Sistemi di Supervisione Adattativi

Parte 3

Reti Neurali per la Diagnosi dei Guasti Silvio Simani

E-mail: silvio.simani@unife.it
URL: www.silviosimani.it/lessons.html

References

Textbook (suggested)

- Neural Networks for Identification, Prediction, and Control, by Duc Truong Pham and Xing Liu. Springer Verlag; (December 1995). ISBN: 3540199594
- Nonlinear Identification and Control: A Neural Network Approach, by G. P. Liu. Springer Verlag; (October 2001). ISBN: 1852333421.
- Multi-Objective Optimization using Evolutionary Algorithms, by Deb Kalyanmoy. John Wiley & Sons, Ltd, Chichester, England, 2001.

22/10/2025

Course Overview

- 1. Introduction

 - Course introduction
 Introduction to neural network
 Issues in neural network
- 2. Simple neural network
 i. Perceptron
 ii. Adaline
- 3. Multilayer Perceptron

 i. Basics
- Genetic Algorithms: overview
- Radial basis networks: overview
- 6. Application examples

- Improve automatically with experience
- Imitating human learning
 - Human learning
 Fast recognition and classification of complex classes of objects and concepts and fast adaptation
 - Example: neural networks (and fuzzy systems)
- Some techniques assume statistical source
 Select a statistical model to model the source
- Other techniques are based on reasoning or inductive inference (e.g. Decision tree)

22/10/2025 4/129

Machine Learning Definition

A computer program is said to **learn** from experience **E** with respect to some class of tasks T and performance measure P, if its performance at tasks in **T**, as measured by **P**, improves with experience **E**.

Examples of Learning Problems

Example 1: handwriting recognition.

- T: recognizing and classifying handwritten words within images.
- P: percentage of words correctly classified.
- E: a database of handwritten words with given classification.

Example 2: learn to play checkers.

- T: play checkers.
- P: percentage of games won in a tournament.
- E: opportunity to play against itself (war games...).

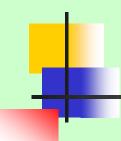
22/10/2025 6/129

Issues in Machine Learning

- What algorithms can approximate functions well and when?
- How does the number of training examples influence accuracy?
- How does the complexity of hypothesis representation impact it?
- How does noisy data influence accuracy?
- How do you reduce a learning problem to a set of function approximation?

Summary

- Machine learning is useful for data mining, poorly understood domain (face recognition) and programs that must dynamically adapt.
- Draws from many diverse disciplines.
- Learning problem needs well-specified task, performance metric and training experience.
- Involve searching space of possible hypotheses. Different learning methods search different hypothesis space, such as numerical functions, *neural networks*, decision trees, *symbolic rules* (*fuzzy*).

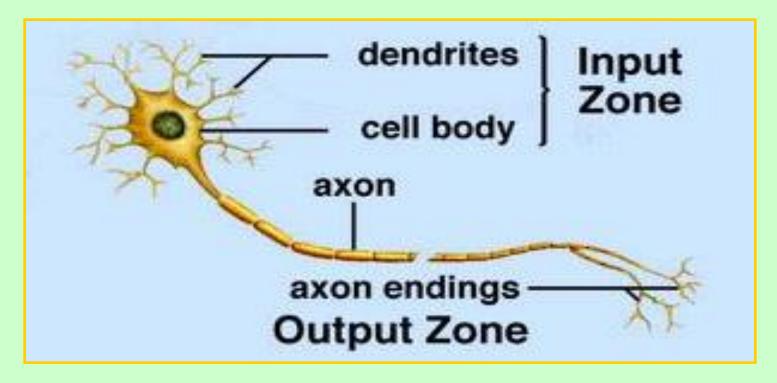


Introduction to Neural Networks

22/10/2025 9/129

Brain

- 10¹¹ neurons (processors)
- On average 1000-10000 connections

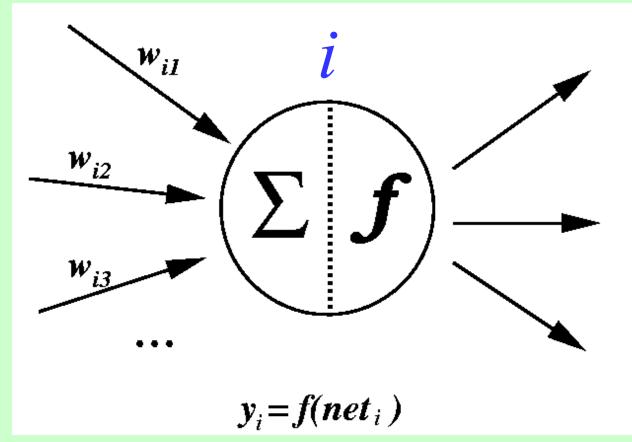


22/10/2025 10/129

Artificial Neuron

bias

$$net_i = \sum_j w_{ij} y_j + b^2$$



22/10/2025

Artificial Neuron

- Input/Output Signal may be:
 - Real value.
 - Unipolar {0, 1}.
 - Bipolar {-1, +1}.
- Weight: W_{ij} strength of connection.

Note that w_{ij} refers to the weight from unit j to unit i (not the other way round).

22/10/2025 12/129

Artificial Neuron

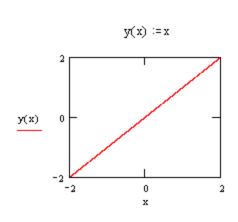
The bias b is a constant that can be written as $w_{i0}y_0$ with $y_0 = b$ and $w_{i0} = 1$ such that

$$net_i = \sum_{j=0}^n w_{ij} y_j$$

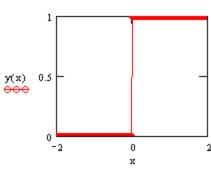
- The function f is the unit's activation function. In the simplest case, f is the identity function, and the unit's output is just its net input. This is called a *linear unit*.
- Other activation functions are: step function,
 sigmoid function and Gaussian function.

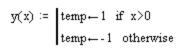
22/10/2025

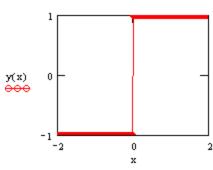
Lecture Notes on Neural Networks for Feels Dissiports Ton Functions



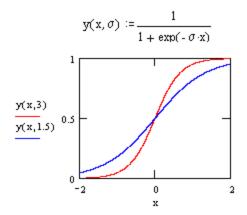
 $y(x) := \begin{cases} temp \leftarrow 1 & \text{if } x > 0 \\ temp \leftarrow 0 & \text{otherwise} \end{cases}$



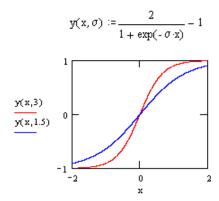




Identity function

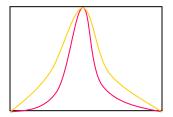


Binary Step function



Bipolar Step function

$$y(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$



Sigmoid function

Bipolar Sigmoid function

Gaussian function

When Should ANN Solution Be Considered?

- The solution to the <u>problem cannot be explicitly described</u>
 by an algorithm, a set of equations, or a set of rules.
- There is some evidence that an <u>input-output mapping exists</u> between a set of input and output variables.
- There should be a <u>large amount of data</u> available to train the network.

22/10/2025 15/129

Problems That Can Lead to Poor Performance ?

- The network has to distinguish between <u>very similar cases</u> with a very high degree of accuracy.
- The <u>train data does not represent the ranges of cases</u> that the network will encounter in practice.
- The network has a <u>several hundred inputs</u>.
- The main discriminating factors are not present in the available data, e.g. trying to assess the loan application without having knowledge of the applicant's salaries.
- The network is required to implement a <u>very complex</u> <u>function</u>.

22/10/2025 16/129

Applications of Artificial Neural Networks

- Manufacturing : fault diagnosis, fraud detection.
- Retailing: fraud detection, forecasting, data mining.
- Finance: fraud detection, forecasting, data mining.
- Engineering: fault diagnosis, signal/image processing.
- Production : fault diagnosis, forecasting.
- Sales & marketing : forecasting, data mining.

22/10/2025 17/129

Data Pre-processing

Neural networks very **rarely** operate on the raw data. An initial **pre-processing** stage is essential. Some examples are as follows:

- Feature extraction of images: for example, the analysis of x-rays requires pre-processing to extract features which may be of interest within a specified region.
- Representing input variables with numbers. For example "+1" is the person is married, "0" if divorced, and "-1" if single. Another example is representing the pixels of an image: 255 = bright white, 0 = black. To ensure the generalization capability of a neural network, the data should be encoded in form which allows for interpolation.

22/10/2025 18/129

Data Pre-processing

CONTINUOUS VARIABLES

A continuous variable can be directly applied to a neural network. However, if the dynamic range of input variables are not approximately the same, it is better to *normalise* all input variables of the neural network.

22/10/2025 19/129

Simple Neural Networks

"Simple" Perceptron

22/10/2025 20/129

Outlines

- The Perceptron
- Linearly separable problem
- Network structure
- Perceptron learning rule
- Convergence of Perceptron

22/10/2025 21/129

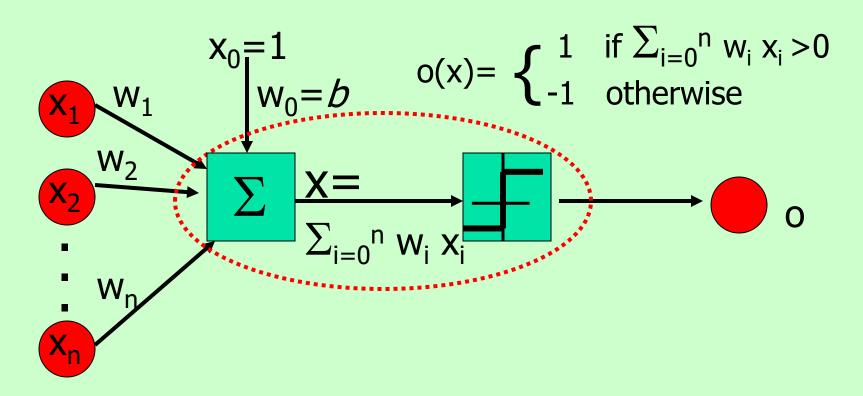
THE PERCEPTRON

- The perceptron was a simple model of ANN introduced by Rosenblatt of MIT in the 1960' with the idea of learning.
- Perceptron is designed to accomplish a simple pattern recognition task: after learning with real value training data $\{\underline{x(i)}, d(i), i = 1, 2, ..., p\}$ where d(i) = 1 or -1
- For a new signal (pattern) $\underline{x(i+1)}$, the perceptron is capable of telling you to which class the new signal belongs

$$x(i+1)$$
 perceptron = 1 or -1

Perceptron

Linear Threshold Unit (LTU)



22/10/2025 23/129

Mathematically the Perceptron is

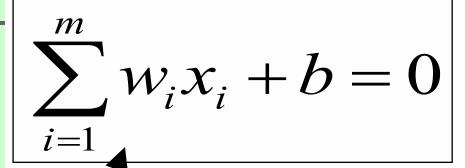
$$y = f(\sum_{i=1}^{m} w_i x_i + b) = f(\sum_{i=0}^{m} w_i x_i)$$

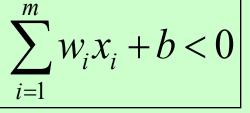
We can always treat the bias b as another weight with inputs equal 1

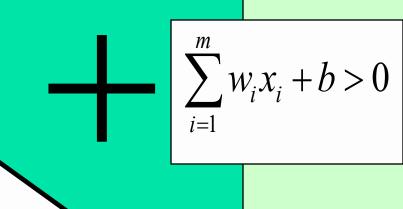
where f is the **hard limiter function** *i.e.*

$$y = \begin{cases} 1 if \sum_{i=1}^{m} w_{i} x_{i} + b > 0 \\ -1 if \sum_{i=1}^{m} w_{i} x_{i} + b \leq 0 \end{cases}$$

capable of solving linearly separable problem?



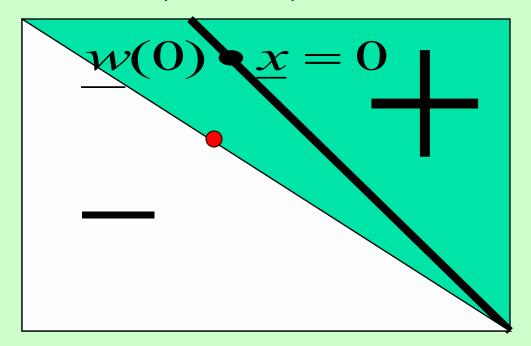




Learning rule

An algorithm to update the weights \underline{w} so that finally the input patterns lie on both sides of the line decided by the perceptron

Let t be the time, at t = 0, we have

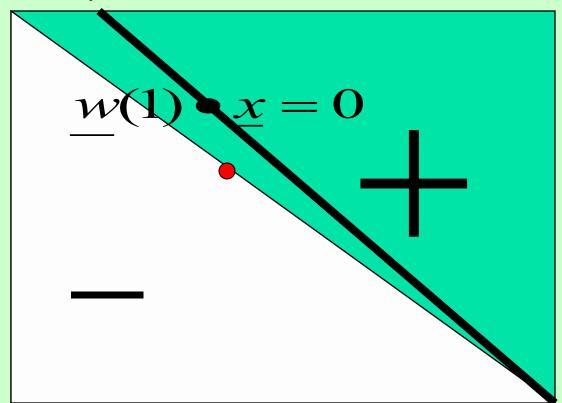


22/10/2025 26/129

Lecture Notes on Neural Networks for Pulearing rule

An algorithm to update the weights <u>w</u> so that finally the input patterns lie on both sides of the line decided by the perceptron

Let t be the time, at t = 1

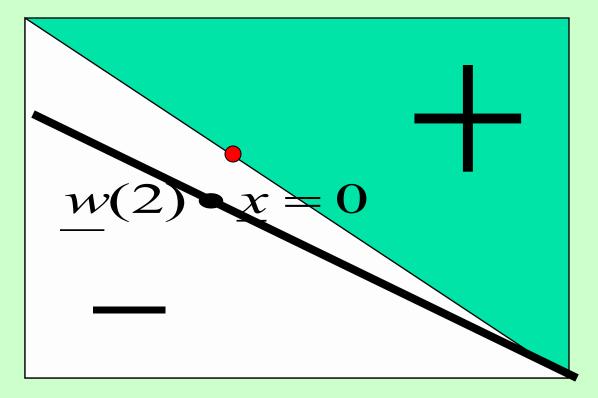


22/10/2025 27/129

Learning rule

An algorithm to update the weights <u>w</u> so that finally the input patterns lie on both sides of the line decided by the perceptron

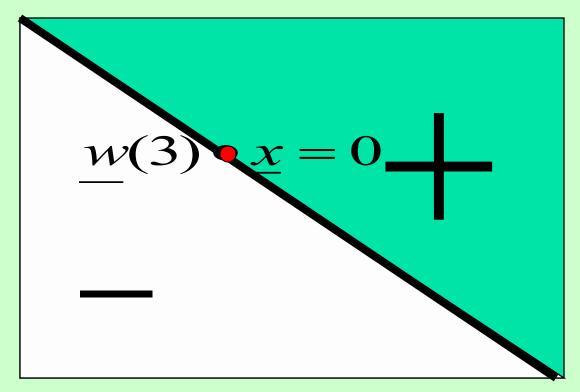
Let t be the time, at t = 2



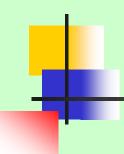
Learning rule

An algorithm to update the weights <u>w</u> so that finally the input patterns lie on both sides of the line decided by the perceptron

Let t be the time, at t = 3



22/10/2025



In math:

$$d(t) = \begin{cases} +1if \ x(t)inclass + \\ -1if \ x(t)inclass - \end{cases}$$

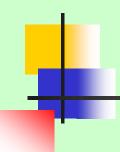
Perceptron learning rule

$$\underline{w}(t+1) = \underline{w}(t) + \eta(t)[d(t) - sign(\underline{w}(t) \bullet \underline{x}(t))]\underline{x}(t)$$

Where $\eta(t)$ is the learning rate >0,

$$sign(x) = \begin{cases} +1 & \text{if } x > 0 \\ -1 & \text{if } x < = 0, \end{cases}$$
 hard limiter function

NB: d(t) is the same as d(i) and x(t) as x(i)



In words:

 If the classification is right, do not update the weights

• If the classification is not correct, update the weight towards the opposite direction so that the output move close to the right directions.

22/10/2025 31/129

Perceptron Convergence Theorem (Rosenblatt, 1962)

Let the subsets of training vectors be linearly separable. Then after finite steps of learning we have

 $\lim \underline{w}(t) = \underline{w}$ which correctly separate the samples.

The idea of proof is that to consider $||\underline{w}(t+1)-\underline{w}||-||\underline{w}(t)-\underline{w}||$ which is a decrease function of t

22/10/2025 32/129

Summary of Perceptron learning ...

Variables and parameters

$$\underline{x}(t) = (m+1)$$
 dim. input vectors at time t = $(b, x_1(t), x_2(t), \dots, x_m(t))$

$$\underline{w}(t) = (m+1)$$
 dim. weight vectors $= (1, w_1(t), ..., w_m(t))$

b = biasy(t) = actual response

 $\eta(t)$ = learning rate parameter, a +ve constant < 1

d(t) = desired response

Lecture Stummary of Perceptron learning Silvio Simeni

- Present the data to the network once a point
- ✓ could be cyclic : $(\underline{x}(1), d(1)), (\underline{x}(2), d(2)), ..., (\underline{x}(p), d(p)), (\underline{x}(p+1), d(p+1)), ...$
- ✓ or randomly

(Hence we mix time t with i here)

22/10/2025 34/129

Summary of Perceptron learning (algorithm)

- **1. Initialisation** Set $\underline{w}(0)=0$. Then perform the following computation for time step t=1,2,...
- **2. Activation** At time step t, activate the perceptron by applying input vector $\underline{X}(t)$ and desired response d(t)
- **3. Computation of actual response** Compute the actual response of the perceptron

$$y(t) = sign (\underline{w}(t) \cdot \underline{x}(t))$$

where **sign** is the sign function

4. Adaptation of weight vector Update the weight vector of the perceptron

$$\underline{w}(t+1) = \underline{w}(t) + \eta(t) [d(t) - y(t)] \underline{x}(t)$$

5. Continuation

22/10/2025 35/129

Questions remain

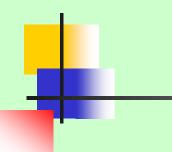
Where or when to stop?

By minimizing the generalization error

For training data $\{(\underline{x}(i), d(i)), i=1,...p\}$

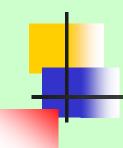
How to define training error after t steps of learning?

$$E(t) = \sum_{i=1}^{p} [d(i) - sign(\underline{w}(t) \cdot \underline{x}(i))]^{2}$$



We next turn to ADALINE learning, from which we can understand the learning rule, and more general the Back-Propagation (BP) learning

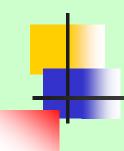
22/10/2025 37/129



Simple Neural Network

ADALINE Learning

22/10/2025 38/129



Outlines

ADALINE

Gradient descending learning

Modes of training

22/10/2025 39/129

Unhappy Over Perceptron Training

- When a perceptron gives the right answer, no learning takes place
- Anything below the threshold is interpreted as 'no', even it is just below the threshold.
- It might be better to train the neuron based on how far below the threshold it is.

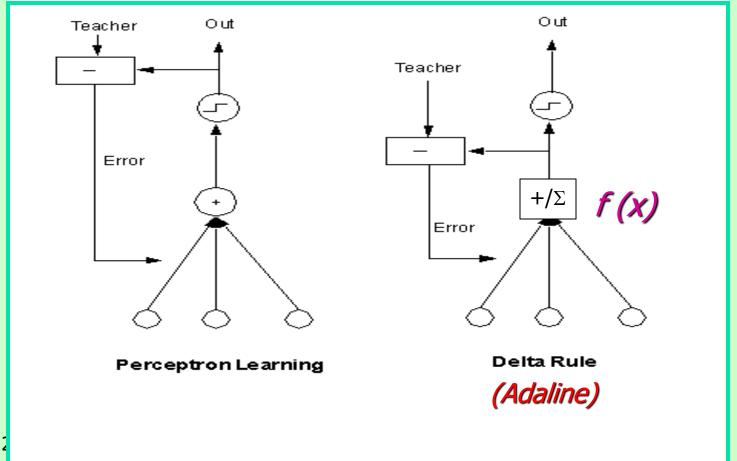
22/10/2025 40/129

ADALINE

- ADALINE is an acronym for ADAptive LINear Element (or ADAptive LInear NEuron) developed by Bernard Widrow and Marcian Hoff (1960).
 - There are several variations of Adaline. One has threshold same as perceptron and another just a bare linear function.
 - •The Adaline learning rule is also known as the leastmean-squares (LMS) rule, the delta rule, or the Widrow-Hoff rule.
 - It is a training rule that minimises the output error using (approximate) gradient descent method.

22/10/2025 41/129

- Replace the step function in the perceptron with a continuous (differentiable) function f, e.g. the simplest is linear function
- With or without the threshold, the Adaline is trained based on the output of the function f rather than the final output.



After each training pattern $\underline{x}(i)$ is presented, the correction to apply to the weights is proportional to the error.

$$E(i,t) = \frac{1}{2} \left[d(i) - f(\underline{w}(t) \cdot \underline{x}(i)) \right]^{2} \qquad i=1,...,p$$

N.B. If f is a linear function $f(\underline{w}(t) \cdot \underline{x}(i)) = \underline{w}(t) \cdot \underline{x}(i)$

Summing together, our purpose is to find \underline{W} which minimizes

$$E(t) = \sum_{i} E(i,t)$$

22/10/2025

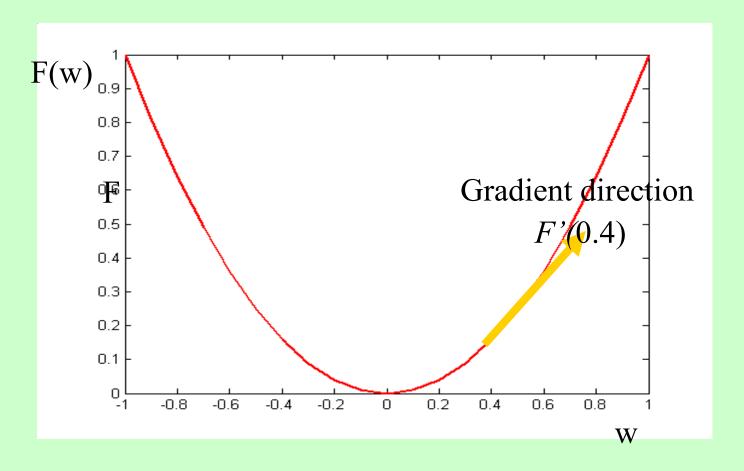
General Approach gradient descent method

To find g $\underline{w}(t+1) = \underline{w}(t)+g(E(\underline{w}(t)))$ so that \underline{w} automatically tends to the global minimum of E(w).

$$\underline{w}(t+1) = \underline{w}(t) - E'(\underline{w}(t))\eta(t)$$

(see figure in the following...)

Gradient direction is the direction of uphill for example, in the Figure, at position 0.4, the gradient is uphill (F is E, consider one dim case)

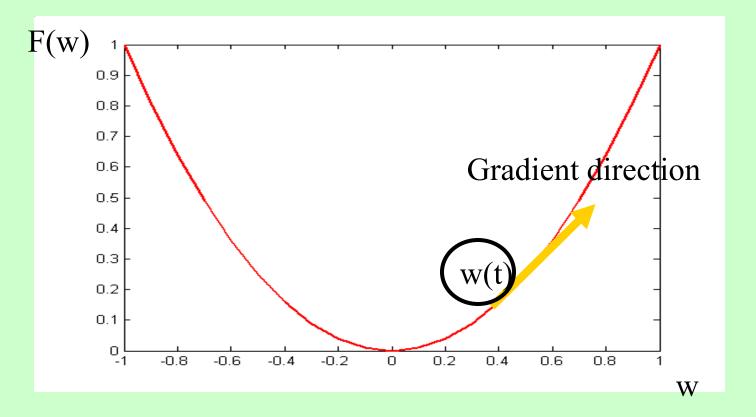


22/10/2025 45/129

In gradient descent algorithm, we have

$$\underline{w}(t+1) = \underline{w}(t) - F'(w(t)) \eta(\tau)$$

therefore the ball goes downhill since -F'(w(t)) is downhill direction



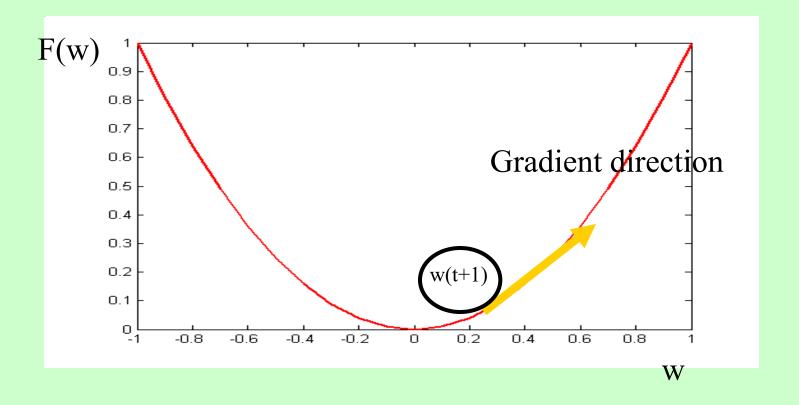
22/10/2025

Lecture Notes on Neural Networks for Fault Diagnosis

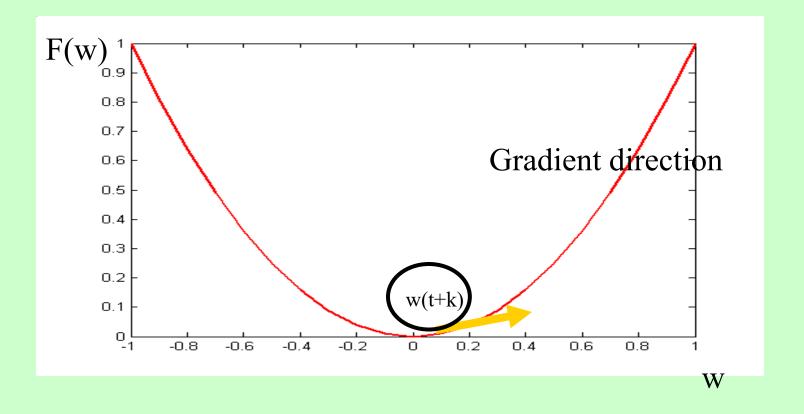
In gradient descent algorithm, we have

$$w(t+1) = w(t) - F'(w(t)) \eta(\tau)$$

therefore the ball goes downhill since -F'(w(t))is downhill direction



22/10/2025 47/129 Gradually the ball will stop at a local minima where
 the gradient is zero



22/10/2025 48/129

In words:

Gradient method could be thought of as a ball rolling down from a hill: the ball will roll down and finally stop at the valley

Thus, the weights are adjusted by

$$w_{j}(t+1) = w_{j}(t) + \eta(t) \sum \left[d(i) - f(\underline{w}(t) \cdot \underline{x}(i))\right] x_{j}(i) f'$$

This corresponds to gradient descent on the quadratic error surface E

When f' = 1, we have the perceptron learning rule (we have in general f' > 0 in neural networks). The ball moves in the right direction.

Two types of network training:

Sequential mode (on-line, stochastic, or per-pattern):

Weights updated after each pattern is presented (Perceptron is in this class)

Batch mode (off-line or per-epoch): Weights updated after all patterns are presented

Lecture Notes on Neural Networks for Fault Diagnosis

Comparison Perceptron and Gradient Descent Rules

- Perceptron learning rule guaranteed to succeed if
 - Training examples are linearly separable
 - Sufficiently small learning rate η
- Linear unit training rule uses gradient descent guaranteed to converge to hypothesis with minimum squared error given sufficiently small learning rate η
 - Even when training data contains noise
 - Even when training data not separable by hyperplanes

22/10/2025 51/129

Summary

Perceptron

 $\underline{W}(t+1) = \underline{W}(t) + \eta(t) [d(t) - sign (\underline{w}(t) . \underline{x})] \underline{x}$

Adaline (Gradient descent method)

$$\underline{W}(t+1) = \underline{W}(t) + \eta(t) [d(t) f(\underline{w}(t) \underline{x})] \underline{x} f'$$

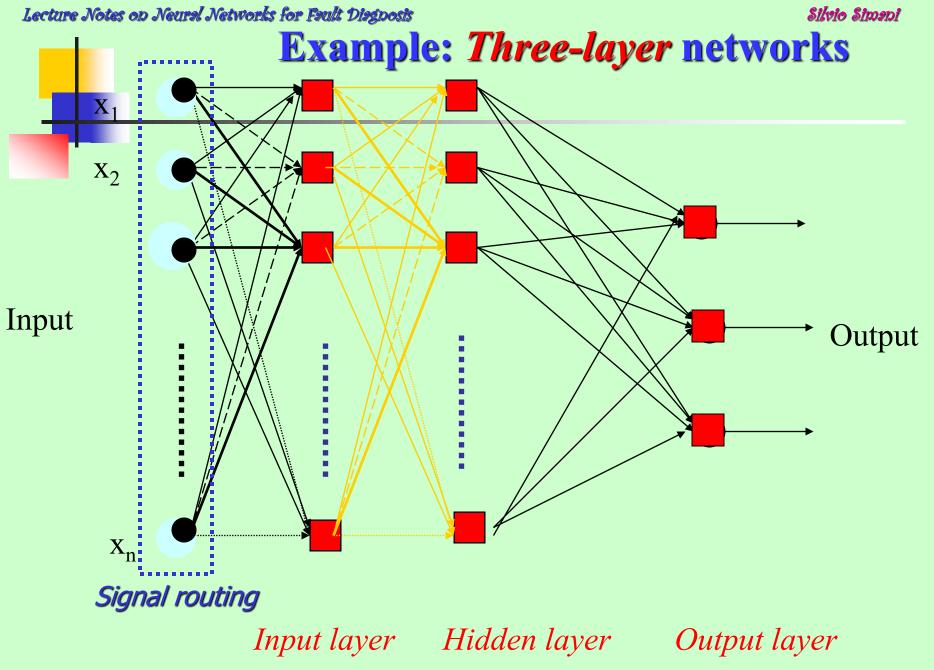
22/10/2025 52/129

Multi-Layer Perceptron (MLP)

Idea: "Credit assignment problem"

- Problem of assigning 'credit' or 'blame' to individual elements involving in forming overall response of a learning system (hidden units)
- In neural networks, problem relates to dividing which weights should be altered, by how much and in which direction.

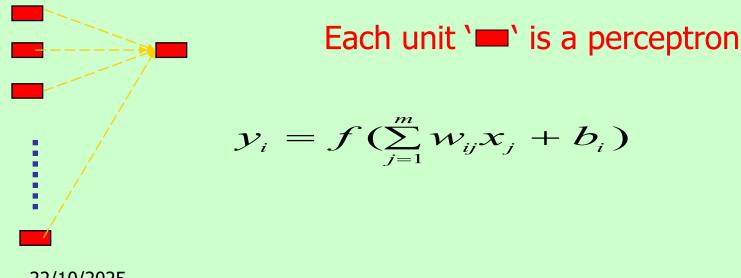
22/10/2025 53/129



22/10/2025 54/129

Properties of architecture

- No connections within a layer
- No direct connections between input and output layers
- Fully connected between layers
- Often more than 2 layers
- Number of output units need not equal number of input units
- Number of hidden units per layer can be more or less than input or output units



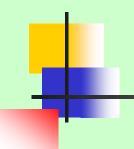
22/10/2025 55/129

BP (Back Propagation)

gradient descent method

multilayer networks

22/10/2025 56/129



MultiLayer Perceptron I

Back Propagating Learning

22/10/2025 57/129

BP learning algorithmSolution to "credit assignment problem" in MLP

Rumelhart, Hinton and Williams (1986)

BP has two phases:

Forward pass phase: computes **'functional signal'**, feed-forward propagation of input pattern signals through network

Backward pass phase: computes 'error signal', propagation of error (difference between actual and desired output values) backwards through network starting at output units for weights' correction

BP Learning for Simplest MLP_o

Task: Data {I, d} to minimize

$$E = (d - o)^{2} / 2$$

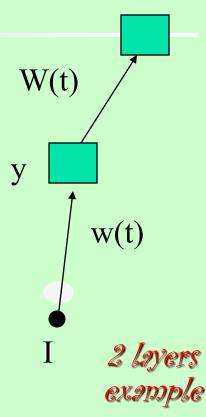
$$= [d - f(W(t)y(t))]^{2} / 2$$

$$= [d - f(W(t)f(w(t)I))]^{2} / 2$$

Error function at the output unit

Weight at time t is w(t) and W(t), intend to find the weight w and W at time t+1

Where y = f(w(t)I), output of the input unit



Forward pass phase

For given input I, we can calculate

$$y = f(w(t)I)$$

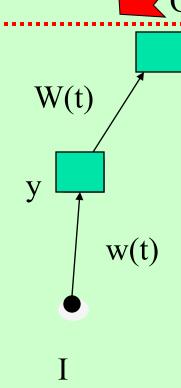
and

$$o = f(W(t) y)$$

= $f(W(t) f(w(t) I))$

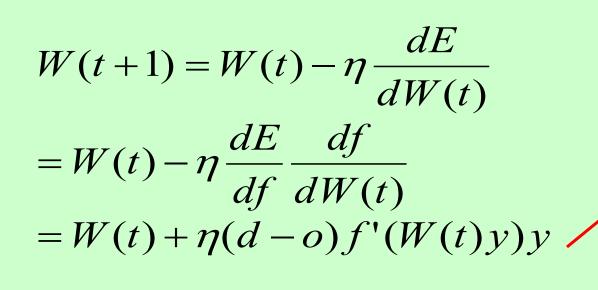
Error function of output unit will be

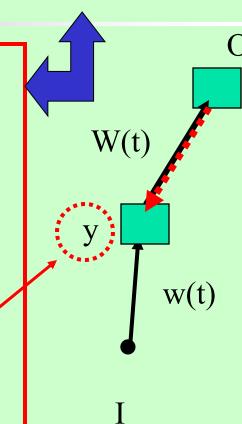
$$E = (d - o)^2/2$$



2 layers example

Backward Pass Phase

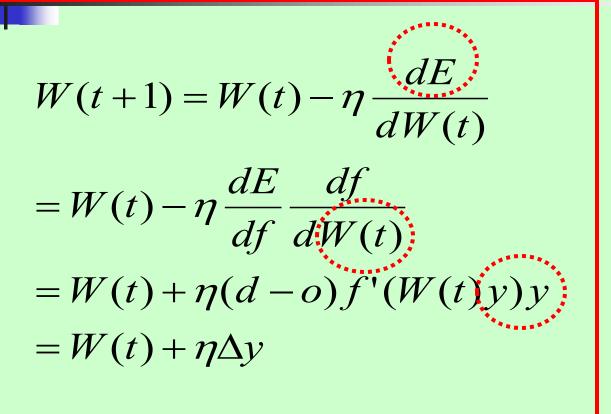


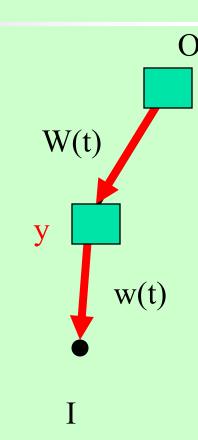


$$E = (d - o)^2 / 2$$

$$o = f(W(t)y)$$

Backward pass phase

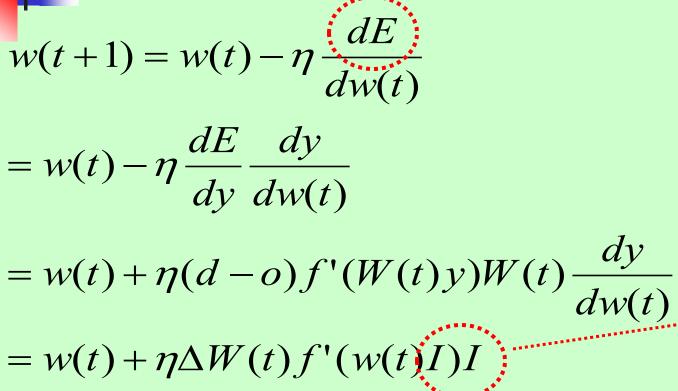


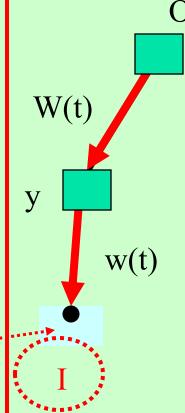


where $\Delta = (d - o) f$

22/10/2025

Backward pass phase





$$o = f(W(t) y)$$

$$= f(W(t) f(w(t) I))$$

weight updates are local

$$w_{ji}(t+1) - w_{ji}(t) = \eta \delta_j(t) I_i(t)$$
 (input unit)

$$W_{kj}(t+1) - W_{kj}(t) = \eta \Delta_k(t) y_j(t)$$
 (output unit)

output unit

$$W_{kj}(t+1) - W_{kj}(t) = \eta \Delta_k(t) y_j(t)$$

= $\eta(d_k(t) - O_k(t)) f'(Net_k(t)) y_j(t)$

input unit

$$w_{ji}(t+1) - w_{ji}(t) = \eta \delta_j(t) I_i(t)$$

$$= \eta f'(net_j(t)) \sum_k \Delta_k(t) W_{kj} I_i(t)$$

Once weight changes are computed for all units, weights are updated at same time (bias included as weights here)

We now compute the derivative of the activation function f().

Activation Functions

to compute δ_j and Δ_k we need to find the derivative of activation function f

>to find derivative the activation function must be smooth

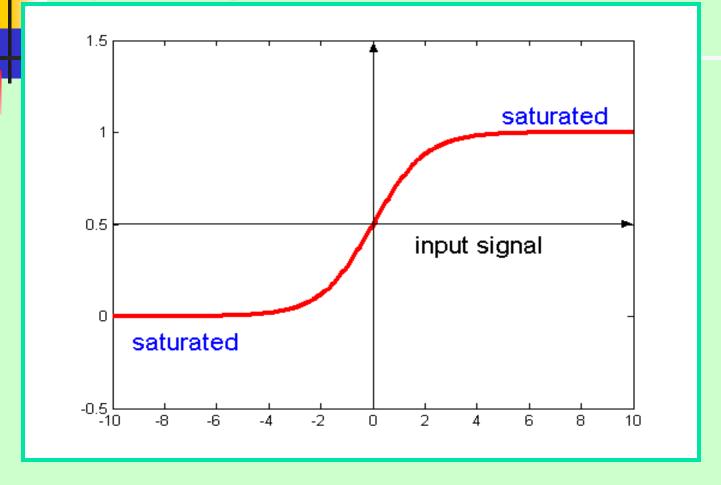
Sigmoidal (logistic) function-common in MLP

$$f(net_i(t)) = \frac{1}{1 + \exp(-knet_i(t))}$$

where k is a positive constant. The sigmoidal function gives value in range of 0 to 1

Input-output function of a neuron (rate coding assumption)
22/10/2025
65/129

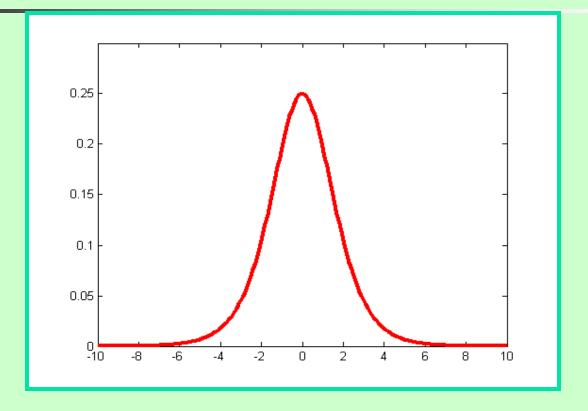
Shape of sigmoidal function



Note: when net = 0, f = 0.5

22/10/2025 66/129

Shape of sigmoidal function derivative



Derivative of sigmoidal function has max at x=0, is symmetric about this point falling to zero as sigmoidal approaches extreme values

22/10/2025 67/129

Returning to local error gradients in BP algorithm we have for output units

$$\Delta_{i}(t) = (d_{i}(t) - O_{i}(t))f'(Net_{i}(t))$$

$$= (d_{i}(t) - O_{i}(t))kO_{i}(t)(1 - O_{i}(t))$$

For input units we have

$$\begin{split} \mathcal{S}_i(t) &= f'(net_i(t)) \sum_k \Delta_k(t) W_{ki} \\ &= k y_i(t) (1 - y_i(t)) \sum_k \Delta_k(t) W_{ki} \end{split}$$

Since degree of weight change is proportional to derivative of activation function, weight changes will be greatest when units receives mid-range functional signal than at extremes

Lecture Notes on Neural Networks for Fault Discosis

- Training set shown repeatedly until stopping criteria are met
- Each full presentation of all patterns = 'epoch'
- Randomise order of training patterns presented for each epoch in order to avoid correlation between consecutive training pairs being learnt (order effects)

Two types of network training:

Sequential mode (on-line, stochastic, or per-pattern)
Weights updated after each pattern is presented

Batch mode (off-line or per -epoch)

22/10/2025 69/129

Advantages and disadvantages of different modes

Sequential mode:

- Less storage for each weighted connection
- Random order of presentation and updating per pattern means search of weight space is stochastic-reducing risk of local minima able to take advantage of any redundancy in training set (*i.e.* same pattern occurs more than once in training set, especially for large training sets)
- Simpler to implement

Batch mode:

Faster learning than sequential mode

22/10/2025 70/129

Dynamics of MultiLayer Perceptron

Lecture Note Summary of Network Training strent

Forward phase: $\underline{I}(t)$, $\underline{w}(t)$, $\underline{net}(t)$, $\underline{y}(t)$, $\underline{W}(t)$, $\underline{Net}(t)$, $\underline{O}(t)$

Backward phase

Output unit

$$W_{kj}(t+1) - W_{kj}(t) = \eta \Delta_k(t) y_j(t)$$

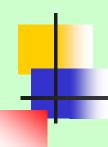
= $\eta (d_k(t) - O_k(t)) f'(Net_k(t)) y_j(t)$

Input unit

$$w_{ji}(t+1) - w_{ij}(t) = \eta \delta_{j}(t) I_{i}(t)$$

$$= \eta f'(net_{j}(t)) \sum_{k} \Delta_{k}(t) W_{kj}(t) I_{i}(t)$$

22/10/2025 72/129



Network training:

Training set shown repeatedly until stopping criteria are met.

Possible convergence criteria are

- \triangleright Euclidean norm of the gradient vector reaches a sufficiently small denoted as θ .
- \triangleright When the absolute rate of change in the average squared error per epoch is sufficiently small denoted as θ .
- ➤ Validation for generalization performance : stop when generalization reaching the peak (illustrate in this lecture)

22/10/2025 73/129

Goals of Neural Network Training

To give the correct output for input training vector (Learning)

To give good responses to new unseen input patterns (Generalization)

22/10/2025 74/129

Training and Testing Problems

- Stuck neurons: Degree of weight change is proportional to derivative of activation function, weight changes will be greatest when units receives mid-range functional signal than at extremes neuron. To avoid stuck neurons weights initialization should give outputs of all neurons approximate 0.5
- Insufficient number of training patterns: In this case, the training patterns will be learnt instead of the underlying relationship between inputs and output, i.e. network just memorizing the patterns.
- Too few hidden neurons: network will not produce a good model of the problem.
- Over-fitting: the training patterns will be learnt instead of the underlying function between inputs and output because of too many of hidden neurons. This means that the network will have a poor generalization capability.

22/10/2025 75/129

Lecture Notes on Neural Networks for Fault Diagnosis Dynamics of BP learning Airh is to minimise an error function over all training patterns by adapting weights in MLP

Recalling the typical error function is the mean squared error as follows

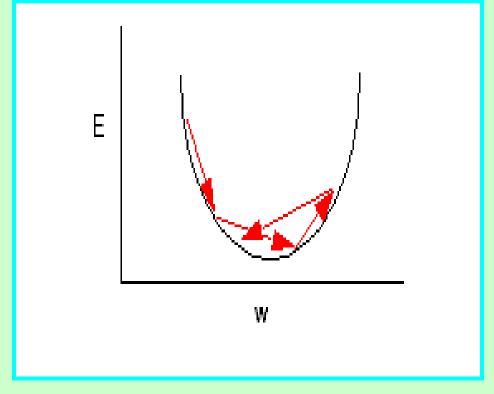
$$E(t) = \frac{1}{2} \sum_{k=1}^{p} (d_k(t) - O_k(t))^2$$

The idea is to reduce E(t) to global minimum point.

Dynamics of BP learning

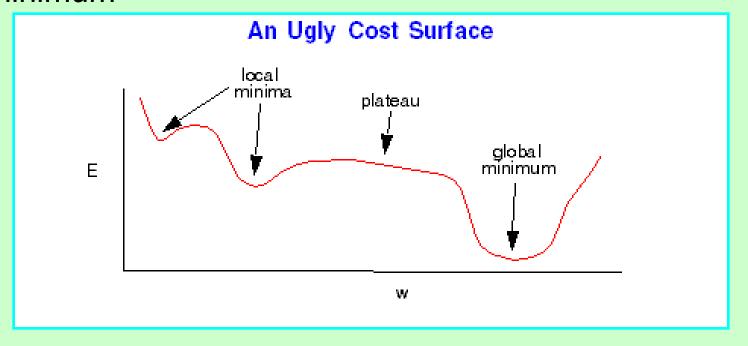
In single layer perceptron with linear activation functions, the error function is simple, described by a smooth parabolic surface with a single

minimum



Dynamics of BP learning

MLP with non-linear activation functions have complex error surfaces (e.g. plateaus, long valleys etc.) with no single minimum



For complex error surfaces the problem is learning rate must keep small to prevent divergence. Adding momentum term is a simple approach dealing with this problem.

22/10/2025 78/129

Momentum

- Reducing problems of instability while increasing the rate of convergence
- Adding term to weight update equation can effectively holds as exponentially weight history of previous weights changed

Modified weight update equation is

$$w_{ij}(n+1) - w_{ij}(n) = \eta \delta_{j}(n) y_{i}(n) + \alpha [w_{ij}(n) - w_{ij}(n) - w_{ij}(n-1)]$$

22/10/2025 79/129

Effect of momentum term

- ➤ If weight changes tend to have same sign, momentum term increases and gradient decrease speed up convergence on shallow gradient
- ➤ If weight changes tend have opposing signs, momentum term decreases and gradient descent slows to reduce oscillations (stabilizes)
- Can help escape being trapped in local minima

22/10/2025 80/129

Selecting Initial Weight Values

- ➤ Choice of initial weight values is important as this decides starting position in weight space. That is, how far away from global minimum
- Aim is to select weight values which produce midrange function signals
- Select weight values randomly from uniform probability distribution
- Normalise weight values so number of weighted connections per unit produces midrange function signal

Convergence of Backprop

Avoid local minumum with fast convergence

- Add momentum
- Stochastic gradient descent
- Train multiple nets with different initial weights

Nature of convergence

- Initialize weights 'near zero' or initial networks near-linear
- Increasingly non-linear functions possible as training progresses

22/10/2025 82/129

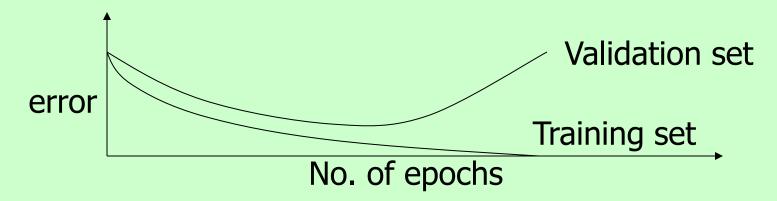
Use of Available Data Set for Training

The available data set is normally split into three sets as follows:

- Training set use to update the weights. Patterns in this set are repeatedly in random order. The weight update equation are applied after a certain number of patterns.
- Validation set use to decide when to stop training only by monitoring the error.
- Test set Use to test the performance of the neural network. It should not be used as part of the neural network development cycle.

Lecture Notes on Neural Networks for Fault Diagnosis Earlier Stopping - Good Generalization

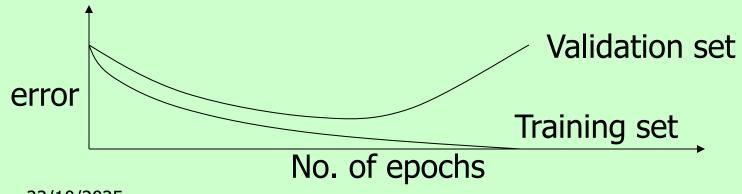
- Running too many epochs may overtrain the network and result in overfitting and perform poorly in generalization.
- Keep a hold-out validation set and test accuracy after every epoch. Maintain weights for best performing network on the validation set and stop training when error increases increases beyond this.



22/10/2025

Model Sefection by Cross-validation

- learning adequately fitting the data and learning the concept (more than two layer networks).
- Too many hidden units leads to overfitting.
- Similar cross-validation methods can be used to determine an appropriate number of hidden units by using the optimal test error to select the model with optimal number of hidden layers and nodes.



22/10/2025 85/129

Genetic Algorithms

- Idea of evolutionary computing was introduced in the 1960s by I.
 - Rechenberg in his work "*Evolution strategies*" (*Evolutionsstrategie* in original). His idea was then developed by other researchers. **Genetic**Algorithms (GAs) were invented by John Holland and developed by him and his students and colleagues. This lead to Holland's book "*Adaption in Natural and Artificial Systems*" published in 1975.
- In 1992 John **Koza** has used genetic algorithm to evolve programs to perform certain tasks. He called his method "**Genetic Programming**" (GP). LISP programs were used, because programs in this language can expressed in the form of a "parse tree", which is the object the GA works on.

22/10/2025 87/129

Biological Background Chromosome

- All living organisms consist of cells. In each cell there is the same set of chromosomes. Chromosomes are strings of <u>DNA</u> and serves as a model for the whole organism. A chromosome consist of **genes**, blocks of DNA. Each gene encodes a particular protein. Basically can be said, that each gene encodes a **trait**, for example color of eyes. Possible settings for a trait (e.g. blue, brown) are called **alleles**. Each gene has its own position in the chromosome. This position is called **locus**.
- Complete set of genetic material (all chromosomes) is called **genome**. Particular set of genes in genome is called **genotype**. The genotype is with later development after birth base for the organism's **phenotype**, its physical and mental characteristics, such as eye color, intelligence etc.

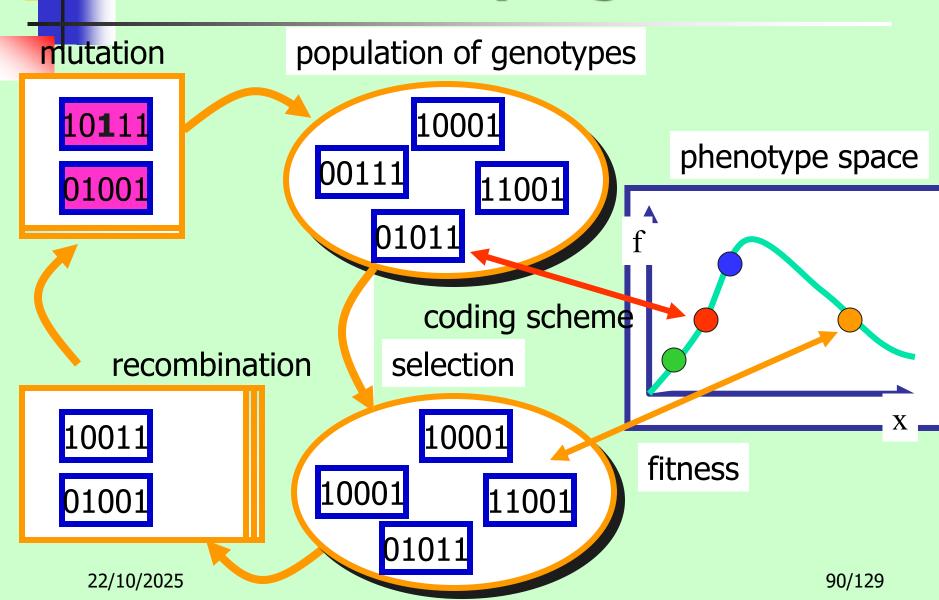
22/10/2025 88/129

Biological Background

Reproduction

- During reproduction, first occurs recombination (or crossover). Genes from parents form in some way the whole new chromosome. The new created offspring can then be mutated. Mutation means, that the elements of DNA are a bit changed. This changes are mainly caused by errors in copying genes from parents.
- The **fitness** of an organism is measured by success of the organism in its life.

Evolutionary Algorithms



yes

Pseudo Code of an Evolutionary Algorithm

no

Create initial random population

Evaluate fitness of each individual

Termination criteria satisfied?

Select parents according to fitness

Recombine parents to generate offspring

Mutate offspring

Replace population by new offspring

22/10/2025

stop

A Simple Genetic Algorithm

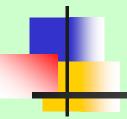
- Proposition of the properties of the properties
- genotype: binary string $s \in [0,1]^5$ e.g. 11010, 01011, 10001
- mapping : genotype \Rightarrow phenotype $_{n=5}$ binary integer encoding: $x = \pi \cdot \sum_{i=1}^{n} s_i \cdot 2^{n-i-1} / (2^n-1)$

Initial population

genotype	integ.	phenotype	fitness	prop. fitness
11010	26	2.6349	1.2787	30%
01011	11	1.1148	1.0008	24%
10001	17	1.7228	1.7029	40%
00101	5	0.5067	0.2459	6%

22/10/2025 92/129

Radial Basis Functions



Radial Basis Functions Overview



Radial-basis function (RBF) networks

RBF = Radial-Basis Function

 a function which depends only on the radial distance from a point

22/10/2025 94/129

Radial-basis function (RBF) networks for Fault Diesposis
Radial-basis function (RBF) networks

So RBFs are functions taking the form

$$\phi(\parallel \underline{x} - \underline{x}_i \parallel)$$

where ϕ is a non-linear activation function, \underline{x} is the input and \underline{x}_i is the *i'th* position, prototype, *basis* or *centre* vector.

The idea is that points near the centres will have similar outputs (i.e. if $\underline{x} \sim \underline{x}_i$ then $f(\underline{x}) \sim f(\underline{x}_i)$) since they should have similar properties.

The simplest is the linear RBF : $\phi(x) = ||\underline{x} - \underline{x}_i||$

22/10/2025 95/129

Multi-quadrics

$$\phi(r) = (r^2 + c^2)^{1/2}$$

for some c>0

(b) Inverse multi-quadrics

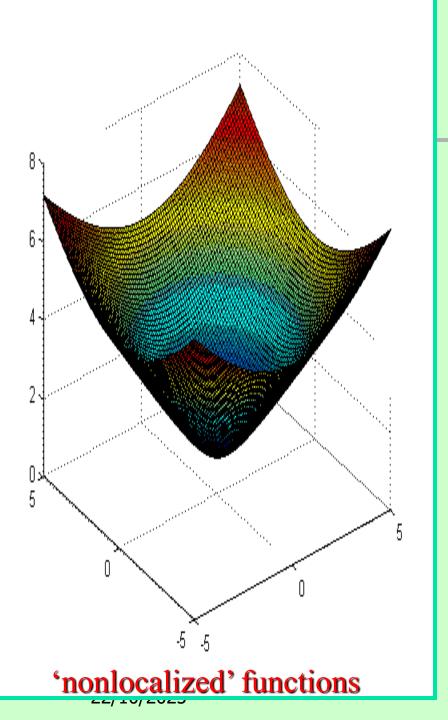
$$\phi(r) = (r^2 + c^2)^{-1/2}$$

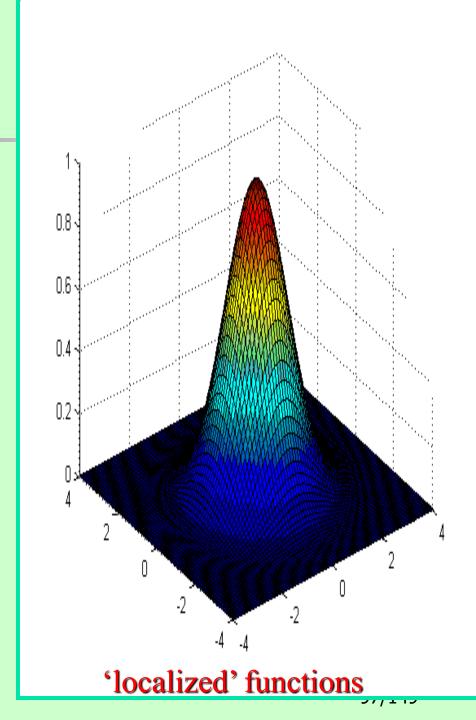
for some c>0

(c) Gaussian

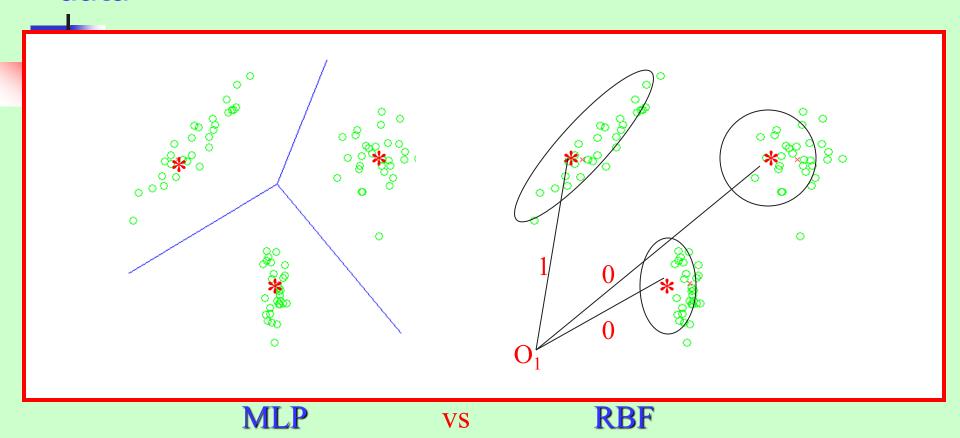
$$\phi(r) = \exp(-\frac{r^2}{2\sigma^2})$$

for some $\sigma > 0$





- Idea is to use a weighted sum of the outputs from the basis functions to represent the data
- Thus centers can be thought of as prototypes of input data

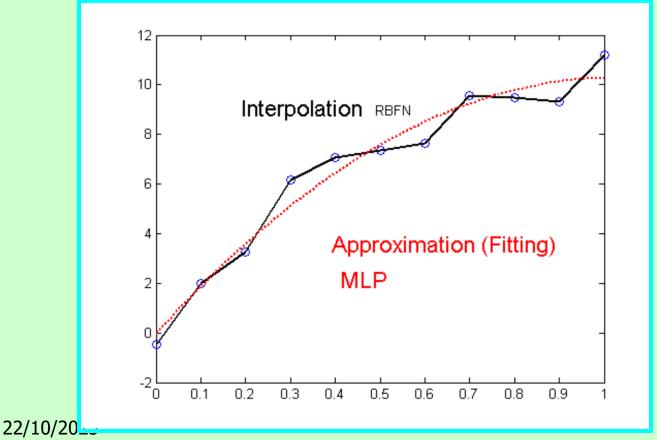


local

distributed

Starting point: exact interpolation

Each input pattern x must be mapped onto a target value d



That is, given a set of N vectors \underline{X}_i and a corresponding set of N real numbers, d_i (the targets), find a function F that satisfies the interpolation condition:

$$F(\underline{x}_i) = d_i$$
 for $i = 1,...,N$

or more exactly find:

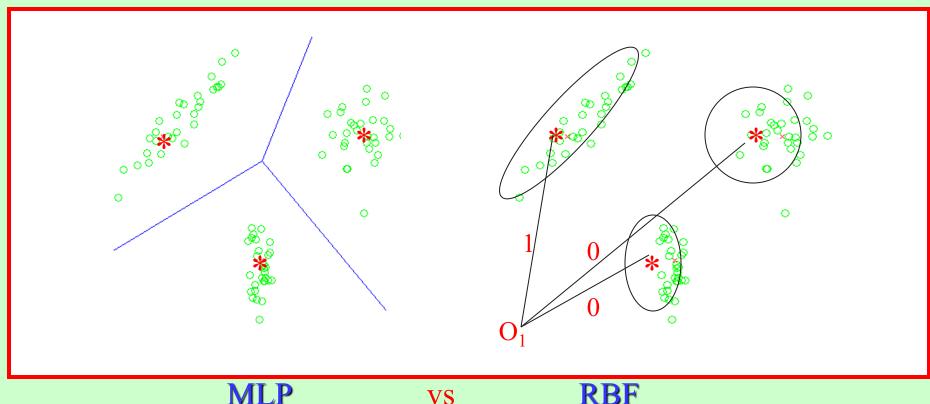
$$F(\underline{x}) = \sum_{j=1}^{N} w_j \phi(||\underline{x} - \underline{x}_j||)$$

satisfying:

$$F(\underline{x}_i) = \sum_{j=1}^N w_j \phi(||\underline{x}_i - \underline{x}_j||) = d_i$$

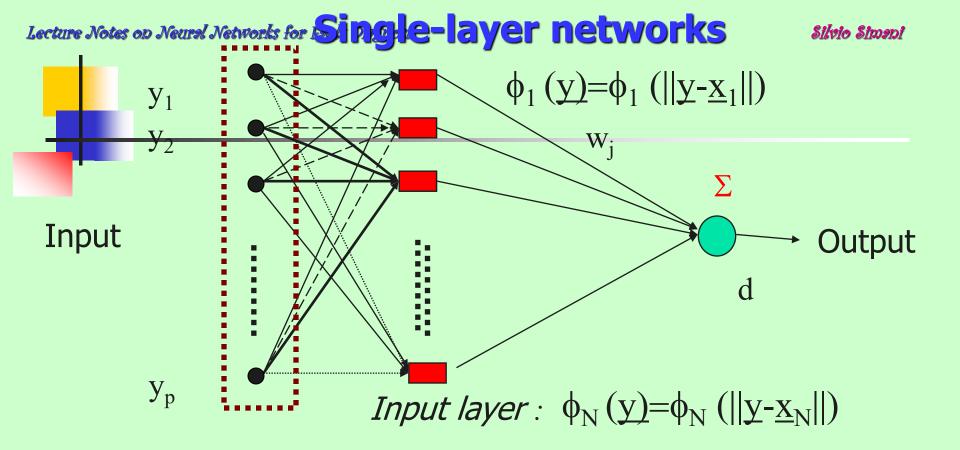
22/10/2025

- Use a weighted sum of the outputs from the basis functions to represent the data
- Centers can be thought of as prototypes of input data



distributed

vs RBF local



- output = $\Sigma W_i \phi_i (\underline{Y} \underline{X}_i)$
- adjustable parameters are weights w_j
- number of input units ≤ number of data points
- form of the basis functions decided in advance

22/10/2025

To summarise:

For a given data set containing N points (\underline{x}_i, d_i) , i=1,...,N

- Choose a RBF function \(\phi \)
- \diamond Calculate $\phi(\underline{x}_i \underline{x}_i)$
- Solve the <u>linear</u> equation $\Phi W = D$
- Get the unique solution
- Done
- ➤ Like MLP's, RBFNs can be shown to be able to approximate any function to arbitrary accuracy (using an arbitrarily large numbers of basis functions)
- Unlike MLP's, however, they have the property of 'best approximation' i.e. there exists an RBFN with minimum approximation error

Problems with exact interpolation
an produce poor generalisation performance as only data

points constrain mapping

Overfitting problem

Bishop(1995) example

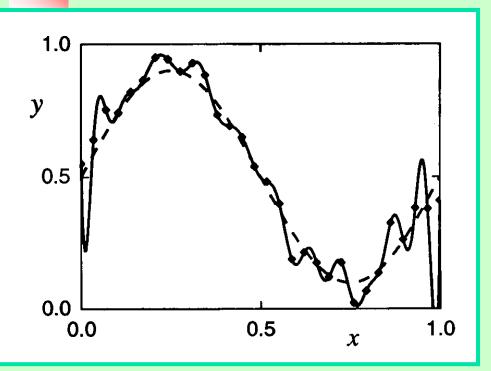
Underlying function $f(x)=0.5+0.4\sin(2\pi x)$ sampled randomly for 30 points

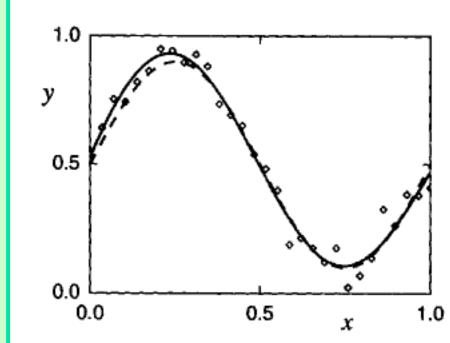
added Gaussian noise to each data point

30 data points 30 hidden RBF units

fits all data points but creates oscillations due added noise and unconstrained between data points

22/10/2025 104/129





All Data Points

5 Basis functions

22/10/2025 105/129

To fit an RBF to every data point is very inefficient due to the computational cost of matrix inversion and is very bad for generalization so:

- ✓ Use less RBF's than data points, i.e. M<N</p>
- ✓ Therefore don't necessarily have RBFs centred at data points
- ✓ Can include bias terms
- ✓ Can have Gaussian with general covariance matrices but there is a trade-off between complexity and the number of parameters to be found.

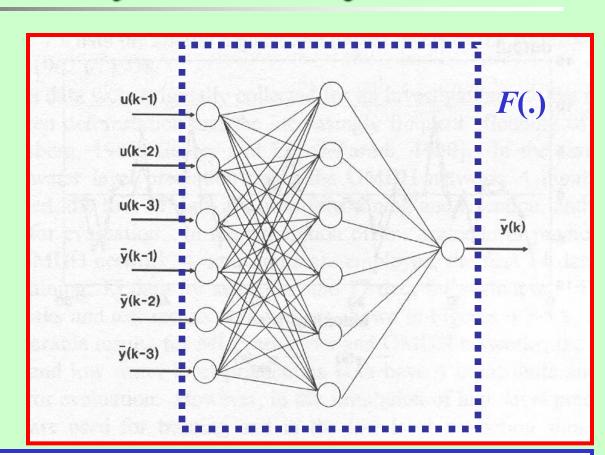
22/10/2025 106/129

Application Examples

Neural Networks for Fault Diagnosis of Nonlinear Processes

Nonlinear Dynamic System

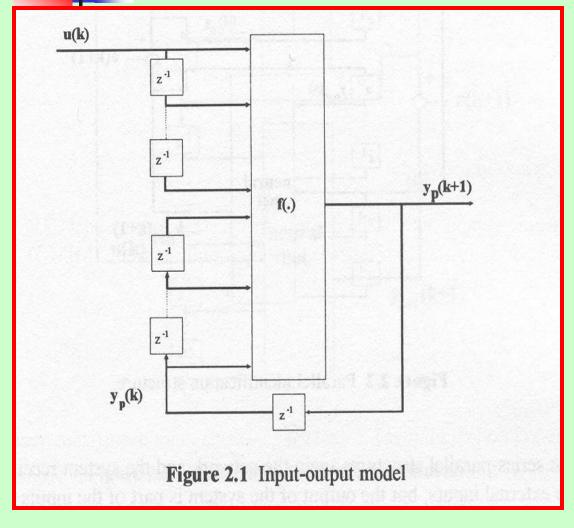
- Take a staticNN
- From static to dynamic NN
- "Quasi-static" NN
- Add inputs, outputs and delayed signals



$$\widetilde{y}(k) = F(u(k-1), u(k-2), u(k-3), \widetilde{y}(k-1), \widetilde{y}(k-2), \widetilde{y}(k-3))$$

Example of Quasi-static NN with 3 delayed inputs and outputs

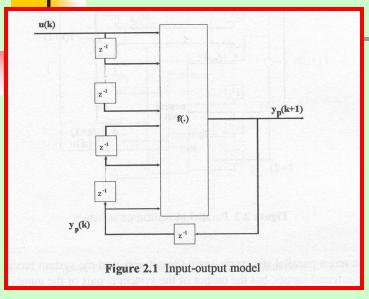
Nonlinear System Identification

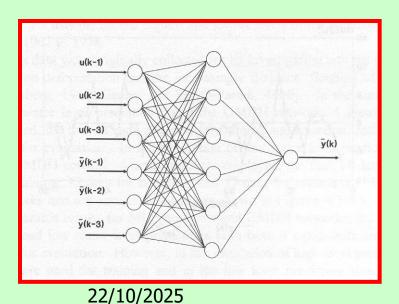


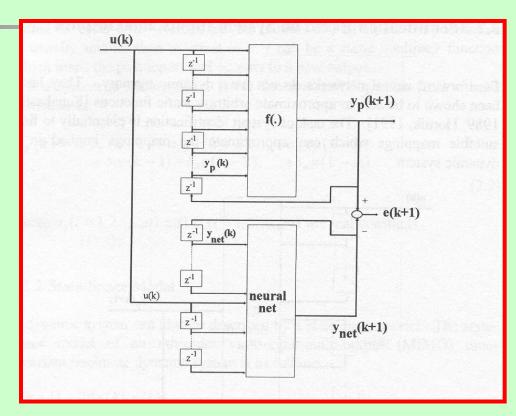
- f(.), unknown target function
- Nonlinear dynamic model
- Approximated via a quasi-static NN
- Nonlinear dynamic system identification
- Recall "linear system identification"

22/10/2025 109/129

Nonlinear System Identification





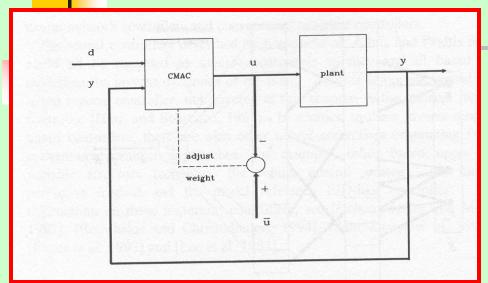


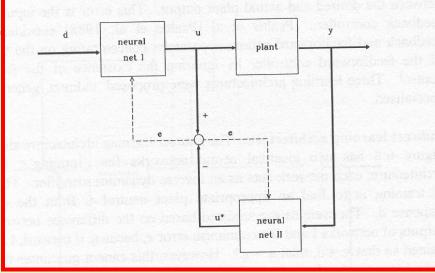
Target function: $y_p(k+1) = f(.)$ Identified function: $y_{NET}(k+1) = F(.)$

Estimation error: e(k+1)

110/129

Lectur North Medit System Neural Control





d: reference/desired response

y: system output/desired output

u: system input/controller output

ū: desired controller input

u*: NN output

e: controller/network error

The goal of training is to find an appropriate plant control u from the desired response d. The weights are adjusted based on the difference between the outputs of the networks I & II to minimise e. If network I is trained so that y = d, then $u = u^*$. Networks act as inverse dynamics identifiers.

22/10/2025 111/129