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Course Overview

1. Introduction
i. Course introduction
ii. Introduction to neural network
iii. Issues in neural network

2. Simple neural network
i. Perceptron
ii. Adaline

3. Multilayer Perceptron
i. Basics

4. Genetic Algorithms: overview

5. Radial basis networks: overview

6. Application examples
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Machine Learning

◼ Improve  automatically with experience

◼ Imitating human learning

◼ Human learning 

Fast recognition and classification of complex classes 
of objects and concepts and fast adaptation

◼ Example: neural networks (and fuzzy systems)

◼ Some techniques assume statistical source

Select a statistical model to model the source

◼ Other techniques are based on reasoning or 
inductive inference (e.g. Decision tree)
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Machine Learning Definition

A computer program is said to learn from 

experience E with respect to some class of

tasks T and performance measure P, if its 

performance at tasks in T, as measured by P, 

improves with experience E.
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Examples of Learning Problems

Example 1: handwriting recognition:
◼ T: recognizing and classifying handwritten words 

within images.
◼ P: percentage of words correctly classified.
◼ E: a database of handwritten words with given 

classification.

Example 2: learn to play checkers:
◼ T: play checkers.
◼ P: percentage of games won in a tournament.
◼ E: opportunity to play against itself (war games…).
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Issues in Machine Learning

◼ What algorithms can approximate functions 

well and when?

◼ How does the number of training examples 

influence accuracy?

◼ How does the complexity of hypothesis 

representation impact it?

◼ How does noisy data influence accuracy?

◼ How do you reduce a learning problem to a set 

of function approximation ?
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Summary

◼ Machine learning is useful for data mining, poorly 
understood domain (face recognition) and programs 
that must dynamically adapt.

◼ Draws from many diverse disciplines.

◼ Learning problem needs well-specified task, 
performance metric and training experience.

◼ Involve searching space of possible hypotheses. 
Different learning methods search different 
hypothesis space, such as numerical functions, neural 
networks, decision trees, symbolic rules (fuzzy).
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Introduction to Neural 
Networks
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Brain

◼ 1011 neurons (processors)

◼ On average 1000-10000 connections
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Artificial Neuron
bias

i

j

neti = ∑j wijyj + b
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Artificial Neuron

◼ Input/Output Signal may be:

◼ Real value.

◼ Unipolar {0, 1}.

◼ Bipolar {-1, +1}.

◼ Weight : wij – strength of connection.

Note that wij refers to the weight from 
unit  j  to unit  i (not the other way round).
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Artificial Neuron

◼ The bias b is a constant that can be written as 

wi0y0 with y0 = b and wi0 = 1 such that 

             

◼ The function f  is the unit’s activation function. 

In the simplest case, f  is the identity function, 

and the unit’s output is just its net input. This 

is called a linear unit.

◼ Other activation functions are : step function, 

sigmoid function and Gaussian function.


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Activation Functions
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When Should ANN Solution Be Considered ?

➢The solution to the problem cannot be explicitly described 

by an algorithm, a set of equations, or a set of rules. 

➢There is some evidence that an input-output mapping exists 

between a set of input and output variables. 

➢There should be a large amount of data available to train 

the network. 
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Problems That Can Lead to Poor Performance  ?

◼ The network has to distinguish between very similar cases 

with a very high degree of accuracy. 

◼ The train data does not represent the ranges of cases that 

the network will encounter in practice. 

◼ The network has a several hundred inputs. 

◼ The main discriminating factors are not present in the 

available data, e.g. trying to assess the loan application 

without having knowledge of the applicant's salaries. 

◼ The network is required to implement a very complex 

function.
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Applications of Artificial Neural Networks

◼ Manufacturing : fault diagnosis, fraud detection.

◼ Retailing : fraud detection, forecasting, data 
mining.

◼ Finance : fraud detection, forecasting, data mining.

◼ Engineering : fault diagnosis, signal/image 
processing.

◼ Production : fault diagnosis, forecasting.

◼ Sales & marketing : forecasting, data mining.
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Data Pre-processing 

Neural networks very rarely operate on the raw 

data. An initial pre-processing stage is essential. 
 Some examples are as follows: 

◼ Feature extraction of images: for example, the analysis of x-rays 

requires pre-processing to extract features which may be of interest 

within a specified region. 
◼ Representing input variables with numbers. For example "+1" is the 

person is married, "0" if divorced, and "-1" if single. Another example 

is representing the pixels of an image: 255 = bright white, 0 = black. 

To ensure the generalization capability of a neural network, the data 

should be encoded in form which allows for interpolation. 
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Data Pre-processing 

◼ CONTINUOUS VARIABLES

◼  A continuous variable can be directly applied to 

a neural network. However, if the dynamic range 

of input variables are not approximately the 

same, it is better to normalise all input variables 

of the neural network. 
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Simple Neural Networks

“Simple” Perceptron
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Outlines

➢ The Perceptron

• Linearly separable problem

• Network structure

• Perceptron learning rule

• Convergence of Perceptron
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➢The perceptron was a simple model of ANN  introduced  
by Rosenblatt of MIT in the  1960’ with the idea of 
learning.

➢Perceptron is designed to accomplish a simple pattern 
recognition task:  after learning with real value training data   

   { x(i), d(i),  i =1,2, …, p}        where d(i) = 1 or -1 

➢For a new signal (pattern) x(i+1), the perceptron is 

capable of telling you to which class the new signal 
belongs                        

 x(i+1) perceptron =  or −

THE PERCEPTRON 
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Perceptron

◼ Linear Threshold Unit (LTU)
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We can always treat the bias b as another weight with 
inputs equal 1

Mathematically the Perceptron is
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Learning rule

An algorithm to update the weights w so that finally 
the input patterns lie on both sides of the line decided 
by the perceptron

Let t be the time, at t = 0, we have

+
−

0)0( =• xw
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Learning rule

An algorithm to update the weights w so that finally 
the input patterns lie on both sides of the line decided by the 
perceptron

Let t be the time, at t = 1

+
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Learning rule

An algorithm to update the weights w so that finally 
the input patterns lie on both sides of the line decided by the 
perceptron

Let t be the time, at t = 2
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Learning rule

An algorithm to update the weights w so that finally 
the input patterns lie on both sides of the line decided by the 
perceptron

Let t be the time, at t = 3

+
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Perceptron learning rule

In math:

Where (t) is the learning rate >0,  

                 +1 if x>0

sign(x) =                                       hard limiter function

                 –1 if x<=0,      

NB :  d(t) is the same as  d(i) and x(t) as x(i) 
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In words: 
   

• If the classification is right, do not update the 

weights

• If the classification is not correct, update the 

weight towards the opposite direction so that the 

output move close to the right directions.



Silvio SimaniLecture Notes on Neural Networks for Fault Diagnosis

22/10/2025 32/129

Perceptron Convergence Theorem 
(Rosenblatt, 1962)

Let the subsets of training vectors be linearly separable. Then 
after finite steps of learning we have 
                     
lim w(t)  = w  which correctly separate the samples.

  The idea of proof is that to consider ||w(t+1)-w||-||w(t)-w||
   which is a decrease function of t
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Summary of Perceptron learning …

Variables and parameters

      x(t) = (m+1)  dim. input vectors  at  time t
             = ( b, x1 (t), x2 (t),  .... , xm (t) )

 w(t) = (m+1)   dim. weight vectors 

             = ( 1 , w1 (t), .... , wm (t) )

    b = bias

    y(t) = actual response

    (t) = learning rate parameter, a +ve constant < 1

    d(t) = desired response
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Summary of Perceptron learning …

Data  { (x(i), d(i)), i=1,…,p}

✓ Present the data to the network once  a point 

✓  could be cyclic :
(x(1), d(1)), (x(2), d(2)),…, (x(p), d(p)),
(x(p+1), d(p+1)),…
 
✓or randomly 

(Hence we mix time t with i here)



Silvio SimaniLecture Notes on Neural Networks for Fault Diagnosis

22/10/2025 35/129

1.  Initialisation  Set w(0)=0. Then perform the following 

computation for  time step t=1,2,...

2. Activation   At time step t, activate the perceptron by applying 

input vector x(t) and desired response d(t)

3. Computation of actual response Compute the actual response 

of the perceptron

             y(t) = sign ( w(t) · x(t) )
 where sign is the sign function 

4.  Adaptation of weight vector  Update the weight vector of the 

perceptron

           w(t+1) = w(t)+ (t)  [ d(t) - y(t) ]  x(t)
5. Continuation 

Summary of Perceptron learning (algorithm)
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Questions remain  

                                

  Where or when  to stop?

 By minimizing the generalization error 
                                      

For training data  {(x(i), d(i)), i=1,…p}

How to define training error after t steps of learning?

   E(t)= p
i=1 [d(i)-sign(w(t) . x(i)]2
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We next turn to ADALINE learning,

 from which we can understand  

 the learning rule, and more general the 

Back-Propagation (BP) learning
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Simple Neural Network

ADALINE Learning
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Outlines

◼ ADALINE

◼ Gradient descending learning

◼ Modes of training
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Unhappy Over Perceptron Training 

◼ When a perceptron gives the right answer, no 

learning takes place

◼ Anything below the threshold is interpreted 

as ‘no’, even it is just below the threshold.

◼ It might be better to train the neuron based 

on how far below the threshold it is.
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•ADALINE is an acronym for ADAptive LINear Element

(or ADAptive LInear NEuron) developed by Bernard   

Widrow and Marcian Hoff (1960). 

• There are several variations of Adaline. One has 

threshold same as perceptron and another just a bare 

linear function.

•The Adaline learning rule is also known as the least-

mean-squares (LMS) rule, the delta rule, or the Widrow-

Hoff rule. 

• It is a training rule that minimises the output error 

using (approximate) gradient descent method. 

ADALINE
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• Replace the step function in the perceptron with a 
continuous (differentiable)  function f, e.g. the simplest is  
linear function 

• With or without the threshold, the Adaline is trained based 
on the output of the function f  rather than the final output.

f (x)

(Adaline)

+/
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After each training pattern x(i)  is presented, the correction to 
apply to  the weights is proportional to the error.  

   E (i,t) = ½ [ d(i) – f(w(t) · x(i)) ] 2         i=1,...,p

N.B. If  f is a linear function f(w(t) · x(i)) = w(t) · x(i) 

Summing together, our purpose is to find w which minimizes 

  

                    E (t) =  ∑i E(i,t)
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To find  g            
           w(t+1) = w(t)+g( E(w(t)) )

so that w automatically tends to the 

global minimum of E(w).

      w(t+1) = w(t)- E’(w(t))(t) 

     (see figure in the following...)

General Approach
gradient descent method
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• Gradient direction is the direction of uphill
  for example, in the Figure, at position 0.4, the 
  gradient is uphill   ( F is E, consider one dim case ) 

Gradient direction

F’(0.4)

F

F(w)

w
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•  In gradient descent algorithm, we have 

                     w(t+1) = w(t) – F’(w(t)) () 

 therefore the ball goes downhill  since – F’(w(t)) 

 is downhill direction

Gradient direction

w(t)

F(w)

w
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Gradient direction

w(t+1)

•  In gradient descent algorithm, we have 

                     w(t+1) = w(t) – F’(w(t)) () 

 therefore the ball goes downhill  since – F’(w(t)) 

 is downhill direction

w

F(w)



Silvio SimaniLecture Notes on Neural Networks for Fault Diagnosis

22/10/2025 48/129

• Gradually the ball will stop at a local minima where 
   the gradient is zero

Gradient direction

w(t+k)

F(w)

w
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In words:

Gradient method could be thought of  as a ball rolling down  

from a hill: the ball will roll down and finally stop at the valley 

Thus, the weights are adjusted by 

 wj(t+1) = wj(t) +(t)  [d(i) -  f(w(t) · x(i)) ] xj(i) f’

This corresponds to gradient descent on the quadratic error 
surface E

When f’ =1, we have the perceptron learning rule (we have in 
general f’>0 in neural networks). The ball moves in the right 
direction.
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Sequential mode  (on-line, stochastic, or 
per-pattern) : 
Weights updated after each pattern is 
presented  (Perceptron is in this class) 

Batch mode (off-line or per-epoch) : Weights 
updated after all patterns are presented

Two types of network training:
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Comparison Perceptron and 
Gradient Descent Rules

❑Perceptron learning rule guaranteed to succeed if

◼ Training examples are linearly separable

◼ Sufficiently small learning rate 

❑Linear unit training rule uses gradient descent  

guaranteed to converge to hypothesis with 

minimum squared error given sufficiently small 

learning rate 

◼ Even when training data contains noise

◼ Even when training data not separable by hyperplanes
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Summary
 

Perceptron

W(t+1)= W(t)+(t) [ d(t) - sign (w(t) . x)] x

Adaline (Gradient descent method)

W(t+1)= W(t)+(t) [ d(t) - f(w(t) . x)] x f’
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Multi-Layer Perceptron (MLP)

Idea: “Credit assignment problem”

• Problem of assigning ‘credit’ or ‘blame’ to 
individual elements involving in forming overall 
response of a learning system (hidden units)

• In neural networks, problem relates to dividing 
which weights should be altered, by how much 
and in which direction. 
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xn

x1

x2

Input
Output

Example: Three-layer networks

Input layer      Hidden layer        Output layer 

Signal routing
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Properties of architecture
• No connections within a layer

• No direct connections between input and output layers

• Fully connected between layers

• Often more than 2 layers

• Number of output units need not equal number of input units

• Number of hidden units per layer can be more or less than 

   input or output units

y f w x b
i ij j i

j

m

= +
=

( )
1

Each unit ‘ ‘ is a perceptron
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gradient descent method               

multilayer networks

+

BP (Back Propagation) 
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MultiLayer Perceptron I

Back Propagating Learning 
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BP learning algorithm 
Solution to “credit assignment problem” in MLP 

         Rumelhart, Hinton and Williams (1986)

BP has two phases:

Forward pass phase: computes ‘functional signal’, feed-

forward propagation of input pattern signals through network

Backward pass phase:  computes ‘error signal’, 

propagation of error (difference between actual and desired 
output values) backwards  through network starting at output 
units for weights’ correction
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I

w(t)

W(t)

y

OBP Learning for Simplest MLP
Task : Data {I, d}  to minimize

   E = (d - o)2 /2
     = [d - f(W(t)y(t)) ]2 /2
    = [d - f(W(t)f(w(t)I)) ]2 /2

Error function at the output unit

Weight at time t is w(t) and W(t),
 intend to find  the weight w and W at time t+1

Where y = f(w(t)I), output of the input unit

2 layers
example
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Forward pass phase

Suppose that we have w(t), W(t) of time t

For given input I, we can calculate 

     y = f(w(t)I)

and 
   
     o =  f ( W(t) y )
        =  f ( W(t) f( w(t) I ) )

Error function of output unit will be 

  E =   (d - o)2 /2
  

I

w(t)

W(t)

y

O

2 layers
example
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o =  f ( W(t) y )E =   (d - o)2 /2
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Backward pass phase

o =  f ( W(t) y )
        =  f ( W(t) f( w(t) I ) )
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Summary
weight updates are local 

output unit

input unit
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Once weight changes are computed for all units, weights are 
updated at same time (bias included as weights here)

We now compute the derivative of the activation function  f ( ).

(input unit)

(output unit)



Silvio SimaniLecture Notes on Neural Networks for Fault Diagnosis

22/10/2025 65/129

Activation Functions

➢to compute   and     we need to find the derivative of 
activation function f
➢to find derivative the activation function must be smooth

Sigmoidal (logistic) function-common in  MLP
 

where k is a positive constant. The sigmoidal function gives 
value in range of 0 to 1

Input-output function of a neuron (rate coding assumption)

))(exp(1

1
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Shape of sigmoidal function

Note: when net  = 0,  f = 0.5
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Shape of sigmoidal function derivative

Derivative of sigmoidal function has max at x= 0, is symmetric 
about this point falling to zero as sigmoidal approaches extreme 
values
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Returning to local error gradients in BP algorithm we have for 
output units

For input units we have 
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tOtkOtOtd

tNetftOtdt

iiii

iiii

−−=

−=





−=

=

k

k ikii

k

k ikii

Wttytky

Wttnetft

)())(1)((
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Since degree of weight change is proportional to derivative of 
activation function, weight changes will be greatest when units 
receives mid-range functional signal than at  extremes
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Network training:
❖ Training set shown repeatedly until stopping criteria are met

❖ Each full presentation of all patterns = ‘epoch’

❖ Randomise order of training patterns presented for each 

epoch in order to avoid correlation between consecutive 

training pairs  being learnt (order effects)

Two types of network training:

➢   Sequential mode (on-line, stochastic, or per-pattern)

        Weights updated after each pattern is presented 

➢    Batch mode (off-line or per -epoch)
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Advantages and disadvantages of different 
modes

  Sequential mode:
•  Less storage for each weighted connection

•  Random order of presentation and updating per pattern 

means search  of weight space is stochastic-reducing risk of 

local minima able to take advantage of any redundancy in 

training set (i.e. same pattern occurs more than once in 

training set, especially for large training sets)

•  Simpler to implement

 
  Batch mode: 
•  Faster learning than sequential mode



MultiLayer Perceptron II

Dynamics of MultiLayer Perceptron
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Summary of Network Training

Forward phase:   I(t), w(t), net(t), y(t), W(t), Net(t), O(t)

Backward phase:

Output unit

Input unit

=
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Network training:

Training set shown repeatedly until stopping criteria are met. 

Possible convergence criteria are

➢ Euclidean norm of the gradient vector reaches a 

sufficiently small denoted as .

➢When the absolute rate of change in the average squared 

error per epoch is sufficiently small denoted as .

➢Validation for generalization performance : stop when 

generalization reaching the peak (illustrate in this lecture)
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Goals of Neural Network Training

To give the correct output for input 
training vector (Learning)

To give good responses to new unseen 
input patterns (Generalization)
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Training and Testing Problems

• Stuck neurons: Degree of weight change is proportional 
to derivative of activation function, weight changes will be 
greatest when units receives mid-range functional signal than 
at  extremes neuron. To avoid stuck neurons weights 
initialization should give outputs of all neurons approximate 0.5

• Insufficient number of training patterns: In this 
case, the training patterns will be learnt instead of the 
underlying relationship between inputs and output, i.e. network 
just memorizing the patterns.

• Too few hidden neurons: network will not produce a 
good model of the problem.

• Over-fitting: the training patterns will be learnt instead 
of the underlying function between inputs and output because 
of too many of hidden neurons. This means that the network 
will have a poor generalization capability.
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Dynamics of BP learning
Aim is to minimise an error function over all training 
patterns by adapting weights in MLP

Recalling the typical error function is the mean 
squared error as follows

E(t)=

The idea is to reduce E(t) to global minimum point.


=

−
p

k
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Dynamics of BP learning

In single layer perceptron with linear activation 
functions, the error function is simple, described
by a smooth parabolic surface with a single 
minimum 
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Dynamics of BP learning
MLP with non-linear activation functions have complex error 
surfaces (e.g. plateaus, long valleys etc. ) with no single 
minimum

For complex error surfaces the problem is learning rate must 
keep small to prevent divergence. Adding momentum term is 
a simple approach dealing with this problem.
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Momentum
• Reducing problems of instability while increasing 
the rate of convergence
• Adding term to weight update equation can 
effectively holds as exponentially weight history of 
previous weights changed

Modified weight update equation  is 

w n w n n y n

w n w n
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ij ij
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Effect of momentum term

➢ If weight changes tend to have same sign, 

momentum term increases and gradient 

decrease speed up convergence on shallow 

gradient

➢ If weight changes tend  have opposing 
signs, momentum term decreases and 
gradient descent slows to reduce oscillations 
(stabilizes) 
➢ Can help escape being trapped in local 
minima
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Selecting Initial Weight Values

➢ Choice of initial weight values is important as this 

decides starting position in weight space. That is, 

how far away from global minimum

➢ Aim is to select weight values which produce 

midrange function signals 

➢ Select weight values randomly from uniform 

probability distribution

➢ Normalise weight values so number of weighted 

connections per unit produces midrange function 

signal
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Convergence of Backprop

Avoid local minumum with fast convergence:

◼ Add momentum 

◼ Stochastic gradient descent

◼ Train multiple nets with different initial weights

Nature of convergence

◼ Initialize weights ’near zero’ or initial networks 
near-linear

◼ Increasingly non-linear functions possible as 
training progresses
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Use of Available Data Set for Training

◼ Training set – use to update the weights. 
Patterns in this set are repeatedly in random 
order. The weight update equation are 
applied after a certain number of patterns.

◼ Validation set – use to decide when to stop 
training only by monitoring the error.

◼ Test set – Use to test the performance of the 
neural network. It should not be used as part 
of the neural network development cycle.

The available data set is normally split into three 
sets as follows:
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Earlier Stopping - Good Generalization

◼ Running too many epochs may overtrain the 
network and result in overfitting and perform 
poorly in generalization.

➢ Keep a hold-out validation set and test accuracy 
after every epoch. Maintain weights for best 
performing network on the validation set and stop 
training when error increases increases beyond 
this.

No. of epochs

error
Training set

Validation set
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Model Selection by Cross-validation

◼ Too few hidden units prevent the network from 
learning adequately fitting the data and learning 
the concept (more than two layer networks). 

◼ Too many hidden units leads to overfitting.

➢ Similar cross-validation methods can be used to 
determine an appropriate number of hidden units 
by using the optimal test error to select the model 
with optimal number of hidden layers and nodes.

No. of epochs

error
Training set

Validation set



Genetic Algorithms

Alternative Training 
Algorithm
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History Background

◼ Idea of evolutionary computing was introduced in the 1960s by I. 

Rechenberg in his work "Evolution strategies" (Evolutionsstrategie in 

original). His idea was then developed by other researchers. Genetic 

Algorithms (GAs) were invented by John Holland and developed by him 

and his students and colleagues. This lead to Holland's book "Adaption in 

Natural and Artificial Systems" published in 1975. 

◼ In 1992 John Koza has used genetic algorithm to evolve programs to 

perform certain tasks. He called his method “Genetic Programming" 

(GP). LISP programs were used, because programs in this language can 

expressed in the form of a "parse tree", which is the object the GA works 

on.



Silvio SimaniLecture Notes on Neural Networks for Fault Diagnosis

22/10/2025 88/129

Biological Background
   Chromosome

◼ All living organisms consist of cells. In each cell there is the same set of 

chromosomes. Chromosomes are strings of DNA and serves as a model for the 

whole organism. A chromosome consist of genes, blocks of DNA. Each gene 

encodes a particular protein. Basically can be said, that each gene encodes a trait, 

for example color of eyes. Possible settings for a trait (e.g. blue, brown) are called 

alleles. Each gene has its own position in the chromosome. This position is called 

locus.

◼ Complete set of genetic material (all chromosomes) is called genome. Particular set 

of genes in genome is called genotype. The genotype is with later development 

after birth base for the organism's phenotype, its physical and mental 

characteristics, such as eye color, intelligence etc.

http://cs.felk.cvut.cz/~xobitko/ga/dna.html


Silvio SimaniLecture Notes on Neural Networks for Fault Diagnosis

22/10/2025 89/129

Biological Background
  Reproduction

◼ During reproduction, first occurs recombination (or 

crossover). Genes from parents form in some way the 

whole new chromosome. The new created offspring can 

then be mutated. Mutation means, that the elements of 

DNA are a bit changed. This changes are mainly caused by 

errors in copying genes from parents.

◼ The fitness of an organism is measured by success of the 

organism in its life.
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Pseudo Code of an Evolutionary Algorithm

Create initial random population

Mutate offspring

stop
yes

no

Recombine parents to generate offspring

Evaluate fitness of each individual 

Termination criteria satisfied ?

Select parents according to fitness 

Replace population by new offspring
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A Simple Genetic Algorithm

➢ Optimization task: find the maximum of f(x) 

    for example f(x)=x•sin(x)   x [0

• genotype: binary string   s   [0,1]5  e.g. 11010, 01011, 10001

• mapping : genotype    phenotype

   binary integer encoding:   x =    •      si • 2
n-i-1 / (2n-1)

genotype integ. phenotype fitness  prop. fitness
11010  26 2.6349 1.2787    30% 
01011  11 1.1148 1.0008    24% 
10001 17 1.7228 1.7029    40% 
00101   5 0.5067 0.2459      6% 

Initial population






5

1

=

=


n

i



Radial Basis 
Functions

Radial Basis Functions

Overview
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Radial-basis function (RBF)  networks

• RBF = Radial-Basis Function

• a function which depends only on the
   radial distance from a point
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Radial-basis function (RBF)  networks

So RBFs   are   functions taking the form

where   is a non-linear activation function, x is the 

input and xi is the i’th position, prototype, basis or 

centre vector.

The idea is that points near the centres will have 

similar outputs (i.e. if x ~ xi  then f (x) ~ f (xi)) 

since they should have similar properties. 

The simplest is the linear RBF : (x) =||x – xi||

||)(|| ixx −
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Typical RBFs include

(a)  Multi-quadrics

        for some c>0

(b) Inverse  multi-quadrics

       for some c>0

(c) Gaussian

      for some  >0 

2/122 )()( crr +=

2/122 )()( −+= crr

)
2

exp()(
2

2



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‘nonlocalized’ functions ‘localized’ functions



➢ Idea is to use a weighted sum of the outputs from 
the basis functions to represent the data

➢ Thus centers can be thought of as prototypes of input 
data

* *

*

* *

*

O1

01

0

MLP       vs   RBF

distributed    local



Silvio SimaniLecture Notes on Neural Networks for Fault Diagnosis

22/10/2025 99/129

Starting point: exact interpolation

Each input pattern x must be mapped onto a 
target value d
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That is, given a set of N vectors xi and a corresponding set 

of N real numbers, di (the targets), find a function F  that 

satisfies the interpolation condition:

 F ( xi ) = di     for i =1,...,N 

or   more exactly  find: 

satisfying: 

F x w x x
j

j

N

j( ) (|| ||)= −
=


1

F x w x x di j i
j

N

j i
( ) (|| ||)= − =

=


1
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➢ Use a weighted sum of the outputs from the basis 
functions to represent the data

➢ Centers can be thought of as prototypes of input 
data

* *

*

* *

*

O1

01

0

MLP       vs   RBF

distributed    local
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yp

Input

y1

y2

Output

Single-layer networks

Input layer :  (y)=N (y-xN||)

wj

d

• output =  wi i (y - xi)

• adjustable parameters are weights wj

• number of input units number of data points

• form of the basis functions decided in advance  



 (y)=1 (y-x1||)


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To summarise:
❖   For a given  data set containing N points  (xi,di), i=1,…,N

❖   Choose a RBF function 

❖   Calculate (xj − xi )

❖   Solve the linear equation  W   =  D 
❖   Get the unique solution 

❖ Done 

➢ Like MLP’s, RBFNs can be shown to be able to approximate 

any function to arbitrary accuracy (using an arbitrarily large 

numbers of basis functions)

➢ Unlike MLP’s, however, they have the property of ‘best 

approximation’ i.e.  there exists an RBFN with minimum 

approximation error
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Problems with exact interpolation
can produce poor generalisation performance as only data 
points constrain mapping

Overfitting problem

Bishop(1995) example

Underlying function f(x)=0.5+0.4sin(2 x)
sampled randomly for 30 points

added Gaussian noise  to each data point

30 data points    30 hidden RBF units

fits all data points but creates oscillations due added noise 
and unconstrained between data points
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All Data Points 5 Basis functions
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inefficient due to the computational cost of 

matrix inversion and is very bad for 

generalization so:

✓ Use less RBF’s than data points, i.e. M<N

✓ Therefore don’t necessarily have RBFs centred at data points

✓ Can include bias terms

✓ Can have Gaussian with general covariance matrices but 

there is a trade-off between complexity and the number of 

parameters to be found.

106/129



Application Examples

Neural Networks for

Fault Diagnosis of Nonlinear Processes
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Nonlinear Dynamic System

◼ Take a static 
NN

◼ From static to 
dynamic NN

◼ “Quasi-static” 
NN

◼ Add inputs, 
outputs and 
delayed signals

Example of Quasi-static NN

with 3 delayed inputs and outputs

( ))3(~),2(~),1(~),3(),2(),1()(~ −−−−−−= kykykykukukuFky

F(.)
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Nonlinear System Identification

◼ f(.), unknown target 
function

◼ Nonlinear dynamic 
model

◼ Approximated via a 
quasi-static NN

◼ Nonlinear dynamic 
system identification

◼ Recall “linear system 
identification”
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Nonlinear System Identification

Target function:       yp(k+1) = f(.)

Identified function:  yNET(k+1) = F(.)

Estimation error:      e(k+1)
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Nonlinear System Neural Control

d:  reference/desired response

y:  system output/desired output

u:  system input/controller output

ū:  desired controller input

u*: NN output

e:  controller/network error 

The goal of training is to find an 

appropriate plant control u from 

the desired response d. The weights 

are adjusted based on the difference 

between the outputs of the networks

I & II to minimise e. If network I is 

trained so that y = d, then u = u*. 

Networks act as inverse dynamics 

identifiers.   
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