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Abstract

In this report a model-based procedure exploiting analytical redundancy for the detection

and isolation of faults in a dynamic system is presented.

Despite the model complexity of the plant under observation, the report shows how simple

linear models obtained from black box identi�cation procedures can be e�ectively used to solve

fault detection and identi�cation problems.

Depending on signal to noise ratio, linear ARX or EIV models are identi�ed in correspondence

to some operating points of the plant. Fault detection of actuators, plant components and sensors

are obtained through observer residual analysis, whilst statistical tests and signal processing

based on multi-layer perceptron neural network are used to determine fault origins.

The report focuses on the application of the whole procedure, from system identi�cation

to residual analysis, to a prototype of a real single-shaft industrial gas turbine. Several fault

causes are simulated using Matlab-Simulink software environment, aiming to test the proposed

procedure. The most signi�cance results from the massive tests performed are then reported

and deeply discussed.

1 Introduction

The control devices which are nowadays exploited to improve the overall performance of indus-
trial processes involve both sophisticated digital system design techniques and complex hardware
(input-output sensors, actuators, components and processing units). Such a complexity results in
an increased probability of failure occurrence. As a direct consequence of this, control systems must
include automatic supervision of the closed-loop operation to detect and isolate malfunctions as early
as possible.

The problem of fault detection and isolation (FDI) in linear time-invariant dynamic processes has
received great attention during the last two decades and a wide variety of model-based approaches
has been proposed [Isermann and Ball�e, 1997, Chen and Patton, 1999].

These di�erent methods, however, can be brought down to a few basic concepts such as the
parity space approach [Gertler, 1998], the state estimation approach [Willsky, 1976, Isermann, 1984,
Baseville, 1988, Frank, 1990, Xie et al., 1994, Xie and Soh, 1994], the fault detection �lter approach
[Frank, 1990, Patton, 1996, Frank and Ding, 1997] and the parameter identi�cation approach [Willsky, 1976,
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Baseville, 1988, Patton et al., 1989]. In every case, for the detectability and distinguishability of
faults, mathematical models of the process under investigation are required, either in state space or
input-output form.

State space descriptions provide general and mathematically rigorous tools for system modeling
and residual generation which may be used in fault detection of industrial systems, both for the
deterministic (noise-free case) and the stochastic (noisy case) environment. Residuals should then
be processed to detect an actual fault condition, rejecting any false alarms caused by noise or spurious
signals.

This report aims to de�ne a comprehensive methodology for the diagnosis of actuator, compo-
nent and input-output sensor fault of an industrial process by using an output estimation approach
[Simani et al., 2000a], in conjunction with residual processing schemes which include a simple thresh-
old detection, in deterministic case, as well as statistical analysis when data are a�ected by noise
[Chen and Patton, 1999].

Two main aspects of the proposed methodology should be underlined.
Firstly, the FDI model-based approach does not require any physical knowledge of the process

under observation. A linear mathematical model (state-space or input-output descriptions) of the
input-output links are, in fact, obtained by means of identi�cation schemes which use Auto Regressive
eXogenous (ARX) models in case of high signal to noise ratios, or Errors-In-Variables (EIV) models,
otherwise [Kalman, 1982, Kalman, 1990]. In the last case the identi�cation technique is based on the
Frisch scheme methodology [Frisch, 1934]. This approach gives a reliable model of the plant under
investigation, as well as providing variances of the input-output noises [Beghelli et al., 1990].

Secondly, in this work linear prototypes for the design of linear output estimators [Simani et al., 1999a,
Simani, 1999b], [Simani et al., 2000a] have been developed instead of complicated non-linear models
obtained by modeling techniques in connection with non-linear observers. In fact, even if the num-
ber of studies addressing non-linear fault diagnosis theory steadily increases over the years, in some
cases, linear approach still advantageous in terms of solution complexity and performance.

The complete procedure of model identi�cation, residual generation and fault identi�cation and
isolation have been tested on a single-shaft industrial gas turbine prototype. The results coming
from a massive simulation tests are reported and widely commented.

2 Plant model description

In the following it is assumed that the monitored system, depicted in Figure (1), can be described
in fault free condition, by a linear, discrete-time, time-invariant, dynamic model of the type�

x(t+ 1) = Ax(t) +Bu�(t)
y�(t) = Cx(t) t = 1; 2; � � �

(1)

where x(t) 2 <n is the state vector, y�(t) 2 <m the process output vector and u� 2 <r the control
input vector. A, B and C are constant matrices of appropriate dimensions obtained by means of
modeling techniques or identi�cation procedures.

Under fault free conditions, the input and the output link of the sensors can be described by the
following relation �

u(t) = u�(t) + ~u(t);
y(t) = y�(t) + ~y(t):

(2)

In real applications, variables ~u(t) and ~y(t) represent noises which, due to technological reasons,
a�ect sensor behaviour. They are generally described as white, zero-mean, uncorrelated Gaussian
noises. It is assumed that u(t) and y(t) are the only available measurements from the real process.

Vectors fu(t) =
�
fu1 � � � fur

�
and fy(t) =

�
fy1 � � � fym

�
model input and output sensor

faults, respectively. The scheme shown in Figure (1) describes the relations among the actual sensor
inputs u�(t) and y�(t), the sensor faults fu(t) and fy(t) and the sensor outputs u(t) and y(t).

According again to Figure (1), when a component fault fs(t) 2 <n occurs in the plant described
by Equations (1), the dynamic system will be modeled as

x(t+ 1) = Ax(t) +Bu(t) + fs(t): (3)
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Figure 1: The monitored system

A fault fc(t) = 0 may also occur on the regulator in the control loop. In such a case, under the
assumptions that fu(t) = 0 and fy(t) = 0, the link among the output u(t) of the regulator, its input
y(t) and the controller fault fc(t) will be modeled as

u(t) = ~u(t) +G (y(�)) + fc(t) (4)

where G(�) represents the input-output behaviour of the controller.
Usually fu(t), fy(t), fs(t) and fc(t) signals are described by step and ramp functions representing

abrupt and incipient faults (bias or drift), respectively.
Under fault-free assumptions, representations of types (1) and (2) are known as errors{in{

variables (EIV) models.
The design of state observers and Kalman �lters requires the knowledge of a state-space model

of the system under investigation. When classical modeling techniques cannot be used since the
complete physical knowledge of the system is not available or the model parameters are unknown, a
black-box identi�cation approach has to be considered.

3 Equation error models

In case of high signal to noise ratios (~u(t) �= 0 and ~y(t) �= 0), equation error identi�cation can
be exploited and, in particular, di�erent equation error models can be extracted from the data. A
speci�c discrete-time, time-invariant, linear dynamic model, e.g. ARX or ARMAX (Auto Regressive
eXogenous or Auto Regressive Moving Average eXogenous), [Leontaritis and Billings, 1985], can be
selected only inside an assumed family of models.

If instead, the signal to noise ratios on the input and output of the process are low, the Frisch
scheme [Frisch, 1934] can be applied to perform the dynamic system identi�cation. Such a scheme
allows to determine the linear discrete system which has generated the noisy sequences as well as the
variances of the noises ~u(t) �= 0 and ~y(t) �= 0 a�ecting the data [Beghelli et al., 1990]. In the Frisch
scheme these signals are assumed zero-mean white noises, mutually uncorrelated and uncorrelated
with every component of u�(t) and y�(t).

In particular, in this work, the input-output link will be mathematically described by performing
the identi�cation of a number of ARX Multi-Input Single-Output (MISO) models of the type

y�i (t) =
Xn

j=1
�i;jy

�

i (t� j) +
Xr

j=1

Xn

k=1
�i;j;ku

�

j (t� k) + "i(t) (5)
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equal to the number m of the output variables has been performed. The order n and the parameters
�i;j and �i;j;k, with i = 1; � � � ;m, of the model have to be determined by the identi�cation approach.
The term "i(t) takes into account the modeling error, which is due to process noises, parameter
variations, etc.

The next step is the transformation of input-output discrete-time time-invariant linear models
(5) into state-space representations. The state-space systems obtained by the equation errors models
are useful to design dynamic observers, whilst the ones coming from the Frisch scheme can be used
in order to build Kalman �lters.

It can be proved that a state-space formulation of the input-output equation error model (5) in
fault free conditions, for the i-th output (i = 1; � � � ;m) becomes�

xi(t+ 1) = Aixi(t) +Biu
�(t) +B!i"i

y�i (t) = Cixi(t) +D!i"i, t = 1; 2; � � �
(6)

where the matrices Ai (n � n), Bi (n � r), B!i (n � 1), Ci (1 � n) and D!i are functions of the
order and the �i;j and �i;j;k parameters [S�oderstr�om and Stoica, 1987].

4 ARX model identi�cation

Consider an assumed order for a SISO (Single-Input Single Output, m = 1) ARX model (5) and the
input-output sequences fu(t);y(t)g observed in the time interval [1; L]. If the model (5) is used to
compute predicted output values y�(t) in the N = L� n times, for a given set of parameters

� =
�
�n � � � �1 �n � � � �1

�
(7)

the mean square prediction error J(�) is given by

J(�) =
1

N

XL

t=n+1
(y�(t)� y(t))

2
: (8)

By introducing now the following Hankel matrices Hu and Hy

Hn(u) =

2
64

u(1) � � � u(n)
...

. . .
...

u(L� n) � � � u(L� 1)

3
75 and Hn(y) =

2
64

y(1) � � � y(n)
...

. . .
...

y(L� n) � � � y(L� 1)

3
75 ; (9)

it follows that 2
64

y�(n+ 1)
...

y�(L)

3
75 = [Hn(y)Hn(u)] � = Hn�: (10)

It can be proved that the parameter vector minimising the cost function (8) is given by

�̂ =H+
n

2
64

y(n+ 1)
...

y(L)

3
75 =H+

n y
o
n (11)

where H+
n denotes the pseudo-inverse of the Hn matrix. The algorithm gives an estimate �̂ of �,

which converges asymptotically to the real parameter of the process that has generated the data.
To estimate the order n of the ARX process, an integer k > 0 and the (N � 2k + 1) matrix of

input-output samples given by
H�

k = [Hk(y)Hk(u)y
o
k] (12)

are considered.
If "i(t) = 0 in (5) the following properties hold

rank (H�

k) = 2k + 1 for 2k + 1 < n

rank (H�

k) = 2k for 2k � n
(13)
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It could be possible to consider the increasing sequence of matrices

S1 S2 � � � Sn � � � (14)

where Sk = H�T
k H�

k and to evaluate their singularity. The �rst singular matrix Sk would de�ne the
correct order for the model (k = n). Unfortunately, the presence of "i(t) 6= 0 in (5) leads to the
non{singularity of every matrix in (14).

It can be proved that if N is large enough, an estimate of the standard deviation �" of the process
"(t) in (5), is given by [Ljung, 1999]

�" =

s
det(Sn)

Ndet(HT
nHn)

: (15)

If the following, the quantity �"k is de�ned,

�"k =

s
det(Sk)

Ndet(HT
kHk)

: (16)

it can be shown that �"h > �"k for h < k, �"k > �" for k < n and �"k
�= �" for k � n.

In other words, if N is large enough, a sequence of decreasing values of �"k followed by a stabilisa-
tion once the correct order is reached, can be noted. The criterion can be used to evaluate a suitable
order or, at least, an interval of admissible orders for the model before computing its parameters.

It is easy to show that �2"k = Jk(�) for an ARX model with order k and parameters � given by
(11).

If the value (16) is expressed as percentage of the standard deviation of the measured out-
put, the well-established Predicted Per Cent Reconstruction Error criterion (PPCRE) is obtained
[Guidorzi and Rossi, 1974]. The PPCRE(k) gives the prediction error of an ARX model of order k
without requiring any computation of its parameters and predictions. The application of the PPCRE
criterion consists in computing an increasing sequence of PPCRE(k) (or Jk(�)) and in selecting the
minimal order that, once increased, does not lead to a signi�cantly better performance.

An example of the PPCRE(k) and Jk(�) increasing sequences with ARX model order k is reported
in Figures (2(a)) and (2(b)).

Order

PPCRE(k)

(a)

10

Order

Jk(�)

(b)

Figure 2: (a) Predicted reconstruction error and (b) mean square errors for di�erent ARM model
orders k

Relation (16) can also be used in the application of the well-known FPE, AIC and MDL order
estimation criteria [S�oderstr�om and Stoica, 1987].
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5 Linear MISO system identi�cation

In this section, the well-established Frisch scheme procedure for the identi�cation of dynamic MISO
system from input-output u(t) 2 <r, y(t) 2 <m (with m = 1) noisy (fault-free) sequences will be
summarised.

A �nite sequence of the variables fu1(t); � � � ; ur(t); y(t)g observed with a constant sampling in-
terval is considered. If dynamic linear relations exist among these variables, they can be described
by models of the type

y�(t) =
Xn

i=1
�iy

�(t� i) +
Xr

k=1

Xn

i=1
�i;ku

�

k(t� k) (17)

which describe linear MISO (multiple-input, single output) discrete-time systems whose order is n
and whose parameters are �i and �i;k.

At �rst, the following problem is presented.

Problem 1 (realisation) Given a noiseless input-output sequence fu1(t); � � � ; ur(t); y(t)g generated
by a system of type (17), determine the order n and the parameters �i and �i;k of the system.

The following vectors and matrices can be de�ned

u�Nj (t� k) =
�
u�j (t� k) � � � u�j (t� k +N � 1)

�T
; (18)

y�N (t� k) =
�
y�(t� k) � � � y�(t� k +N � 1)

�T
; (19)

Xk(u
�

j ) =
�
u�Nj (t� k) � � � u�Nj (t� 2)

�
; (20)

Xk(y
�) =

�
y�N (t� k) � � � y�N (t� 1)

�
; (21)

��k(u
�

ju
�

j ) = XT
k (u

�

j )Xk(u
�

j ); (22)

��k(y
�y�) = XT

k (y
�)Xk(y

�); (23)

��k(y
�u�j ) = ��k(u

�

jy
�) = XT

k (y
�)Xk(u

�

j ) = XT
k (u

�

j )Xk(y
�); (24)

where N is assumed large enough to solve the problem considered.
The matrix ��k is partitioned as follows

��k =

2
6664

��k(y
�y�) ��k(y

�u�1) � � � ��k(y
�u�r)

��k(u
�

1y
�) ��k(u

�

1u
�

1) � � � ��k(u
�

1u
�

r)
...

...
. . .

...
��k(u

�

ry
�) ��k(u

�

ru
�

1) � � � ��k(u
�

ru
�

r)

3
7775 ; (25)

To solve the realisation problem it is possible to consider the sequence of increasing-dimension ma-
trices

��2 ��3 � � � ��k � � � (26)

testing their singularity. As soon as a singular matrix ��k is found then the order n = k � 1 and the
parameters �1, � � �, �n, �1j , � � �, �nj (j = 1; � � � ; r) describe the dependence relationship of the n{th
vector of ��n+1 on the remaining ones.

In Problem 1 it has been assumed that N is large enough to avoid unwanted linear dependence
relationships due to limitations in the dimension of the involved vector spaces; this means N �
(r + 1)n + 1. The minimal number of samples must be therefore equal to (n + 2)r + 1. If a lower
number of samples is available then only a partial realisation problem can be solved.

In the noisy case the following identi�cation problem can be proposed.
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Problem 2 (identi�cation) Given a noiseless input-output sequence fu1(t); � � � ; ur(t); y(t)g un-
equivocally determine, if possible, the order n and the parameters �i and �i;k of a model (17) of the
system which has generated the noiseless sequences fu�1(t); � � � ; u

�

r(t); y
�(t)g.

Note that in presence of noise the procedure described for the solution of Problem 1 would obviously
be useless since matrices ��k would always be non-singular.

In the Frisch scheme it is normally assumed that�
uj(t) = u�j (t) + ~uj(t) j = 1; � � � ; r
y(t) = y�(t) + ~y(t);

(27)

where every noise term ~uj(t) and ~y(t) is independent of every other term uj(t) and y(t) only and
are known. Without loss of generality, all the variables may be assumed as having null mean
value. Consequently the generic positive de�nite matrix �k associated with the input-output noise-
corrupted sequences may always be expressed as the sum of two terms

�k = ��k +
~�k (28)

where
~�k = diag

�
~�yIk ~�u1Ik�1 � � � ~�urIk�1

�
� 0 (29)

since no correlation has been assumed among the noise samples at di�erent times. This condition is
veri�ed for additive white noise with variance ~sigmauj and

~sigmay on the input-output sequences.

Problem 3 Given a sequence of increasing-dimension ((r + 1) k � r) � ((r + 1) k � r) symmetric
positive de�nite covariance matrices

�2 �3 � � � �k � � � (30)

�nd, for each k, all diagonal non-negative de�nite matrices ~�k = diag
�
~�yIk ~�u1Ik�1 � � � ~�ur Ik�1

�
such that

��k = �k � diag
�
~�yIk ~�u1Ik�1 � � � ~�urIk�1

�
� 0: (31)

It is worth observing now that, unlike the algebraic case, for each k the noise space is always <
(r+1)
+ ,

while the parameter space is <((r+1)k�r).
We can note that for each k the solution set of the previous relation describes, in the �rst orthant of

the (�y; �u1 ; � � � ; �ur ) hyper-plane, a hyper-surface whose concavity faces the origin [Beghelli et al., 1990].
Previous results hold for every value of k. Since determination of the system order requires the

increasing values of to be tested, it is relevant to analyse the behaviour of the associated curves when
varies. This corresponds to a comparison of the admissible solution sets for di�erent model orders.
In this context the following result can be proved [Beghelli et al., 1990].

Theorem 1 The solution sets of condition ��k � 0 for di�erent values of k are non-crossing curves
[Beghelli et al., 1990].

It is also important to observe that, since we assume that a system (17) has generated the noiseless
data, for k > n all the hyper{surfaces of type ��k � 0 have necessarily at least one common point,
i.e. the point

�
��y ; �

�

u1
; � � � ; ��ur

�
corresponding to the true variances ��uj and ��y of the noise a�ecting

the inputs and the output of the system, respectively. The search for a solution for the identi�cation
problem can thus start from the determination in the noise space of this point.

The following considerations can now be stated.
With reference to the diagonal non{negative de�nite matrices

~�k = diag
�
~�yIk ~�u1Ik�1 � � � ~�urIk�1

�
� 0 (32)

the following properties hold:
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� If k � n the matrices ��k are positive de�nite.

� If k > n the dimension of the null space of ��k and, consequently, the multiplicity of its least
eigenvalue, is equal to k � n.

� For k = n + 1, the matrix ��k is characterised by a linear dependence relation among its
((r + 1)k � r) vectors and the coeÆcients which link the k{th vector of ��k to the remaining
ones are the parameters �i and �ij , with i = 1; � � � ; n and j = 1; � � � ; r, of the system (17) which
has generated the noiseless sequences.

� For k > n+ 1 all linear dependence relations among the vectors of the matrix ��k are charac-
terised by the same coeÆcients �i and �ij .

If m models of the type (17) are used to describe the mathematical behaviour of a multivariable
dynamic system with r inputs and m outputs y(t), the previous identi�cation procedure must be
repeated m times. At every step the identi�cation procedure must lead to the same values for the
input noise variances

�
��y ; �

�

u1
; � � � ; ��ur

�
.

It is worthy to note how this approach cannot be applied immediately in the identi�cation of
real processes, since the hypotheses on the linearity, �nite dimensionality and time independence
of the system and on the additivity and whiteness of the noise are not usually veri�ed, so that the
hyper{surfaces ��k � 0 have no common point for k > n. The de�nition of a suitable criterion of
model selection in such cases was suggested in [Beghelli et al., 1994].

As an example, Figure (3) shows the above properties for a SISO (m = r = 1) dynamic system
with n = 2. The point marked with a circle corresponds to the input-output noise variances ��y and
��u a�ecting the measurements.

σ~

σ
u

~

σ
u

~* , σ~*( )

Σ
2

^

Σ
3

^
Σ

4

^

~�u

~�y

��2

��3��4

�
��u; �

�

y

�

Figure 3: Singularity surfaces in the noisy space for n = 2

6 Residual generation

The problem treated in this work regards the detection and isolation of the faults on the basis of the
knowledge of the measured sequences u(t) and y(t). The structure of the fault detection device is
depicted in Figure (4).

The symptom (residual, r(t)) generation is implemented by means of dynamic observers or
Kalman �lters, driven by u(t) and y(t), in order to produce a set of signals, f(t), from which it

8



will be possible to isolate faults associated to actuators, components and sensors. The symptom
evaluation refers to a logic device which processes the redundant signals generated by the �rst block
in order to estimate and unequivocally identify a fault occurrence.

This report will present a FDI technique to elaborate a set of symptoms from which it will
be possible to unequivocally detect faults. With reference to Figure (4) the symptom signals are
di�erences between estimated signals (given by observers or Kalman �lters) and the actual ones
supplied by the input and output sensors.

Residual

generation

Residual

evaluation

u(t)

y(t)
r(t)

Residuals Faults

f(t)

Figure 4: Logic diagram of the fault detection system.

Moreover, it is assumed that only a single fault may be present in the actuators, components or
input sensors of the plant at any given time. On the other hand, multiple output sensor faults can
be handled.

7 Fault diagnosis in a deterministic environment

The aim of this report consists in �nding a procedure in order to detect and isolate faults on actuators,
components and sensors of single-shaft industrial gas turbine. The model of such a turbine was
developed in SIMULINK c environment [MathWorks, 1992].

Figure (5) shows the gas turbine layout as well as its inputs and outputs.

I--------------------------------------------------------------------------------I

m9

t4

m9.

t1

p1

ff

p7

t7n.

av

t7

p8

p7.

Ambient

air

fuel

flow

m10

m8_

Nt

valve

angle

Tinlet

t1

Pinlet

p1_

p8

av

t7 p7 m9

c5

Pinlet

amb P

Pressurising

valve

HTDU

turbine

Governor

Gas

u(t)

y(t)

Figure 5: The monitored system.

The time series of data used to identify the models were generated with a non{linear dynamic model
in SIMULINK c environment and they simulate measurements taken on the machine with a sampling
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rate of 0:08s and without noise (~u(t) = 0 and ~y(t) = 0) due to measurement uncertainty which,
instead, is always present in the real measurement systems.

The non{linear SIMULINK c model of the gas turbine was validated in steady state conditions
against engine measurements where available, and against the prediction of a more rigorous steady
state gas turbine model where measurements were not available. The SIMULINK c model variables
were found to be within 5% of the measured and rigorous modeled values. For the majority of
variables the accuracy was within 1%.

In the dynamic case no model validation has been carried out as yet.
Orders and output reconstruction errors of each ARX model are shown in Table (2). The i{th

model (with i = 1; � � � ;m and m = 28) is driven by av(t) and ff (t) and gives the prediction of the
i{th output yi(t).

The inputs are u(t) = [av(t); ff (t)] and they are summarised in Table (1). Table (1) also reports
measurement accuracy, nature (e.g. measured or inferred) and reference values.

Variable Name Nature Accuracy Ref

t1 amb. air temp. measured �0:4oC 273.6
p1 amb. air press. inferred 100900
ff fuel ow inferred �5% 0.21654
av valve angle measured �2% 63.15

Table 1: Dynamic model identi�cation: turbine inputs

The input signals av(t) and ff (t) are shown in Figures (6(a)) and (6(b)).
Even if, according to Figure (5) the measurements of ambient and pressure temperature (p1 and

t1) are inputs for the turbine, they were not considered, since they are constant all the times.
The outputs are y(t) = [ m1, m3, m4, m5, m6, m8, m9, p2, p3, p4, p5, p7, pt, qa, qc, qt, t3, t3n,

t4, t4n, t5, t5n, t6, t7, wt] and they are collected in Table (2). Table (2) also shows measurement
accuracy, nature (e.g. measured or inferred) and reference values.

Each model was tested in di�erent operating conditions and it has always provided an output
reconstruction error lower than 0:5%.
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Figure 6: Gas turbine input signals: (a) valve angle and (b) fuel ow.

Moreover, two time series of data generated by the gas turbine non{linear model were exploited in
order to validate the ARX models.
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These models have always provided in full simulation an output reconstruction error lower than
1%.

Variable Name
Model
order

SSE Nature Accuracy Ref

m1 mass ow 4 0:00079 inferred �5% 16.8162
m3 2 2:83� 10�5 inferred �5% 16.8163
m4 2 4:13� 10�5 inferred �5% 16.8332
m5 2 3:39� 10�5 inferred �5% 13.3269
m6 2 2:19� 10�5 inferred �5% 1.9946
m8 turb. outlet mass ow 2 2:12� 10�5 inferred �5% 15.5561
m9 press. valve mass ow 3 0:0060 inferred �5% 17.0321
p2 comp. inlet temp. 2 0:00035 measured �1% 100005.1466
p3 comp. exit press. 2 2:00� 10�5 measured �2% 1026228.281
p4 2 2:10� 10�5 measured 989222.4985
p5 2 2:30� 10�5 measured 939569.728
p7 turb. back press. 2 0:00018 measured 202094.0779
pt power 2 2:98� 10�5 inferred 5312941.3134
qa torque 2 0:00062 inferred �5% 1.5424
qc torque 2 6:03� 10�5 inferred �5% 3142.3523
qt torque 2 4:64� 10�5 inferred �5% 3199.5385
t3 comp. exit temp. 2 4:84� 10�5 measured �1:5oC 578.5786
t3n 2 1:13� 10�5 inferred 578.5759

t4
turbine cooling
air temperature

2 5:18� 10�5 inferred 578.5657

t4n 2 4:84� 10�5 inferred 578.5786
t5 comb. exit temp. 2 0:00036 measured �1:5oC 1225.0295
t5n 2 5:18� 10�5 inferred 578.5657
t6 2 0:00036 inferred 1148.1068

t7

pressure valve up
stream

temperature
2 0:00042 measured �1:5oC 839.6036

wt turb. speed 2 5:31� 10�5 measured �1% 1660.8553

Table 2: Turbine outputs and MISO ARX model characteristics.

A very e�ective way of evaluating the adequacy and exibility of identi�ed models consists, in fact,
in their use for performing complete simulations (i.e. using only the initial samples of the observed
outputs) and in comparing the obtained predictions with observed output samples. This procedure,
that can be applied when a single set of data is available, gives the best results when applied to
sequences di�erent from those used to identify the model. The mean square prediction error between
the observed outputs and the ones obtained by simulation can be used to compare models with
di�erent orders.

Reconstruction errors of each ARX model are summarised in Table (3).
In the following, the deterministic FDI problem is solved via the implementation of a bank of output
observers.

8 Simulated Fault Conditions

Four gradually developing faults are represented as follows:

1) Compressor contamination (core engine performance deterioration), fs(t).

2) Thermocouple sensor fault (output sensor failure), fy(t).
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Variable
Model
order

SSE 1st valid. 2nd valid. Ref

m1 4 0:00079 0:00264 0:78999 16.8162
m3 2 2:83� 10�5 0:00011 0:0791 16.8163
m4 2 4:13� 10�5 0:00017 0:0792 16.8332
m5 2 3:39� 10�5 0:00013 0:00552 13.3269
m6 2 2:19� 10�5 4:84� 10�5 0:0040 1.9946
m8 2 2:12� 10�5 9:12� 10�5 0:0078 15.5561
m9 3 0:0060 0:00049 0:0058 17.0321
p2 2 0:00035 0:0023 0:12255 100005.1466
p3 2 2:00� 10�5 5:05� 10�5 0:8177 1025666.281
p4 2 2:10� 10�5 5:10� 10�5 0:7704 989222.4985
p5 2 2:30� 10�5 5:14� 10�5 0:8255 939569.728
p7 2 0:00018 0:00011 0:0795 202094.0779
pt 2 2:98� 10�5 7:28� 10�5 0:0841 5312941.3134
qa 2 0:00062 0:00029 0:9736 1.5424
qc 2 6:03� 10�5 8:49� 10�5 0:8347 3142.3523
qt 2 4:64� 10�5 4:55� 10�5 0:8745 3199.5385
t3 2 4:84� 10�5 5:53� 10�5 0:00274 578.5786
t3n 2 1:13� 10�5 1:02� 10�5 0:00021 578.5759
t4 2 5:18� 10�5 5:98� 10�5 0:02083 578.5657
t4n 2 4:84� 10�5 5:53� 10�5 0:00274 578.5786
t5 2 0:00036 0:00012 0:1042 1225.0295
t5n 2 5:18� 10�5 5:98� 10�5 0:02083 578.5657
t6 2 0:00036 0:00012 0:1042 1148.1068
t7 2 0:00042 0:00012 0:04270 839.6036
wt 2 5:31� 10�5 5:99� 10�5 0:31424 1660.8553

Table 3: Dynamic ARX model validation

3) High Pressure turbine seal damage (core engine performance deterioration), fs(t) .

4) Fuel actuator friction wear (controller fault), fc(t).

Note that in real industrial applications it is commonplace for each of the above faults to develop
slowly over a period of months. For the purpose of this simulation - in order to avoid excessively
long duration simulations - the fault development rate will be increased so that signi�cant e�ects are
present after one hour. However this is still considerably longer than the duration of the gas turbine
dynamics which occur over periods of seconds - a factor which must be taken account of in any FDI
algorithm design.

With reference to the block scheme of the monitored system depicted in Figure (1), the fault gen-
eration model with respect to the input and output measurements u(t) and yi(t) can be represented
by the structure shown in Figure (7).

u(t) y(t)
NL NL

i

+

*
f(t)

u (t)
f

y (t)
f

Figure 7: Fault generation logic scheme.
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where NL blocks represent any non{linear dynamic relations between the input signals u(t) and uf (t)
as well as the output signals yf (t) and yi(t) (i = 1; � � � ;m), whilst the vector f(t) may represent the
faults fs(t), fy(t) or fc(t). The non{linear relation among uf (t), yf (t) and f(t) is performed by the
the inner block, shown in Figure (7), multiplying f(t) by uf (t) and adding them to uf (t) itself in
order to obtain yf (t).

yf (t) = uf (t) + uf (t) � f(t): (33)

In particular, with reference to the system under investigation, Figure (7) represents the non{linear
link between the faults f(t) and the input-output signals u(t), yi(t).

In the presence of a fault condition, the challenge for the designer of an FDI algorithm may be
summarised as follows:

1. Detect that a fault condition exists with minimum delay from the initial occurrence of the
fault.

2. Identify the nature, magnitude and location of the fault, again with minimum delay from the
initial occurrence of the fault.

Note that it is desirable to avoid introducing perturbation signals onto the model variables. In the
�rst instance an FDI design should be based upon data which is available from the normal day to
day operation of the plant, for example during transient and over prolonged periods of steady state
operations.

The rate of development and magnitude of faults have been set to nominal values in this case
study. It will be of interest to know how small the fault parameters can be made whilst still main-
taining good FDI performance.

8.1 Case 1: compressor contamination (core engine performance deteri-

oration)

Failure \case 1", represents fouling of the surfaces of the compressor blades, this reduces air ow,
changes the blade aerodynamics and consequently changes the surface roughness. The failure is
modeled as a gradual decrease in mass ow rate for a given pressure ratio. With reference to Figure
(7) (with uf (t) = in 1 and yf (t) = out 1), the fault fs(t) a�ects the monitored system of Figure (1)
by means of the SIMULINK c submodel shown in Figure (8).

The maximum decrease in mass ow rate is set nominally at 5% while the fault development rate
is set to (5% decrease of normal ow rate)/hour.

1

out_1Sum2

Saturation2Ramp Product

foulerror

1

in_1

Figure 8: Fault \case 1" SIMULINK submodel.

In order to design the component (fs(t) 2 <) FDI scheme (fu(t) = 0, fy(t) = 0 and fc(t) = 0), with
respect to the turbine SIMULINK c model, the subsystem depicted in Figure (9) was considered.
The inputs for the subsystem are p2, p3, !t and t2, while m3, qc and t3 are the outputs directly
a�ected by the fault fs(t).

The most sensitive output signal to a ramp fault is qc(t), which is depicted in Figure (10(a)). In
Figure (10(b)) the ramp fault fs(t) is shown.

It is worthy to note how the shape of qc(t) transient is determined by the input variation, depicted
in Figures (6(a)) and (6(b)), not by the slowly developing compressor hauling fault fs(t) (which is
also of very small magnitude). qc(t) signal and fs(t) fault have, in fact, very di�erent magnitudes.
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Figure 9: The monitored subsystem
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Figure 10: (a) The monitored signal qc(t) and (b) the component fault mode fs(t).

A second order (n = 2) ARX MISO (r = 2, m = 1) model was identi�ed with an output reconstruc-
tion error J(�) = 6:03�10�5. The parameters of such a model, driven by av(t) and ff (t) signals, are
represented by the vector � = [�0:9246, 1:9238, �0:0009, 0:0010, �0:0353, 0:0359]. The diagnosis of
the qc(t) signal (linked to the faulty turbine component) requires the knowledge of the triple (Ai, Bi,
Ci) with i = 13 and the identi�cation of an ARX model with two inputs which gives the prediction
of the 13{th output qc(t). Because of the deterministic case, in which ~u(t) = 0, ~y(t) = 0 in the
system (6) the term "i(t) was neglected ("i(t) = 0).

The detection of a fault regarding the compressor was performed by using the classical output
observer con�guration exploited for the FDI of output sensor faults, as depicted in Figure (11(a)).
The inputs av(t), ff (t) and the output qc(t) feed the observer to estimate the signal qc(t) itself and
to generate the residual r(t). The poles p of the output observer for the signal qc(t) were chosen
near 0:5 according to the minimisation of the function V (p), shown in Figure (11(b)).
The eigenvalues p =

�
p1 � � � pn

�
, in fact, were chosen to maximise the mean square error of the

residual sensitivity r(t;p)jf to a fault and minimise the mean square error of the residual in fault-free
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Figure 11: (a) observer scheme and (b) V (�) cost function.

condition, r(t;p)jh. The minimum minpV (p), where V (p) is the cost function

V (p) =
jjr(t;p)jj2h
jjr(t;p)jj2f

(34)

has to be found.
In Figure (11(b)), the plot of V (p) with p = pn and p1 = p2 = � � � = pn�1 = 0:5 is shown.
Figure (12(a)) shows the estimate of the fault fs(t) obtained by computing the di�erence between

the fault{free (solid line) and the faulty residual (dotted line), depicted in Figure (12(b)).

Time (s)

fc(t)

(a) fc(t) fault estimate

Time (s)

r(t)

(b) Fault-free and faulty residual r(t)

Figure 12: (a) the fault model and (b) the fault-free and faulty residual.

8.2 Case 2: fault diagnosis of the output sensor.

Failure \case 2" represents the malfunctioning of a thermocouple in the gas path leading to a slowly
increasing or decreasing reading over time. With reference to Figure (7) (with uf (t) = in 1 and
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yf (t) = out 1), the fault on the measurement of the t3n output variable a�ects the output sensor by
means of the SIMULINK c model depicted in Figure (13).

There is no limit placed on the error magnitude while the fault development rate is set to (5%
error in measuring actual temperature)/hour.

In order to diagnose a single fyi(t) fault on the i{th output sensor (fu(t) = 0, fs(t) = 0, fc(t) = 0

and "i(t) = 0) when the measurement noises are negligible (~u(t) = 0 and, ~u(t) = 0), with reference
to system (6), the model of the i{th output observer (i = 1; � � � ;m) has the form

xi(t+ 1) = Aix
i(t) +Biu

�(t) +Ki

�
y�i (t) + fyi(t)�Cix

i(t)
�

(35)

where xi(t) is the i{th observer state vector, fyi(t) represents a fault on the i{th output sensor
and the triple (Ai,Bi,Ci) is a minimal state-space representation (completely observable) of the link
among the inputs of the process and its i{th output y�i (t).

In the absence of faults, it can be veri�ed that, for the i{th output, the residual ri(t) = y�i (t) �
yi(t) = Ci

�
xi(t)� xi(t)

�
is equal to zero. In the presence of a fault on the i{th output sensor the

i{th output residual reaches a value di�erent from zero and this situation leads to a complete failure
diagnosis.

1
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Ramp Product

temperror

Constant

1

in_1

Figure 13: SIMULINK fault model of the output sensor.

In particular, the diagnosis of the t3n output sensor (thermocouple fault), represented in Figure (13),
requires the knowledge of the triple (Ai,Bi,Ci) with i = 18 and therefore the identi�cation of an
ARX model with two inputs which gives the prediction of the 18{th output t3n.

A second order ARX MISO model (r = 2 andm = 1), driven by av(t) and ff (t) input signals, was
identi�ed. Such a model gives an output reconstruction error equal to 1:13� 10�5. The parameters
of the ARX model are described by the vector � = [�0:0244, 1:0295, �0:0020, �0:0014, �0:3180,
0:3140].

The poles of the output observer, whose scheme is depicted in Figure (14(a)), were chosen near
0:3 in order to minimise the function V (p).

As shown in Figure (14(b)), an incipient fault (drift) was generated in the output sensor of the
SIMULINK c model by adding a ramp function with a slope of 0:008oC

s
to the t3n output signals.

Moreover, it was decided to consider a fault during a transient since, in this case, the residual error
due to ARX model approximation is maximum and therefore it represents the most critical case.

The fault occurring on the single sensor causes alteration of the sensor signal and of the residuals
given by the output observer using this signal as input. These residuals indicate a fault occurrence
when their values are lower or higher than the thresholds �xed in fault-free conditions
Figure (15(a)) shows the fault-free y�i (t)�yi(t) (continuous line) and faulty yi(t)�yi(t) (dotted line)
residual obtained from the di�erence between the values computed by the observer related to the
output y18(t) = t3n and the ones given by the sensor. Obviously, the non zero value of the residual
is due to the ARX model approximation.

The drift (ramp fault) in Figure (15(b)) starts at the instant t = 15s. Since the observer gives
the estimate yi(t) of yi(t) at the instant t by using measurements available from the instant t = 0 to
t = n�1, a fault occurring at the instant t a�ects only yi(t). This change produces the instantaneous
peak which appears in Figure (15(b)) [Simani et al., 2000a]. In such a case, the peaks are not due
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Figure 14: (a) output sensor FDI con�guration and (b) the output sensor signal.

to instantaneous changes in the input signals, e.g. fuel ow ff (t) or buttery valve position av(t).
Thus, they may be used as incipient detector of anomalous behaviour of the output sensors.

Figure (15(b)) shows the behaviour of the residual with the same fault as the previous case
occurring at the instant t = 35s in di�erent operating conditions of the plant. The fault free residual,
y�i (t)�yi(t), is depicted in continuous line, whilst the faulty one, yi(t)�yi(t), using dotted line. The
step which appear in the Figure (15(b)) is generated by the change related to the fault occurrence
at the same instant.

r18(t)

Time (s)

(a)

yr18(t)

Time (s)

(b)

Figure 15: Residual function in di�erent operating points.

Figure (16(a)) depicts the dynamics of the drift fy18(t) a�ecting the t3n output sensor, while, Figure
(16(b)) shows the fault estimate obtained from the di�erence between the fault-free and the faulty
residual. The peak which appears in the Figure (16(b)) is generated by the instantaneous di�erence
between measured yi(t) and estimated output yi(t) at the instant t related to the fault occurrence.
It is worthy to note how, because of the non{linear links between fault and symptom signals, the
failure estimates may have di�erent scales from the real ones. The estimate of faults can, in fact,
only captures the ramp nature of the real failures but not the magnitude.
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Figure 16: (a) real and (b) estimated fault function.

8.3 Case 3: high pressure seal damage (core engine performance deteri-

oration)

Failure\case" represents failure fs(t) of an HP turbine seal. This results in a reduction in turbine
eÆciency. The fault is modeled as a gradual reduction in turbine eÆciency over time. The maximum
decrease in turbine eÆciency is set nominally at 5% while the fault development rate is set to (5%
reduction of normal eÆciency)/hour.

In order to detect such a fault, an output observer fed by the inputs av(t), ff (t) and p5(t) is
designed. With reference to Figure (7), the SIMULINK c subsystem used to inject the component
fault fs(t) into the monitored systems is depicted in Figure (17).
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Sealerror

Figure 17: Fault SIMULINK subsystem

In Figure (18) the plot of the output measurement p5(t) is shown.

The component fault dynamics fs(t) 2 < and its estimate f̂s(t) obtained by the output observer are
shown in Figures (19(a)) and (19(b)), respectively.
Under noise-free conditions (~u(t) = 0, ~y(t) = 0), with reference to system (6) with "i(t) = 0, the
observer was designed for a third order MISO model which gives a mean square reconstruction error
equal to 1:8013� 10�6 and the eigenvalues were chosen near 0:3 to minimise the cost function V (p).
The ARX parameter vector estimated is described by � = [0:4234, �1:7905, 2:3658, 0:0002, 0:0008,
0:0933, �0:2035, 0:1113].

The scheme used to generate the redundant residual regarding the p5(t) output signal is depicted
in Figure 20(a). The fault free and the faulty residual are also shown in the Figure 20(b).

8.4 Case 4: Fuel actuator friction wear

Failure \case 4", fc(t) represents the loss of performance due to wear of the fuel valve actuator.
With reference to Figure (7), the SIMULINK c model used to generate the fault signal fc(t) 2 < is
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Figure 19: \Case 3" seal fault fs(t) dynamics

depicted in Figure (21).
As there are no speci�c actuator dynamics in the current model, the wear e�ect of the valve

actuator causing slower response to demanded ow rates is modeled as a simple �rst order lag on
the resulting fuel ow. The time constant increases linearly with the time to represent progressive
wear damage to the actuator.
In order to generate the residual for the diagnosis of the actuator fault fc(t), the output observer
scheme represented in Figure (22(a)) was exploited.

In particular, the inputs of the turbine, the fuel ow, ff (t), the valve angle, av(t) and the outputs
t6(t),t4(t), p3(t), p5(t) and m10(t) were considered. The speed demand, !d(t), one of the inputs of
the governor and !t(t), the third output of the turbine were also shown.

For each output, a third order (n = 3) ARX model with two inputs and one output (m = 1,
r = 2) was identi�ed. By means of the SIMULINK c system (5), a single fault fc(t) was simulated
and the most sensitive output to a fault regarding the actuator was determined. The p3(t) residual
was the most sensitive, with a J(�) = 4:7857� 10�5.

The third order ARX parameter are collected in the parameter vector � = [0:2018, �1:3242,
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Figure 21: Actuator fault SIMULINK model.

2:1207, �0:0069, 0:0632, �0:0560, 0:0187, �0:0464, 0:0286].
In Figure (22(b)) is depicted the observer scheme used to generate residual regarding the signal

p3(t). av(t), ff (t) and p3(t) are the inputs of the output observer used to estimate the p3(t) signal
itself.
Figure (23(a)) depicts the dynamics of the p3(t) signal, while the e�ects of the fault on the symptom
signal r(t) is shown in Figure (23(b)). r(t) is the residual concerning the p3(t) output measurement in
fault-free and faulty conditions. Because of the closed-loop con�guration of the subsystem considered
in Figure (22(b)), the fault shape can not be described by using a ramp function.
As depicted in Figure (22(a)) an output observer fed by inputs av(t) and ff (t) was designed to
estimate p3(t). The eigenvalues p were chosen near 0:4 to minimise the cost function V (p).

In Figure (24), the function V (p) is depicted, with p1 = : : : pn�1 = 0:4 and p � pn.
Figure (25(b)) shows how the fault occurring on the single sensor causes alteration of the input and
output signals and of the residuals given by the output observer using the p3(t) signal as input.
These residuals indicate a fault occurrence when their values are lower or higher than the thresholds
�xed in fault-free conditions.

Figure (25(b)) shows the fault-free (solid line) and faulty (dotted line) residual r(t) obtained from
the di�erence between the values computed by the observer related to the output p3(t) and the ones
given by the sensor.
In order to improve the fault detection capabilities of the proposed method regarding the \case 4",
another technique will be presented.

A Kalman �lter, used as parameter estimator, has been exploited in order to detect changes in
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Figure 22: Schemes for the fuel actuator fault.
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parameters due to output faults. The system has the form�
�(t+ 1) = �(t) + !(t)
y(t) = C(t) �(t) + "(t)

(36)

where �(t) is the parameter vector, C(t) = [y(t � n); : : : ; y(t � 1); u(t � n); : : : ; u(t � 1)], the mea-
surement vector, n the order of the model, !(t) a white process, in order to take into account the
parameter variations for non stationary processes and "(t) the equation error term.

Figure (26(a)) depicts the recursive estimation of one entry of the parameter of the MISO ARX
model for the p3(t) output given by the Kalman �lter (solid line) and the estimate computed by the
OLS (Ordinary Least Square) method (dotted line) [Ljung, 1999]. Note how the real process with
av(t) and ff (t) as inputs and p3(t) as output is non stationary and the estimates are di�erent.
Figure (26(b)) shows the change of the most sensitive parameter �i(t) of �(t) due a fault, by using
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Figure 25: The fault free and faulty residual signals.

the Kalman �lter for a third order ARX model (n = 3), with a covariance matrix for "(t) and !(t)
processes estimated from the OLS.

Even if the fc(t) actuator fault occurs as a ramp increase in the fuel valve constant time with
t � 0 and since it is injected into the feedback controller system by means of non{linear links, the
fault e�ects on output measurements are di�erent from a ramp mode.

In particular, the \case 4" fault mode is depicted in Figure (23(b)) and the non{linear e�ect on
�i(t) of the fc(t) signal is very similar to a step change, as shown in Figure (26(b)).
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Figure 26: Kalman �lter parameter variations due to the fc(t) fault.

9 Fault Isolability

By performing residual sensitivity analysis, i.e. by selecting the most sensitive residuals to the faults,
the Table (4) is obtained, in order to isolate di�erent fault occurring at the same time.

Fault/r(t) p3 p4 p5 p7 pt qa qc qf t3n t5 t6

Case 1 1 1 1 0 0 0 1 0 0 0 0

Case 2 0 0 0 0 0 0 0 0 1 0 0

Case 3 1 1 1 1 1 0 0 0 0 1 1

Case 4 1 1 1 0 1 1 0 1 0 0 0

Table 4: Fault signature.

In order to summarise the FDI capabilities of the presented schemes, Table (4) shows the \fault
signatures" in case of a single fault in each actuator, component and sensor. The residuals which
are a�ected by faults are marked with the presence of `1' in the correspondent table entry, while an
entry `0' means that the fault does not a�ect the correspondent residual.

The bold face entries in the table represent the residuals a�ected by the same faults. The italics
`1's are the distinguishable residuals (they are bigger than a �xed threshold).

Note how multiple faults in actuator, components and sensor can be isolated since a fault a�ects
only the residual function of the observer driven by the same output.

10 FDI in stochastic environment

In this section, a FDI technique based on Kalman �lters designed in stochastic environment is
presented [Simani and Spina, 1998, Simani et al., 2000a].

Such a design is enhanced by processing the noisy data according to the Frisch scheme identi�-
cation method [Simani et al., 2000a].

Moreover, fault size estimation can be performed by means of di�erent neural network architec-
tures. In particular, neural networks can be used as function approximators to estimate single sensor
fault size [Simani et al., 1998, Simani et al., 1999b].
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The proposed fault diagnosis tool in stochastic environment is tested on the power plant presented
in the previous sections.

10.1 Fault estimation device

The fault detection and diagnosis system produces and elaborates a set of residuals from which
it will be possible to estimate the amplitudes of the faults regarding actuators, components and
input-output sensors.

With reference to Figure (27) the symptom generator is designed to produce a set of signals which
are somehow redundant. These signals are di�erences between estimated signals given by Kalman
�lters and the actual ones supplied by the sensors.

Fault
size

residuals

r(t)
u(t)

y(t)

Neural
networks

Kalman
filter

Plant

Figure 27: Logic diagram of the fault detection system.

In order to experiment with learning capabilities of arti�cial neural networks, on which the diagnosis
device in Figure (27) is based, a bank of classic Kalman �lters are used. The number of �lters is
equal to the number m of system outputs, and each �lter is driven by a single output measurement
and all the inputs of the plant. Because of this con�guration, the diagnosis of faults is indeed very
easy, since each output measurement is directly connected to a single residual generator.

The basic principle of fault detection by using Kalman �ltering is illustrated in Figure 28.
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Figure 28: Bank of Kalman �lters and NNs for residual generation and estimation.

With reference to the time-invariant, discrete-time, linear dynamic system described by a minimal
state-space realisation (Ai;Bi;Ci) of the input-output MISO system (6) [S�oderstr�om and Stoica, 1987],
the i-th Kalman �lter has the structure [Jazwinski, 1970]:�

xi(t+ 1jt) = Ai (I�Ki(t)Ci)x
i(tjt� 1) +Biu(t) +AiKi(t)yi(t)

yi(tjt) = Ci (I�Ki(t)Ci)x
i(tjt� 1)CiKi(t)yi(t)

(37)

The variable xi(t+ 1jt) is the one step ahead prediction of the state xi(t), y
i(tjt) is the estimate of

the i-th component yi(t) of the output y(t) given by the �lter.
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A Riccati equation is used to compute the time-variant gain Ki of the �lter by means of the
knowledge of the covariance matrix of the input vector noise ~u(t) and the variance of the i-th
component of the output noise ~y(t).

It can be proved that the innovation ri(t+1) = yi(t+1)�Cix
i(t+1jt) is a white process when

all the assumptions regarding the system (Ai;Bi;Ci) and the statistical characteristics of the noises
are completely ful�lled. In particular, the innovation converges to a steady state solution when the
pair (Ai;Bi) is completely observable and the pair (Ai;Ci) is completely reachable.

10.2 Identi�cation procedure

The Frisch scheme can be applied to perform the dynamic system identi�cation of the plant [Frisch, 1934,
Kalman, 1982, Kalman, 1990, Beghelli et al., 1990, Beghelli and Soverini, 1992].

Such a scheme permits to determine the linear discrete dynamic system which has generated the
noisy sequences as well as the variances of the noises ~u(t) and ~y(t) corrupting the data.

In the Frisch scheme these signals are assumed white noises, mutually uncorrelated and uncorre-
lated with every component of u�(t) and y�(t).

The Table (5) summarises the reconstruction errors concerning the MISO models in the form
(17) with two inputs (av(t) and ff (t)) and each monitored output variable, as output.

Variable Name
Model
order

J(�) Accuracy Ref.

p5 Pressure 2 0.0054 1% 940014.006
p3 Pressure 2 0.0049 1% 1026228.8381
qc Torque 2 0.0042 � 5 % 3144.1183
t3n Temperature 2 0.0031 1.5o 578.5759

Table 5: Frisch scheme model reconstruction errors.

Table 6 collects parameters of second order models (n = 2) as well as the input and output noises.

Variable Model parameters � Input noises ~�u
Output
noise ~�y

p5 [�0:0295; 1:0054; 0:1369; �0:1328; 0:0402; �0:0232] [0:0004; 0:0023] 0:0026
p3 [0:6655; 0:2885; �0:0579; 0:0651; 0:2408; �0:2065] [0:0004; 0:0023] 0:0026
qc [�0:9920; 1:9904; �0:0179; 0:0181; 0:0111; �0:0100] [0:0004; 0:0023] 0:0015
t3n [�1:1760; 2:1882; 0:0283; �0:0311; �0:3202; 0:3133] [0:0004; 0:0023] 0:0024

Table 6: Frisch 2-nd order model parameters and noise variances.

On the basis of the data collected in Table (6), four Kalman �lters with two inputs (r = 2) and one
output (m = 1) were designed.

The detection strategy which is commonly chosen in connection with Kalman �ltering methods
for failures detection, consists in monitoring the innovations r(t).

Because of the linear property of system (1) and because of the e�ect of faults on the system
output measurements, any change in measurements due to a fault is reected in a change in the
mean and in the standard deviation of r(t).

In particular, since the Kalman �lter produces zero-mean and independent white residuals with
the system in normal operation, a method for failure detection and isolation consists in testing how
much the sequence of innovations has deviated from the white noise hypothesis. The tests which can
be performed on the innovations are the usual ones for zero-mean and variance, as cumulative sum
algorithms as well as independence, as �2-type.

If a system abnormality occurs, the statistics of r(t) change, so its comparison with a threshold
�xed under no faults conditions, becomes the detection rule.
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In Figures (29), (30), (31) and (32) the examples of the turbine FDI performed by using the
residual generated by the Kalman �lter with two inputs and one output are shown.
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Figure 29: (a) Component fault \case 1" and (b) Kalman �lter residual.

In particular, Figure (29(a)) shows the value of the fault fs(t) a�ecting the qc(t) residual (\case 1"),
whilst Figure (29(b)) depicts fault-free and faulty residuals generated by the Kalman �lter.

It is driven by the input sensor signal av(t), ff (t) and the qc(t) signal itself. A ramped incipient
compressor fault (\case 1"), commencing at t = 15s causes a change in the value of the qc(t) residual
computed in fault-free condition, as depicted in Figure (29(b)).

It is important to note that, in order to achieve the maximal fault detection capability, the
residual corresponding to the most sensitive �lter to a failure on the qc(t) measurement was selected,
in accordance with Table (5).

Figure (30(a)) shows the value of the fy(t) incipient ramp fault (\case 2") a�ecting the output
sensor for the measurement of the t3n signal and commencing at the instant t = 15 sec.

In Figure (30(b)) fault free and faulty residuals regarding the t3n signal obtained from the di�er-
ence between the values yi(tjt) computed by the Kalman �lter in Equations (37) with t3n and the
ones measured by the sensor, are shown.

Obviously, the non-zero value of the residual in fault-free conditions is due to the ARX model
approximation and to the actual measurement noise.
Figure (31(b)) shows the behaviour of the residual when a ramped incipient fault fs(t) (\case 3")
commences at the instant t = 15 sec.

The fs(t) fault mode is depicted in Figure (31(a)).
According to Table (5), in this case, p5(t) is the monitored signal for the FDI of a component of

the turbine.
Figure (31(b)) depicts the fault-free residual and its change due to the fault occurrence, as the

previous cases.
Finally, Figure (32(b)) shows the change in the fault-free residual concerning the yi(t) = qt(t)
measurement due to a ramped incipient actuator fault (\case 4").

The fc(t) fault commences at the instant t = 15 sec. The fault mode is depicted in Figure (32(a)).
In Figure (32(b)) on the right the fault-free and the faulty residuals are shown.

Because the nature of the incipient ramp fault fc(t) a�ecting the regulator into the feedback control
loop, the output measurements a�ected by the fault itself are di�erent from ramp signals, as depicted
in Figure (32(a)).
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Figure 30: (a) Output (\case 2") sensor fault and (b) Kalman �lter residuals.
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Figure 31: (a) Component (\case 3") fault and (b) Kalman �lter residuals.

11 Minimal detectable faults

Table (7) summarises the performance of the fault detection and isolation technique both in the
deterministic and stochastic environment.

The Table collect the minimal detectable fault on the four measurements, in case the residual or
innovation value is monitored using a geometrical test and �xed thresholds.

The minimal detectable fault values in Table 7 are expressed as percentage of the signal values
and are relative to the case in which the occurrence of a fault must be detected as soon as possible.
It results that the values of the faults obtained by using geometrical analysis on Kalman �lter
innovations, collected in Table 7, are di�erent than the ones reported in the same Table and computed
in the deterministic environment exploiting classical observers.

Table 7 shows how faults modeled by ramp functions may not be immediately detected, since the
delay in the corresponding alarm normally depends on fault mode.
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Figure 32: (a) Actuator fault (\case 4") and (b) Kalman �lter residuals.

Fault Case
Monitored
signal

Deterministic
environment

Stochastic
environment

Detection
delay

Case 1 (Compressor contamination) qc(t) 0:5% 1% 30s
Case 2 (Thermocouple sensor fault) t3n(t) 10% 12% 30s
Case 3 (Turbine seal damage) p5(t) 5% 7% 60s
Case 4 (Fuel actuator fault) p3(t) 1% 3% 10s

Table 7: Minimum detectable faults by monitoring residual and innovation values.

The minimal detectable fault can be found by �xing a detection delay, de�ned in Figure (33). If a
delay in detection is tolerable the amplitude of the minimal detectable fault is lower.

The minimal detectable faults on the various sensors seem to be adequate to the industrial
diagnostic applications, by considering also that the minimal detectable faults can be reduced if a
delay in detection promptness is tolerable.

12 Fault diagnosis neural networks

In recent years, neural networks have been exploited successfully in pattern recognition as well
as function approximation theory and they have been proposed as a possible technique for fault
diagnosis, too. Neural networks can handle non-linear behaviour and partially known process.

The aim of this paragraph is to suggest how arti�cial neural networks can be exploited to ap-
proximate a large class of functions, for fault diagnosis of an industrial plant.

In particular, the problem of the estimate of the slope of faults concerning actuators, components
and output sensors of an industrial gas turbine can be solved. Faults modeled by ramp functions
create changes in several residuals obtained by using dynamic observers (Kalman �lters) of the
process under examination.

A neural network can be used in order to �nd the connection from a particular fault regarding
input and output sensors to a particular residual. Residuals are dependent only on sensors faults.
Therefore, the neural network evaluates patterns of residuals, uniquely related to particular fault
conditions [Simani et al., 1998, Simani et al., 1999b].
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Figure 33: Detection delay de�nition.

13 Conclusions and future works

The complete design procedure for FDI in actuators, components and output sensors of an industrial
process was described in this report.

The fault diagnosis was performed by using a bank of dynamic observers or, when the measure-
ment noises are not negligible, a bank of Kalman �lters. Single fault on the component of the system,
actuator and output sensors were therefore considered

The suggested method did not require any physical knowledge of the process under observation
since the input-output links were obtained by means of an identi�cation scheme, which uses ARX
models in case of high signal to noise ratios or errors-in-variables models, otherwise. In last situation
the identi�cation technique (Frisch scheme) gave the variances of the input-output noises, which are
required in the design of the Kalman �lters.

Such a procedure was applied to a SIMULINK c model of a single-shaft industrial gas turbine.
In order to analyse the diagnostic e�ectiveness of the FDI system in the presence of changes or drifts
in measurements, faults modeled by ramp functions were generated.

The results obtained by this approach indicated that the minimal detectable faults on the system
actuator, component and output sensor are of interest for the industrial diagnostic applications.

However, since in real industrial applications incipient ramp faults develop slowly over a long
period, in order to avoid excessively long duration simulations, the fault development rate was
increased so that signi�cant e�ects were present after shorter periods. This is a factor which must
be taken account for the FDI performance evaluation.

The main aspect of this work was the use of linear system identi�cation and modeling methods,
although the system considered was non{linear. This is considered important to avoid the com-
plexities that would otherwise be inevitable when non{linear models are used. There is certainly
an increasing interest in the use of non{linear methods (non{linear observers, extended Kalman
�lters, fuzzy-logic methods, etc). By the same authors, see for example [Chen and Patton, 1999,
Simani, 1999b, Simani, 1999a, Simani et al., 2000c, Simani et al., 2000b, Simani, 2000].

However, as the feature of system supervision is to monitor the operation and performance of the
system with respect to an expected point of operation, linear system methods are still very valid.
Deviations from expected behaviour can be used to monitor system performance changes as well as
system component malfunctions.
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Finally, simulation results showed that the minimal detectable fault sizes, obtained by using
geometrical analysis of Kalman �lter innovations, are smaller than the ones computed in the deter-
ministic environment and exploiting classical Luenberger observers. Moreover, if a delay in detection
is tolerable the amplitude of the minimal detectable fault is lower.

The minimal detectable faults on the various sensors seem to be adequate to the industrial
diagnostic applications, by considering also that the minimal detectable faults can be reduced if a
delay in detection promptness is tolerable.
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