Matlab and Simulink
for Control

Automatica I (Laboratorio)

1/78

Matlab and Simulink

CACSD

2/78

Matlab and Simulink for Control

Matlab introduction

Simulink introduction

Control Issues Recall

Matlab design Example

Simulink design Example

3/78

Part |

Introduction

4/78

Introduction What is MATLAB and Simulink?

What is MATLAB

High-Performance language for technical computing
Integrates computation, visualisation and programming
MATLAB = MATrix LABoratory

vV v . vY

Features family of add-on, application-specific toolboxes

5/78

Introduction What is MATLAB and Simulink?

What are MATLAB components?

Development Environment

The MATLAB Mathematical Function Library
The MATLAB language

Graphics

vV v. v vY

The MATLAB Application Program Interface

6/78

Introduction What is MATLAB and Simulink?

What is Simulink?

» Software Package for modelling, simulating and analysing dynamic
systems

Supports linear & Non-linear systems

Supports continuous or discrete time systems

>

>

» Supports multirate systems

» Allows you to model real-life situations
>

Allows for a top-down and bottom-up approach

7/78

Introduction What is MATLAB and Simulink?

How Simulink Works?

1. Create a block diagram (model)

2. Simulate the system represented by a block diagram

8/78

Introduction MATLAB&Simulink — Getting Started

MATLAB Environment

T IMa

e e DI=IIE)

File Edit Depug Desktop Window Help

0 ﬁ:| & B o o | ﬁ ﬁ| @ | Current Directary: | /homejstafffzib / J

Shortcuts [How to Add [2] Wwhat's New

Waorkspace PEEYEl Command Window
-jm=i§|’h|@v|5tack:Base / | WATLAE
< >
Mame £ IVaIue |Class | Copyright 1984-2004 The MathWorks, Inc.
h 10 double Wersion 7.0.1.24704 (R14) Serwice Pack 1
den 110 20] double Septemher 13, 2004
k 20 double
m 1 double To get started, select MATLAE Help or Demos from the Help menu.
nurm 1 double -
= num = 1;
> m=1
h=10
k=20
den=[m, b, k]
m =
Current Directory Wgrkspacej 1
Command History A X
[—[4 B C DI=Tinmod{'cc2mtlb') b=
[, B, C, DI=Tinmod{'cc2mtlb')
[—[num, den]=ss2tf{4,E,C,D7; 10
F=stepSO0* T (num, den))
—cTap{S00%num, dend
=k%-- 1/21/05 12:34 PH --% ko=
—num = 1;
=1 20
—=h=10
k=20
—den=[mn, b, kK] den =
EiStanI
1 L

9/78

Introduction MATLAB&Simulink — Getting Started

The MATLAB Language

Durer’'s Matrix

A=[16 3 2 13; 5 10 11 8; 9 6 7 12;4 15 14 1];
sum(A) %ans = 34 34 34 34

sum(A') %ans = 34 34 34 34

sum(diag(A)) %ans = 34

Operators

100: —7:50 % 100 93 86 79 72 65 58 51
sum(A(1:4,4)) % ans = 34

10/78

The MATLAB API

Introduction

» You can use C or FORTRAN
» Pipes on UNIX, COM on Windows
» You can call MATLAB routines from C/FORTRAN programs and vice

VErsa

» You can call Java from MATLAB

MATLAB&Simulink — Getting Started

11/78

Introduction

Simulink Environment

MATLAB&Simulink — Getting Started

Gain

‘; Library: simulink X ﬂ Library: simulink/Sources L]
File Edit Wiew Help File Edit View
\ ‘}:{:- 7 2 Model & Subsystem Inputs
“y ik o i \ I E]fm 1 r EF |untit|ed.mat |> | simin |>
Sources Sinks Continuous Discrete Discontinuities Signal Signal In1 Ground From File From
Routire Attributes ‘Waorkspace
+ - = IL & _ Signal Generators
. aﬁ‘ == y=fiju} ¥ @ &c Mizc
=X <= @ oooo
an F E Sianal 1
Mat_h Lowgic: an_d Eit Lookup User-Dgﬂned Mode! Ports & Modn_a!-_WTde
Operations Operations Tables Functions Werification Subaystems Ltilities Constant Sighal Pulse Sigral Buider
Generator Generator
Blocksets & commanly Additional hath b Sirmulink Block Library 6.1
Toolboxes uzed blocks & Discrete emas Copyright (¢} 1990-2004 _/ l /VM l
The Math'Works, Inc.
Rarnp Sine Wave Step Repeating
& [=][x] Seruence
File Edit View Simulation Format Tools Help |'1||'| .
Chirp Signal Fandom Uniform Random Band-Limited
Murnber Murnber ‘White Moise
+ -
3 —s o> e | B
ni = 5
i/t Y Qutl Fepeating Fepeating Counter Counter
Subtract : Sequence Secuence Free-Running Lirnited
Inertia Integrator irieh Intar aolatat
(T 123 P
b Clack Digital Clock

12/78

Starting Simulink

Introduction MATLAB&Simulink — Getting Started

Just type in MATLAB

simulink

13/78

Part Il

MATLAB — Background

14 /78

MATLAB — Background Transfer Functions and Laplace Transforms

Laplace Transform

Definition

The Laplace Transform is an integral transform perhaps second only to the

Fourier transform in its utility in solving physical problems. The Laplace

transform is defined by:

CIF(D] () = /O T (et dr

Source: [1, Abramowitz and Stegun 1972]

15/78

MATLAB — Background Transfer Functions and Laplace Transforms

Laplace Transform

Several Laplace Transforms and properties

f | L[f(t)](s) range
% s>0
s% s>0
th L neZ>0
et = s>a

Lo [FO(0)] () = s"Le (D) -
—s"71F(0) — s"2f(0) — ... — F"71(0)

(1)

This property can be used to transform differential equations into algebraic

ones. This is called Heaviside calculus

16 /78

MATLAB — Background Transfer Functions and Laplace Transforms

Heaviside Calculus Example

Let us apply the Laplace transform to the following equation:
f”(t) + alf’(t) + apf(t) =0
which should give us:

{s2£t [F(t)] (s) — sf(0) — £'(0)} +
+a; {sL: [f(t)]() f(0)} +
+aoL: [f(t)](s) =0

which can be rearranged to:

sf(0) + f'(0) + a1f(0)
s2 4+ a;s + ag

L [f(t)](s) =

17 /78

MATLAB — Background Transfer Functions and Laplace Transforms

Transfer Functions

» For MATLAB modelling we need Transfer Functions

» To find the Transfer Function of a given system we need to take the
Laplace transform of the system modelling equations (2) & (3)

System modelling equations
F = mv + bv (2)

y=v (3)

Laplace Transform:

18/78

MATLAB — Background Transfer Functions and Laplace Transforms

Transfer Functions — cntd.

» Assuming that our output is velocity we can substitute it from
equation (5)

Transfer Function
Laplace Transform:

F(s) = msV(s) + bV(s) (4)
Y(s) = V(s) (5)

Transfer Function:

19/78

MATLAB — Background Matlab Functions

Matlab Functions — Transfer Function |

What is tf?
Specifies a SISO transfer function for model h(s) = n(s)/d(s)

h = tf(num, den)

What are num & den?

row vectors listing the coefficients of the polynomials n(s) and d(s)
ordered in descending powers of s

Source: MATLAB Help

20 /78

MATLAB — Background Matlab Functions

Matlab Functions — Transfer Function |l

tf Example

T(s) =2 =n=t£([2 -3], [1 11)

T(s) = ;2555 =b=tf([2 1], [4 1 1])

21/78

MATLAB — Background Matlab Functions

MATLAB Functions — Feedback |

Forward }7(1(2)

Backward J-—

system

MATLAB code

sys = feedback(forward , backward);

Source: [2, Angermann et al. 2004]

22/78

MATLAB — Background Matlab Functions

MATLAB Functions — Feedback I

» obtains a closed-loop transfer function directly from the open-loop
transfer function

» no need to compute by hand

Example

1
Forward = T (7)
Backward = V (8)
Cs) st
T p— pu— ! p—
() R(s) 1+ VslT,-
= feedback(tf (1, [Ti 01), tf(V, 1)) (9)

23/78

MATLAB — Background Matlab Functions

Matlab Functions — Step Response

File Edit View Insert Tools Deskiop Window Help k

Step Response

180

system=tf ([2 1],[4 1 1]);
t=0:0.1:50;

step (100*system)

axis ([0 30 60 180])

Arplitucle

1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45
Tirre {36)

24 /78

MATLAB — Background Steady-State Error

Steady-State Error — Definition

Re (s ﬂﬁ){ G(s) <::> E@L{ T(s)]—C@’

=4

Figure 1: Unity Feedback System

Steady-State Error

The difference between the input and output of a system in the limit as
time goes to infinity

25 /78

MATLAB — Background Steady-State Error

Steady-State Error

Ry 5 E@L{ G(s) = <:> ﬂi}-{ T(s)]—C@

=4

Steady-State Error

o) = Im 1 s a0
e(o0) = slm) sR(s) |1 — T(s)| (11)

26 /78

MATLAB — Background Proportional, Integral and Derivative Controllers

Feedback controller — How does it work 17

=)

R—:.£>: Controller Y Plant J—L
ik |

Figure 2: System controller

> e — represents the tracking error

» e — difference between desired input (R) an actual output (YY)

» e — is sent to controller which computes:

» derivative of e
> integral of e

» u — controller output is equal to...

27 /78

MATLAB — Background Proportional, Integral and Derivative Controllers

Feedback controller — How does it work 117

» u — controller output is equal to:

» K, (proportional gain) times the magnitude of the error +
» K; (integral gain) times the integral of the error +
» Ky (derivative gain) times the derivative of the error

Controller's Output

de

=K Ki | edt + K
u p€ + /e + d

Controller's Transfer Function

Kys® + Kps + K;
S

Ki
Kp—l—?—l—KdS:

28 /78

MATLAB — Background Proportional, Integral and Derivative Controllers

Characteristics of PID Controllers

» Proportional Controller K,

» reduces the rise time
» reduces but never eliminates steady-state error

> Integral Controller K;
> eliminates steady-state error
> worsens transient response
» Derivative Controller Ky

> increases the stability of the system
» reduces overshoot
> improves transient response

29 /78

MATLAB — Background Proportional, Integral and Derivative Controllers
Example Problem

bx i

F
k _ - ~—
Figure 3: Mass spring and damper problem
Modelling Equation
mx + bx + kx = F (12)

30/78

MATLAB — Background Proportional, Integral and Derivative Controllers

Example Problem

Laplace & Transfer Functions

mx + bx + kx = F

ms>X(s) + bsX(s) + kX(s) = F(s) (13)
X(s) 1

F(s) ms2+bs+k (14)

31/78

MATLAB — Background

MATLAB System Response

Proportional, Integral and Derivative Controllers

Assumptions
Let: m = 1[kg], b = 10[Ns/m], k = 20[N/m]
MATLAB code

%{Set up variables%}
m=1;: b=10; k=20;
%{Calculate response%}
num=1;

den=[m, b, k]J;
plant=tf (num,den);
step(plant)

32/78

MATLAB — Background Proportional, Integral and Derivative Controllers

MATLAB System Response

File Edit Yiew Insert Tools Desktop Window Help o

Step Response

0.05

0045+ -

0.04 B

0035+ -

003 -

0025+ -

Arnplitucle

002 -

0os -

0.01 -

0005+ -

0 nz 0.4 0.5 0s 1 1.2 1.4 16] 2
Tirne {sec)

Figure 4: Amplitude < Displacement
33/78

MATLAB — Background Proportional, Integral and Derivative Controllers

Problems

» The steady-state error is equal to 0.95 — equation (11)
» The rise time is about 1 second
» The settling time is about 1.5 seconds

» The PID controller should influence (reduce) all those parameters

34/78

MATLAB — Background Proportional, Integral and Derivative Controllers

Controllers’ Characteristics

Type Rise time Overshoot | Settling time S-S Error
Ko decrease increase | small change decrease
K; decrease increase Increase eliminate
Ky small change | decrease decrease small change

These correlations may not be exactly accurate, because K, K;, and Ky
are dependent on each other. In fact, changing one of these variables can
change the effect of the other two.

35/78

MATLAB — Background Proportional, Integral and Derivative Controllers

Proportional Controller

P Transfer Function

X(s) Kp
F(s) s2+bs+ (k+ K,)

MATLAB code

%{Set up proportional gain%}
Kp=300;

%{Calculate controller%]}
sys_ctl=feedback (Kpxplant, 1);
%{Plot results%}

t=0:0.01:2;

step(sys_ctl, t)

36 /78

MATLAB — Background Proportional, Integral and Derivative Controllers

Proportional Controller — Plot

File Edit Yiew Insert Tools Deskiop Window Help

Step Response
o T T T T - |

Aplitude

i

I:._ 1 1 1 L . 1
1] 0.z 0.4 0k 05 1 1.2 1.4 1.6 1.3

Time {zec)

Figure 5: Improved rise time & steady-state error

37/78

MATLAB — Background Proportional, Integral and Derivative Controllers

Proportional Derivative Controller

PD Transfer Function

X(s) Kas + Kp
F(s) s2+4+(b+ Ky)s+ (k+ K,)

MATLAB code

%{Set up proportional and derivative gain%}
Kp=300; Kd=10;

%{Calculate controller%}

contr=tf ([Kd, Kp],1);
sys_ctl=feedback(contrxplant, 1);

%{Plot results%}

t=0:0.01:2;

step(sys_ctl, t)

38/78

MATLAB — Background Proportional, Integral and Derivative Controllers

Proportional Derivative Controller — Plot

File Edit ¥iew Inzert Tools Deskiop Window Help o

Step Response

05

Arnplitucle

OG-

0.4

0.2

0

1 1 1 L 1 1 1 1 1
0 oz 0.4 0k 0.a 1 1.2 1.4 1.6 1.8 2
Tirne {sec)

Figure 6: Reduced over-shoot and settling time

39/78

MATLAB — Background Proportional, Integral and Derivative Controllers

Proportional Integral Controller

Pl Transfer Function

X(s) Kps + Ki
F(s) s34+ bs?2+ (k+ Ky)s + K;

MATLAB code

%{Set up proportional and integral gain%}
Kp=30; Ki=70;

%{Calculate controller%}

contr=tf ([Kp, Ki],[1, 0]);
sys_ctl=feedback(contrxplant, 1);

%{Plot results%}

t=0:0.01:2;

step(sys_ctl, t)

40 /78

MATLAB — Background Proportional, Integral and Derivative Controllers

Proportional Integral Controller — Plot

File Edit ¥iew Inzert Tools Deskiop Window Help o

Step Response

05

Arnplitucle

OG-

04

02

0

1 1 1 L 1 1 1 1 1
0 oz 0.4 0k 0.a 1 1.2 1.4 1.6 1.8 2
Tirne {sec)

Figure 7: Eliminated steady-state error, decreased over-shoot

41/78

MATLAB — Background Proportional, Integral and Derivative Controllers

Proportional Integral Derivative Controller

PID Transfer Function

X(s) Kys® + Kps + K;
F(s) s34+ (b+ Ky)s?2+ (k+ K,)s + K;

MATLAB code

%{Set up proportional and integral gain%}
Kp=350; Ki=300; Kd=50;

%{Calculate controller%}

contr=tf ([Kd, Kp, Ki],[1, 0]);
sys_ctl=feedback (contrxplant, 1);

%{Plot results%}

t=0:0.01:2;

step(sys_ctl, t)

42 /78

MATLAB — Background Proportional, Integral and Derivative Controllers

Proportional Integral Derivative Controller — Plot

File Edit ¥iew Inzert Tools Deskiop Window Help ﬂl

Step Response
1 ; " .

049
0.3

0.7 H

0.6

0.5

Arnplitucle

0.4

03}

02r

01 F

0

1 1 1 L 1 1 1 1 1
0 oz 0.4 0k 0.a 1 1.2 1.4 1.6 1.8 2
Tirne {sec)

Figure 8: Eliminated steady-state error, decreased over-shoot /
43 /78

Part Il

MATLAB — Cruise Control System

44 /78

MATLAB — Cruise Control System Design Criteria

How does Cruise Control for Poor work?

ma <-———
F
bv ’—{ m }—»

Figure 9: Forces taking part in car's movement

Based on Carnegie Mellon University Library Control Tutorials for MATLAB and Simulink

45 /78
MATLAB — Cruise Control System Design Criteria
Building the Model
Using Newton's law we derive
F = mv + bv (15)
y=v (16)

Where: m = 1200[kg], b = 50[22], F = 500[N]

46 /78

MATLAB — Cruise Control System Design Criteria

Design Criteria

» For the given data V,.x = 10[m/s| = 36[km/h]
» The car should accelerate to Vja.x within 6[s]
» 10% tolerance on the initial velocity

» 2% of a steady-state error

47 /78
MATLAB — Cruise Control System MATLAB Representation
Transfer Function
System Equations:
F = mv + bv
y=v
Laplace Transform:
F(s) = msV(s) 4+ bV(s 17
Y(s)= V(s (18)
Transfer Function:
Y 1
(s) _ (19)
F(s) ms+b

48 /78

MATLAB — Cruise Control System MATLAB Representation

MATLAB Representation

» Now in MATLAB we need to type

MATLAB code

m=1200;

b=50;

num=[1];

den=[m,b];
cruise=tf(num, den);
step = (500xcruise);

49 /78

MATLAB — Cruise Control System MATLAB Representation

Results

File Edit “iew Insert Tools Deskiop Window Help u

Step Response

Arnplitucle

|:| 1 1
1] =] 1aa 150

Tirre {sec) I
T m 7

Figure 10: Car velocity diagram — mind the design criteria

50 /78

MATLAB — Cruise Control System MATLAB Representation

Design criteria revisited

» Our model needs over 100[s] to reach the steady-state

» The design criteria mentioned 5 seconds

51/78

MATLAB — Cruise Control System PID Controller

Feedback controller

» To adjust the car speed within the limits of specification

» We need the feedback controller

Input]) _ 1 | output
?—.{ Controller J_b. T meah

Figure 11: System controller

52/78

MATLAB — Cruise Control System PID Controller

Decreasing the rise time

Proportional Controller

Y(s) Kp
R(s) ms+(b+ Kp)

(20)

MATLAB code

Kp=100; m=1200; b=50;

num=[1]; den=[m,b];
cruise=tf(num, den);
sys_ctl=feedback (Kpxcruise , 1);
t=0:0.1:20;

step(10xsys_cl ,t)

axis ([0 20 0 10])

53/78

MATLAB — Cruise Control System PID Controller

Under- and Overcontrol

File Edit Yiew Insert Tools Deskiop Window Help k] File Edit ¥iew Insert Tools Desktop Window Help k]
Step Response Step Response
—&— T 10 T T T T
g
7
5
£ £
= = 5
g 5
4
3_
21
1F
0 | |
0 2 4 [} i 1a 12 14 16 18 20
Tirne {sec)
Figure 12: K, = 100 Figure 13: K, = 10000

54 /78

MATLAB — Cruise Control System PID Controller

Making Rise Time Reasonable

Proportional Integral Controller

Y(S) B KpS + K;
R(s) ms2+ (b+ Ky)s + K;

(21)

MATLAB code

Kp=800; Ki=40; m=1200; b=50;
num=[1]; den=[m,b];

cruise=tf(num, den);

contr=tf ([Kp Ki],[1 0])
sys_ctl=feedback(contrxcruise, 1);
t=0:0.1:20;

step(10xsys_cl ,t)

axis([0 20 0 10])

55 /78

MATLAB — Cruise Control System PID Controller

Results

File Edit ¥iew Insert Tools Deskiop Window Help o

Step Responise

Arnplitucle

0 2 4 53 g 10 12 14 16 18 20
Time {sec)

Figure 14: Car velocity diagram meeting the design criteria

56 /78

Part IV

Simulink — Cruise Control System

57 /78

Simulink — Cruise Control System Building the Model

How does Cruise Control for Poor work?

ma <+————

bv m

Figure 15: Forces taking part in car's movement

Based on Carnegie Mellon University Library Control Tutorials for MATLAB and Simulink

58 /78

Simulink — Cruise Control System Building the Model

Physical Description

» Summing up all the forces acting on the mass

Forces acting on the mass

dv

F=
Mt

+ bv (22)

Where: m=1200[kg], b=50[¢<] F=500[N]

m

59 /78
Simulink — Cruise Control System Building the Model
Physical Description — cntd.
» Integrating the acceleration to obtain the velocity
Integral of acceleration
dv dv
a = — = —_— =V 23
dt dt (23)

60 /78

Simulink — Cruise Control System Building the Model

Building the Model in Simulink

File Edit “iew Simulation Format Tools Help

SNSRI W T e >

Integrator !

Figure 16: Integrator block from Continuous block library

61/78
Simulink — Cruise Control System Building the Model
Building the Model in Simulink
» Obtaining acceleration
Acceleration
dv F — bv
a—= = 24
dt m (24)

62 /78

Simulink — Cruise Control System Building the Model

Building the Model in Simulink

File Edit “iew Simulation Format Tools Help

- SEREREY SIRTEERRRRRRY: >
1/m v P 15 }

Inertia Integrator !

Figure 17: Gain block from Math operators block library

63/78

Simulink — Cruise Control System Building the Model

Elements used in Simulink Model

Friction (Gain block)

Subtract (from Math Operators)
Input (Step block from Sources)
Output (Scope from Sinks)

64 /78

Simulink — Cruise Control System Building the Model

Complete Model

File Edit “iew 3Simulation Format Tools Help

I * 1_ —Ll ."l |
. - dwidt s | w
tep

subtract Inertia Integrator scope

<G—]

(3ain

65/ 78

Simulink — Cruise Control System Building the Model

Mapping Physical Equation to Simulink Model

m@+bv<:>a= @— @
@D

Ot Ot

File Edit View Simulatipn Format To Help

v /

-L = l il .‘l I
Step | : dv/dt S v

Subtract Inertia Integrator Scope

F

66 /78

Simulink — Cruise Control System Simulating the Model

Setting up the Variables

» Now it is time to use our input values in Simulink...

> F=500[N]

» In Step block set: Step time = 0 and Final value = 500
» ...and adjust simulation parameters...

» Simulation — Configuration Parameters...
» Stop time = 120

...and set up variables in MATLAB

m=1200;
b=50;

67 /78

Simulink — Cruise Control System Simulating the Model

Running Simulation

» Choose Simulation—Start

» Double-click on the Scope block...

Time offset: 0

68 /78

Simulink — Cruise Control System Simulating the Model

Extracting Model into MATLAB

» Replace the Step and Scope Blocks with In and Out Connection
Blocks

4

G —+ N I
Int - du/dt s | v E
Ll

Subtract Inertia Integrator

Q‘i

(3ain

69 /78

Simulink — Cruise Control System Simulating the Model

Verifying Extracted Model

» \We can convert extracted model

» into set of linear equations
» into transfer function

MATLAB code

[A, B, C, D]=linmod (' 'cc2mtlb’);
[num, den]=ss2tf(A, B, C, D);
step (500« tf (num, den));

70 /78

Simulink — Cruise Control System Simulating the Model

MATLAB vs Simulink

File Edit %iew [nsert Tools Desktop Window Help

Step Response

=1

rnplitucle

o -) 5] £ i] -~ o o

Time offset; 0

Figure 18: MATLAB Figure 19: Simulink

71/78

Simulink — Cruise Control System Implementing the Pl Control

The open-loop system

» In MATLAB section we have designed a Pl Controller
> K, =800
» K; =40
We will do the same in Simulik
First we need to contain our previous system in a Sybsystem block

Choose a Subsystem block from the Ports&Subsystems Library

v v. v VY

Copy in the model we used with MATLAB

72/78

Simulink — Cruise Control System Implementing the Pl Control

Subsystem

Bl cowITHpi *

In1 outt
Ed ccWITHpi/Cruise Control Subsystem *

Cruize Control
Subsystem

(4 s
In1 - 155

Subtract [ertia, Integrator

e

Gain

Ot

Figure 20: Subsystem Block and its Contents

7378

Simulink — Cruise Control System Implementing the Pl Control

Pl Controller |

Figure 21: Step: final value=10, time=0

74/ 78

Simulink — Cruise Control System Implementing the Pl Control

Pl Controller Il

File Edit Miew Simulation Format Tools Help

Transfer Fon Cruize Control

Subsystemn

Figure 22: We use Transfer Fcn block from Continuous-Time Linear Systems
Library

75 /78

Simulink — Cruise Control System Implementing the Pl Control
Results
» Runnig simulation with time set to 15[s]

| Scope

55|0P0 ABE DA

Time offset:

76 /78

References

Course basic references

77/78

Textbooks

» Digital Control of Dynamic Systems (3rd Edition)
by Gene F. Franklin, J. David Powell, Michael L.
Workman Publisher: Prentice Hall; 3 edition
(December 29, 1997) ISBN: 0201820544

 Lecture slides

« Computer Lab Exercises

78/78

