	Running a Simulation
	Changing Parameters During a Simulation
	Running a Simulation Using Commands
	The simget Command

	Masking
	Masking Subsystems
	Accessing User-Written Help Documentation
	Using NaN and inf in Plot Commands
	Rotating a Masked Block
	Accessing Masked Block Parameters
	Looking Under Mask from Command Line

	Conditionally Executed Subsystems
	S-Functions
	Revised sfuntmpl Template
	Using Function-Call Subsystems
	Instantaneous Update of S-Function Inputs
	Output and Work Vector Widths
	Unconnected Dynamically Sized S-Functions
	Nonsampled Zero Crossings for Continuous S-Functio...
	New Mode Work Vector
	Parameter Changes
	Improved Error Handling
	Exception Handling
	Normal or Real-Time Workshop Simulation
	Removing Ports When No Inputs and/or Outputs
	Sample Times and Input/Output Port Widths
	Additional Macros in mdlInitializeSizes

	Blocks
	Discrete Pulse Generator Block
	Manual Switch Block
	Math Function Block
	Product Block
	Random Number Block
	Rate Limiter Block
	Rounding Function Block
	Trigger Block
	Trigonometric Function Block
	Uniform Random Number Block
	Change to Extras Library

	Additional Topics
	Zero Crossings – A Clarification
	Invariant Constants

	Model Construction Commands
	Vectorization of get_param Command
	Changes to find_system Command
	New gcbh Command
	Changes to slupdate Command

	The Model Browser
	Contents of the Browser Window
	Interpreting List Contents
	Opening a System
	Looking into a Masked System or a Linked Block
	Displaying List Contents Alphabetically

	Documentation Errata

	Simulink 2.0 New Features
	Introduction
	Loading Simulink 1.3 Models
	Updating Simulink 1.3 Models
	Loading Models Containing Reset Integrator Blocks

	Changes to the Simulink User Interface
	Improved Documentation

	Creating a Model
	Starting Simulink
	Model and Block Parameters
	Working with Blocks
	Changes to the Block Libraries
	The Extras Library
	The Demos Library
	Changes to Block Dialog Boxes
	Block Callback Routines
	Moving a Block Name
	Additional Colors

	Working with Lines
	Drawing Lines Between Blocks
	Labeling Signals
	Signal Label Propagation

	Labeling Ports
	Copying a Model to the PC Clipboard

	Running a Simulation
	Expanded Simulation Parameters Dialog Box
	State-of-the-Art Integrators
	Running a Simulation from the Command Line

	Using Masks to Customize Blocks
	Executing a Callback Routine when Opening a Masked...

	Conditionally Executed Subsystems
	S-Functions
	Simulink Blocks
	Online Block Reference Browser
	Revised Block Dialog Boxes
	Vectorization of Blocks
	New, Enhanced, and Renamed Blocks
	Algebraic Constraint
	Backlash
	Data Store Memory, Data Store Read, and Data Store...
	Discrete-Time Integrator
	Display
	Enable
	Fcn
	Filter
	From
	Goto
	Goto Tag Visibility
	Ground
	Hit Crossing
	IC
	Inner Product
	Integrator
	Memory
	MinMax
	Multiport Switch
	Note
	Outport
	Pulse Generator
	Ramp
	Rate Limiter
	Relay
	Scope
	Selector
	Signal Generator
	Step Fcn
	Terminator
	To File
	To Workspace
	Trigger
	2-D Look-Up Table
	Variable Transport Delay
	Width

	Obsoleted Blocks

	Additional Topics
	Algebraic Loops
	Zero Crossing Detection

	Model Construction Commands
	Model File Format

