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Course Overview

1. Introduction

I,  Course introduction
ii. Introduction to neural network
lii. Issues in neural network

2. Simple neural network

I.  Perceptron
ii. Adaline

3. Multilayer Perceptron
I.  Basics

4. Genetic Algorithms: overview
5. Radial basis networks: overview
6. Application examples
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ﬁ Machine Learning

= Improve automatically with experience

= Imitating human learning
= Human learning

Fast recognition and classification of complex classes
of objects and concepts and fast adaptation

« Example: neural networks (and fuzzy systems)
= Some techniques assume statistical source
Select a statistical model to model the source

= Other techniques are based on reasoning or
inductive inference (e.g. Decision tree)
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ﬁMachine Learning Definition

A computer program is said to learn from
experience E with respect to some class of
tasks T and performance measure P, if its
performance at tasks in T, as measured by P,

improves with experience E.
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ﬁ Examples of Learning Problems

Example 1.: handwriting recognition:

= T: recognizing and classifying handwritten words
within images.

= P: percentage of words correctly classified.

= E: a database of handwritten words with given
classification.

Example 2: learn to play checkers:
= [: play checkers.

= P: percentage of games won in a tournament.
= E: opportunity to play against itself ( ).
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ﬁ Issues in Machine Learning

= What algorithms can approximate functions
well and when?

= How does the number of training examples
influence accuracy?

= How does the complexity of hypothesis
representation impact it?

= How does noisy data influence accuracy?

= How do you reduce a learning problem to a set
of function approximation ?
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ﬁ Summary

s Machine learning is useful for data mining, poorly
understood domain (face recognition) and programs
that must dynamically adapt.

= Draws from many diverse disciplines.

= Learning problem needs well-specified task,
performance metric and training experience.

= Involve searching space of possible hypotheses.
Different learning methods search different
hypothesis space, such as numerical functions, neural
networks, decision trees, symbolic rules (fuzzy).
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.

Introcuction to Neura)
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ﬁ Braln

= 101! neurons (processors)
= On average 1000-10000 connections

7— dendrltesl Input

R Zone
‘ cell body
axlon
CSamy B A )
axon endings <

Output Zone
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ﬁ Artificial Neuron

) / bias

net, = Zj Wy T

Wi l

w.-:z /

J T .

y,=fnet,)
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ﬁ Artificial Neuron

= Input/Output Signal may be:
= Real value.
= Unipolar {0, 1}.
= Bipolar {-1, +1}.
= Weight : wj; —strength of connection.

Note that w, refers to the weight from
unit j to unit 7 (not the other way round).
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ArrliTlclal Neuron

Silvie Stmoni

= [he bias bis a constant that can be written as
W,V With y,= b and Wip= 1 such that

net, —Z

= The function 7 is the umt s activation function.
In the simplest case, f is the identity function,

and the unit’s output is just its net input. This
s called a /inear unit.

= Other activation functions are :
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hen Should .\ Solution Be Considearad ?

> The solution to the problem cannot be explicitly described

by an algorithm, a set of equations, or a set of rules.

»There is some evidence that an input-output mapping exists

between a set of input and output variables.

»There should be a large amount of data available to train

the network.
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P

blems nzt Can Lazd to Poor Parformancse 7

= [he network has to distinguish between very similar cases
with a very high degree of accuracy.

= The train data does not represent the ranges of cases that
the network will encounter in practice.

= The network has a several hundred inputs.

= [he main discriminating factors are not present in the
available data, e.g. trying to assess the loan application
without having knowledge of the applicant's salaries.

= The network is required to implement a very complex
function.
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|Applications of Artificlal Neural Networks

Manufacturing : fault diagnosis, fraud detection.
Retailing : fraud detection, forecasting, data
mining.

Finance : fraud detection, forecasting, data mining.
Engineering : fault diagnosis, signal/image
processing.

Production : fault diagnosis, forecasting.

Sales & marketing : forecasting, data mining.
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ﬁ Dzitz) Pra~orocassing

Neural networks very rarely operate on the raw
data. An initial pre-processing stage is essential.

Some examples are as follows:

= Feature extraction of images: for example, the analysis of x-rays
requires pre-processing to extract features which may be of interest

within a specified region.

= Representing input variables with numbers. For example "+1" is the
person is married, "0" if divorced, and "-1" if single. Another example
is representing the pixels of an image: 255 = bright white, 0 = black.
To ensure the generalization capability of a neural network, the data

should be encoded in form which allows for interpolation.
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ﬁ Dzitz) Pra~orocassing

= CONTINUOUS VARIABLES

= A continuous variable can be directly applied to
a neural network. However, if the dynamic range
of input variables are not approximately the
same, it is better to normalise all input variables

of the neural network.
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»

Simple Neural Networks

“Simple” Perceptron
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- Outlines

> The Perceptron

e Linearly separable problem
e Network structure
e Perceptron learning rule

e Convergence of Perceptron
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ﬁ THE PERCEPTRON

»The perceptron was a simple model of ANN introduced
by Rosenblatt of MIT in the 1960" with the idea of
learning.

»Perceptron is designed to accomplish a simple pattern
recognition task: after learning with real value training data

{ x(i), d(i), i =1,2, ..., p} where d(i) = I or -1

»For a new signal (pattern) x(i+1), the perceptron is
capable of telling you to which class the new signal
belongs

X(I1]) — perceptron = 1 or -1
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Perceptron
m Linear Threshold Unit (LTU)
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ﬁMathematically the Perceptron is

y=fQwx +b) = £ W)

We can always treat the bias 6 as another weight with
inputs equal 1

where f is the hard limiter function /e.

lijwaixi +bH >0
=1

—llj”Zwixi +bH =0
g =1
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iwixl. +bH=0
=1

m
Zwl.xl. +b<0
i=1
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| capable of solving linearly separable problem ?

m
Zwl.xi +5>0
i=]
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Learning rule

An algorithm to update the weights w so that finally
the input patterns lie on both sides of the line decided
by the perceptron

Let £be the time, at £ = 0, we have
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algorithm to update the weights w so that finally
Input patterns lie on both sides of the line decided by the
perceptron

Let £be the time, at ¢t = 1
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Learning rule

eights w so that finally
input patterns lie on both sides of the line decided by the

t
perceptron

Let £be the time, at £ =2
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earning rule

eights w so that finally
e input patterns lie on both sides of the line decided by the
perceptron

Let £be the time, at £ =3

Ww(3)
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ﬁ In math:
|+ 1if x(t)inclass—+
A1) =17 _ 12/ x(t)inclass—

Perceptron learning rule

w(z + 1) = w(z) +77(0)[d(2) —

sign(w(z) ® x(z2))]x(2)
Where n(t) is the learning rate >0,
- +1 if x>0
sign(x) = 1 hard limiter function
-1 if x<=0,

NB : d(t) is the same as d(i) and x(t) as x(i)
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ﬁ In words:

o If the classification is right, do not update the
weights

o If the classification is not correct, update the
weight towards the opposite direction so that the
output move close to the right directions.
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*

Perceptron Convergence Theorem
(Rosenblatt, 1962)

Let the subsets of training vectors be linearly separable. Then
after finite steps of learning we have

lim w(t) = w which correctly separate the samples.

The idea of proof is that to consider || w(t+1)-w|-||w(t)-w]|
which is a decrease function of t
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ﬁSummary of Perceptron learning ...

Variables and parameters
X(t) = (m+1) dim. input vectors at time ¢

= (b/ X] (U/ XZ(U/ crre y Xm(U)

w(t) = (m+1) dim. weight vectors

=(-Z/ W](U/ reer y Wm(z))

b = bias
y(t) = actual response
n(l) = |earning rate parameter, a +ve constant < 1

d(t) = desired response

22/10/2025 33/129



= SUMEFY 6 P&rceptron learning ..." "™
ﬁ?l‘a { (X(1), (i), I=1,...,.p}

v Present the data to the network once a point

v" could be cyclic :

(x(1), a(1)), (x(2), d(2)),..., (X(p), d(b)),
(X(p+1), d(p+1)),...

v or randomly

(Hence we mix time t with i here)
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Summary of Perceptron learning (algorithm)

1. Initialisation Set w(0)=0. Then perform the following
computation for time step t=1,2,...
2. Activation At time step t, activate the perceptron by applying

input vector X{(t) and desired response d(t)
3. Computation of actual response Compute the actual response
of the perceptron

() = sign (W) " x(1) )
where sign is the sign function
4. Adaptation of weight vector Update the weight vector of the
perceptron

wt+1) = W)+ n) [d) - () ] Xt

5. Continuation
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ﬁ Questions remain

Where or when to stop?

By minimizing the generalization error

For training data {(X(7), d(1)), /=1,...p}

How to define training error after t steps of learning?

E(t)= 2P, [d(i)-sign(w(t) . x(1)]°
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»

We next turn to ADALINE learning,
from which we can understand

the learning rule, and more general the
Back-Propagation (BP) learning
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i-

Simple Neural Network

ADALINE Learning
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ﬁ Outlines

= ADALINE
= Gradient descending learning

= Modes of training

22/10/2025 39/129
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Iﬂhappy Over Perceptron Training

= When a perceptron gives the right answer, no

learning takes place

= Anything below the threshold is interpreted
as ‘no’, even it is just below the threshold.

= It might be better to train the neuron based

on how far below the threshold it is.

22/10/2025 40/129
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ﬁ ADALINE
A

DALINE is an acronym for ADAptive LINear Element
(or ADAptive LInear NEuron) developed by Bernard
Widrow and Marcian Hoff (1960).

e There are several variations of Adaline. One has
threshold same as perceptron and another just a bare
linear function.

eThe Adaline learning rule is also known as the least-
mean-squares (LMS) rule, the delta rule, or the Widrow-
Hoff rule.

e It is a training rule that minimises the output error

using (approximate) gradient descent method.
22/10/2025 41/129
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e Replace the step function in the perceptron with a
cﬁntinuous (differentiable) function 7, e.g. the simplest is

e With or without the threshold, the Adaline is trained based
on the output of the function £ rather than the final output.

Teacher Ot Ot

¥ 1 i
_ Teacher ‘
A l Fy
— -l
Errar
{ \ ) +/> f(X)
Errar
o
Percepton Learning Delta Rule

(Adaline)
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»

After each training pattern x(i) is presented, the correction to
apply to the weights is proportional to the error.

EGY) =2[di)-fwt)  x(i)]° Ii=1..,p
N.B. If fis a linear function fiw(t) - x(i)) = w(t) * x(i)
Summing together, our purpose is to find W which minimizes

E)= 5 EGU
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General Approach
gradient descent method

Jo find g
w(t+1) = w(O)+g( EW()) )

so that w automatically tends to the
global minimum of E(w).

w(t+1) = w(t)- E(w(E)n(®
(see figure in the following...)
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radient d|rect|on is the direction of uphill
e Figure, at position 0.4, the
( Fis E, consider one dim case )

radient is uphill

F(w),.|
| Gradient direction
RN F/) 0.4) -

1 1
1 08 OB 04 D2 0 02 04 0B 08 1
A%
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e In gradient descent algorithm, we have

w(t+1) = w(t) — F(w(t) n(z)
therefore the ball goes downhill since — F'(w(t))
is downhill direction

F(w) -
0.9
0.3
0.7 F
08| Gradient direction
os | |
0.4 ff
0.3
0.2
0.1 /

1 1
-1 -0.8 0.6 -0.4 -0.2 o 0.2 0.4 0.6 0.5 1

W
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e In gradient

for Prult

F(w)

0.9

0.5

0.7

0.5

0.5

0.4

0.3

0.2

0.1 |

]

descent algorithm, we have

Silvie Simsnt

w(t+1) = w(t) — FIm(D)) n()
therefore the ball goes downhill since — F'(w(t))
is downhill direction

(Gradient ddrecti

T

r

-1
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1
-0.85

1
-0.6

1
-0.4

1
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L 1 1 1 1
0 .2 0.4 0.6 0.5 1

A\
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e|Gradually the ball will stop at a local minima where
' IS_zero

F(w) '

0.9 ]
0.3+ 7]
o7 ]
0e| Gradient drrection
0.5 ]
0.4+ 7]

0.3+ —

o2 —
I —
1 1 1 1 1 — 1 1 1 1

a
-1 -0.5 -0.65 -0.4 -0.2 (] a2 0.4 0.6 0.5 1

22/10/2025 48/129



Lecture Notes on Neurs! Networks for Fsult Disgnosis Silvie Stmant

In words:

radient method could be thought of as a ball rolling down
from a hill: the ball will roll down and finally stop at the valley

Thus, the weights are adjusted by

wit+1) = w(t) +n@) X [d(i) - Rw) * X)) ] x() F’

This corresponds to gradient descent on the quadratic error
surface E

When f’ =1, we have the perceptron learning rule (we have in
general f”>0 in neural networks). The ball moves in the right
direction.
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ﬁ Two types of network training:

Sequential mode (on-line, stochastic, or
per-pattern) :

Weights updated after each pattern is
presented (Perceptron Is in this class)

Batch mode (off-line or per-epoch) : Weights
upaated after all patterns are presented

22/10/2025 50/129
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omparison Perceptron and
Gradient Descent Rules

Perceptron learning rule guaranteed to succeed if

= Training examples are linearly separable

= Sufficiently small learning rate n

dLinear unit training rule uses gradient descent
guaranteed to converge to hypothesis with
minimum squared error given sufficiently small
learning rate n
= Even when training data contains noise
= Even when training data not separable by hyperplanes
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ﬁ Summary |

Perceptron

W(t+1)= W(t)+n(t) [ d(t) - sign (w(t) . x)] X

Adaline (Gradient descent method)

“III.. ..

W(t+1)= W(t)+n(t) [ d(t) f(W(t) X)‘J

0 ‘ N
'IIIII‘ \4 4
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ﬁ Multi-Layer Perceptron (MLP)

Idea: “Credit assignment problem”

« Problem of assigning ‘credit’ or ‘blame’ to
individual elements involving in forming overall
response of a learning system (hidden units)

e In neural networks, problem relates to dividing

which weights should be altered, by how much
and in which direction.
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v, LXample: Three-layer networks

L Output

n.

Sigf;al routing

Input layer  Hidden layer Output layer
22/10/2025 54/129
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| Properties of architecture

* No connections within a layer

e No direct connections between input and output layers

e Fully connected between layers

e Often more than 2 layers

e Number of output units need not equal humber of input units

e Number of hidden units per layer can be more or less than
input or output units

1
- - Each unit 'mm®" is a perceptron

I
v, = £ w,x, + 5,)
>
7
22/10/2025 55/129
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PP (Back Propagation)
N\

gradient descent method
+

multilayer networks
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i-

MultiLayer Perceptron |

Back Propagating Learning
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BP learning algorithm
Solution to “credit assignment problem” in MLP

Rumelhart, Hinton and Williams (1986)

BP has two phases:

Forward pass phase: computes ‘functional signal’, feed-
forward propagation of input pattern signals through network

Backward pass phase: computes ‘error signal’
propagation of error (difference between actual and desired
output values) backwards through network starting at output
units for weights’ correction
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BP Learning for Simplest MLP,

ﬁ—‘FaﬂH'Ba(T(I d}to minimize
E=(d-0F/2 W) /
= [d - AMONTL)) F /2

= [d- AWORWED) /2 ]wm

Error function at the output unit

I 2lyers
Weight at time t is w(t) and W(t), exsmple
intend to find the weight w and W at time t+1

Where y = f(w(t)I), output of the input unit

22/10/2025 59/129



Lecture Notes on Neurs! Networks for Fsult Disgnosis

ﬁ Forward pass phase
S

uppose that we have w(t), W(t) of time t ............ =

Silvie Simsnt

O

For given input I, we can calculate

W(t) /
y = fw()D) g
and y
o= f(W({)y) w(t)
~ Few fowo 1) ]
Error function of output unit will be 1
E= (d-0F/2 2 lyers
exsmple
22/10/2025
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Backward Pass Phase

d =
dFE

W(E+1)=W()—n IR0 W(t)

ey —ndE_df Ty
df dw (t) / w(t)
=W@)+n(d—o)f"W(@)y)y

E= (d-o0F/2 o= f(W(H)yYy)
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Silvie Simsnt

| Backward pass phase
O

\dE
dW (t)

W+1)=W()—n

=W()+n(d - O)f (W(f ))/)y
=W (t)+ nAy

where A= (d-o0) [’

22/10/2025

W(t)

w(t)
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| Backward pass phase

{dE"
1
w(it+1)=w(t)—n—~ dw(t) Wit
B _dE dy
=W I ) y
— w(t) + 17(d — 0) [ (W () )W (£)—2 MO
AT O -
o= f(W()y)
= f(WE)f(w()I))
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welight updates are local
L+ —w, (1)=no,;(),(¢) (inputunit)

ij (t+D)—W, () =nA,(t)y;(t) (output unit)
output unit

W@ +1) =W, () =i, (), ()

=17(d, (2) — O, (t))f (Net @)y, (@)

mput unit
w, (1) — (t)—775 ()1, (2)

_Tlf Cnet (f))ZA OW L ()

Once weight changes are computed for all units, weights are
updated at same time (bias included as weights here)

We now compute the derivative of the activation function £().
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Activation Functions

o compute 0, and A,we need to find the derivative of

activation function £
>to find derivative the activation function must be smooth

Sigmoidal (logistic) function-common in MLP

1
1 +exp(—knet (1))

J (net, (1)) =

where kK is a positive constant. The sigmoidal function gives
value in range of 0 to 1

Input-output function of a neuron (rate coding assumption)
22/10/2025 65/129
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Shape of sigmoidal function

15 T T T T ‘
1 saturated
0.5 L
input signal
|:| ]
saturated
_|:|5 1 1 1 | 1 1 1 1
=10 -d -A -4 -2 ] 2 4 B a 10

Note: when net =0, f=0.5
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Shape of sigmoidal function derivative

025

02F

015+

0.1F

0.0a

Derivative of sigmoidal function has max at x= 0, is symmetric
about this point falling to zero as sigmoidal approaches extreme
values
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Retyirning to local error gradients in BP algorithm we have for

For input units we have

O, () = f "(nez, (t))ZAk (O,
— /v, (DA — 3, DD AL (OW,,

Since degree of weight change is proportional to derivative of
activation function, weight changes will be greatest when units
receives mid-range functional signal than at extremes
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“*|Training set shown repeatedly until stopping criteria are met
tation of all patterns = ‘epoch’

% Randomise order of training patterns presented for each
epoch in order to avoid correlation between consecutive
training pairs being learnt (order effects)

Two types of network training:

» Sequential mode (on-line, stochastic, or per-pattern)
Weights updated after each pattern is presented

» Batch mode (off-line or per -epoch)
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dvantages and disadvantages of different
modes

Batch mode:
» Faster learning than sequential mode
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!'_ MultiLayer Perceptron Il

Dynamics of MultiLayer Perceptron



wr~eGurrmary ef Network Training =

1), w(Y), net(t), y(1), W(1), Net(t), O(t)

Backward phase:
Output unit

Input unit

w (& +1)—w; (1) =10 ,(1)1,;(2)
=1f "(net (1)) D A (OW,,(DI,(1)
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ﬁ Network training:

Training set shown repeatedly until stopping criteria are met.

Possible convergence criteria are
» Euclidean norm of the gradient vector reaches a

sufficiently small denoted as 6.
»When the absolute rate of change in the average squared

error per epoch is sufficiently small denoted as 0.

»Validation for generalization performance : stop when
generalization reaching the peak (illustrate in this lecture)
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*oals of Neural Network Training

To give the correct output for input
training vector (Learning)

To give good responses to new unseen
input patterns (Generalization)
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ﬁ Training and Testing Problems

e Stuck neurons: _De%ree of weight change is prc_)lportional
to derivative of activation function, weight changes will be
greatest when units receives mid-range functional signal than
at extremes neuron. To avoid stuck neurons weights
initialization should give outputs of all neurons approximate 0.5

o Insufficient number of training patterns: In this
case, the training patterns will be learnt instead of the
underlying relationship between inputs and output, i.e. network
just memorizing the patterns.

* Too few hidden neurons: network will not produce a
good model of the problem.

» Over-fitting: the training patterns will be learnt instead
of the underlying function between inputs and output because
of too many of hidden neurons. This means that the network
will have a poor generalization capability.
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Dynamics of BP learning
is to minimise an error function over all training
rns by adapting weights in MLP

Recalling the typical error function is the mean
squared error as follows

ED= S (d, (1) — O, (1))

The idea is to reduce E(t) to global minimum point.
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Dynamics of BP learning

In single layer perceptron with linear activation
functions, the error function is simple, described
by a smooth parabolic surface with a single
minimum

W
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Dynamics of BP learning
P with non-linear activation functions have complex error
aces (e.g. plateaus, long valleys etc. ) with no single
minimum

An Ugly Cost Surface

local
minimea

plateau

R .

r minimum

l

For complex error surfaces the problem is learning rate must
keep small to prevent divergence. Adding momentum term is
a simple approach dealing with this problem.

W
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of instability while increasing

l Momentum
the rate of convergence

e Adding term to weight update equation can

effectively holds as exponentially weight history of
previous weights changed

Modified weight update equation is

w, (n+ 1) —w, (n) = 75, (n)y,(n) «

+alw, (n)—w, (n—1)]

22/10/2025

79/129



Effect of momentum term
» If weight changes tend to have same sign,
momentum term increases and gradient
decrease speed up convergence on shallow

gradient

» If weight changes tend have opposing
sighs, momentum term decreases and
gradient descent slows to reduce oscillations
(stabilizes)

» Can help escape being trapped in local
minima
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ﬁ Selecting Initial Weight Values

» Choice of initial weight values is important as this
decides starting position in weight space. That is,
how far away from global minimum

> Aim is to select weight values which produce
midrange function signals

> Select weight values randomly from uniform
probability distribution

» Normalise weight values so number of weighted
connections per unit produces midrange function
signal
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onvergence of Backprop

inumum with fast convergence:
= Add momentum

= Stochastic gradient descent
= Train multiple nets with different initial weights

Nature of convergence

= Initialize weights 'near zero’ or initial networks
near-linear

= Increasingly non-linear functions possible as
training progresses

22/10/2025 82/129



Lecture Notes on Neurs! Networks for Fsult Disgnosis Silvie Stmant

g: of Available Data Set for Training

available data set is normally split into three
sets as follows:

= Training set — use to update the weights.
Patterns in this set are repeatedly in random
order. The weight update equation are
applied after a certain number of patterns.

= Validation set — use to decide when to stop
training only by monitoring the error.

s lest set — Use to test the performance of the
neural network. It should not be used as part
of the neural network development cycle.
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arller Stoppmg - Good Generalization

any epochs may overtrain the

etwork and result in overfitting and perform
poorly in generalization.

~ Keep a hold-out validation set and test accuracy
after every epoch. Maintain weights for best

performing network on the validation set and stop
training when error increases increases beyond

this.

Validation set
error
Training set
No. of epochs ]
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OUHEI'SEI&ELIGH by Cross-validation

o few hidden units prevent the network from

rning adequately fitting the data and learning
the concept (more than two layer networks).

= To0 many hidden unlts leads to overfitting.

~ Similar cross-validation methods can be used to
determine an appropriate number of hidden units

by using the optimal test error to select the model
with optimal number of hidden layers and nodes.

Validation set
error o
Training set
No. of epochs
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Alternative Training

3 Algorithm

Genetic Algorithms
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History Background

= Idea of evolutionary computing was introduced in the 1960s by 1.
Rechenberg in his work " Evolution strategies’ (Evolutionsstrategie in
original). His idea was then developed by other researchers. Genetic
Algorithms (GAs) were invented by John Holland and developed by him
and his students and colleagues. This lead to Holland's book "Adaption in
Natural and Artificial Systems" published in 1975.

= In 1992 John Koza has used genetic algorithm to evolve programs to
perform certain tasks. He called his method “Genetic Programming"
(GP). LISP programs were used, because programs in this language can
expressed in the form of a "parse tree", which is the object the GA works

on.
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Blologlcal Background
Chromosome

= All living organisms consist of cells. In each cell there is the same set of

chromosomes. Chromosomes are strings of DNA and serves as a model for the
whole organism. A chromosome consist of genes, blocks of DNA. Each gene
encodes a particular protein. Basically can be said, that each gene encodes a trait,
for example color of eyes. Possible settings for a trait (e.g. blue, brown) are called
alleles. Each gene has its own position in the chromosome. This position is called

locus.

s Complete set of genetic material (all chromosomes) is called genome. Particular set
of genes in genome is called genotype. The genotype is with later development
after birth base for the organism's phenotype, its physical and mental

characteristics, such as eye color, intelligence etc.
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http://cs.felk.cvut.cz/~xobitko/ga/dna.html

Lecture Notes on Neurs! Networks for Fsult Disgnosis Silvie Stmant

Biological Background
Reproduction

= During reproduction, first occurs recombination (or

crossover). Genes from parents form in some way the
whole new chromosome. The new created offspring can
then be mutated. Mutation means, that the elements of
DNA are a bit changed. This changes are mainly caused by

errors in copying genes from parents.

= The fitness of an organism is measured by success of the

organism in its life.
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Evolutionary Algorithms

utation population of genotypes

for
piood
ot

coding schem
recombination selection

phenotype space

fithess
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| Pseudo Code of an Evolutionary Algorithm

Create initial random population
v

Evaluate fithess of each individual
v

es
Termination criteria satisfied ? ‘_y’@

¥ NO
Select parents according to fitness
4

Recombine parents to generate offspring
\4

Mutate offspring

Replace population by new offspring
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ﬁ A Simple Genetic Algorithm

» Optimization task: find the maximum of f(x)

for example f(x)=xesin(x) Xe[0,x]
 genotype: binary string se<[0,1]° e.g. 11010, 01011, 10001
e mapping : genotype =) phenotype »=5

binary integer encoding: x =7 e -21 s. e 2n-i-1 /(2n_1)

Initial population

genotype integ. phenotype fitness prop. fitness
11010 26 2.6349 1.2787 30%
01011 11 1.1148 1.0008 24%
10001 17 1.7228 1.7029 40%
00101 5 0.5067 0.2459 6%
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»

Radial-basis function (RBF) networks

e RBF = Radial-Basis Function

e a function which depends only on the
radial distance from a point

22/10/2025 94/129



BFs are functions taking the form

w;’iﬁma”é'f; -basis function (RBF) networks

o] x—x; D

where ¢ is a non-linear activation function, xis the
input and x; is the 7t/ position, prototype, basis or
centre vector.

The idea is that points near the centres will have
similar outputs (i.e. if x ~ x; then F(x) ~ (X))
since they should have similar properties.

The simplest is the linear RBF : ¢(x) =||x — x| |
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b Multi-quadrics
BH(r) = (7,2 _I_Cz)l/z

for some c>0
(b) Inverse multi-quadrics

PO =+ )

for some c>0

(c) Gaussian )
B(r) = exp( 2’” )
O

for some ¢ >0
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> Idea is to use a weighted sum of the outputs from
the basis functions to represent the data

» Thus centers can be thought of as prototypes of input
data

MLP VS
distributed
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Starting point: exact interpolation

Each input pattern x must be mapped onto a
target value d

12

10}
Interpolation reFn .

Approximation (Fitting)
MLP

1 | 1 1 1 | 1 1 1
0 01 02 03 04 05 0B 07 08 09 1
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hat is, given a set of N vectors X;and a corresponding set

- (the targets), find a function F that
isfies the interpolation condition:

F(x)=d for/i=1,..,N

or more exactly find:
N
F(x)=2wo(|lx —x,[))
j=
satisfying:

F(x)=Xwd(lx —x|)=d,
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MLP VS RBF
distributed local
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CRPPPR Input layer : 0N (Y)=0x (Ily-2nl))

e output = 2w ¢; (¥ - X))

e adjustable parameters are weights w;

e number of input units <number of data points
e form of the basis functions decided in advance
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To summarise:

For a given data set containing N points (X,
Choose a RBF function ¢

Calculate ¢(x; — x;)

Solve the linear equation ® W = D
» Get the unique solution

Done

d),i=1,...N

(J

L)

*

e

*

o’

e

®

> Like MLP’s, RBFNs can be shown to be able to approximate
any function to arbitrary accuracy (using an arbitrarily large
numbers of basis functions)

» Unlike MLP’s, however, they have the property of ‘best
approximatiori i.e. there exists an RBFN with minimum
approximation error
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ems with exact mterpolatlon

produce poor generalisation performance as only data
i'nﬁ—eeﬁﬁram—mapp‘ ing

Overfitting problem

Bishop(1995) example

Underlying function f(x)=0.5+0.4sin(2x Xx)
sampled randomly for 30 points

added Gaussian noise to each data point
30 data points 30 hidden RBF units

fits all data points but creates oscillations due added noise
and unconstrained between data points
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All Data Points 5 Basis functions
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To fit an RBF to every data point is very
efficient due to the computational cost of
matrix inversion and is very bad for
generalization so:

v Use less RBF’s than data points, 7.e. M<N

v Therefore don't necessarily have RBFs centred at data points

v" Can include bias terms

v Can have Gaussian with general covariance matrices but
there is a trade-off between complexity and the number of

parameters to be found.
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Fault Diagnosis of Nonlinear Processes
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i Nonlinear Dynamic System

s [ake a static
NN

= From static to
dynamic NN
s "'Quasi-static”
NN
= Add inputs,
outputs and
delayed signals
| 3(k) = F(u(k 1), u(k - 2),u(k —3), 5(k 1), 5 (k - 2), 5 (k - 3))|
Example of Quasi-static NN
with 3 delayed inputs and outputs
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i Nonlinear System Identification

: = f(.), unknown target

= function

= Nonlinear dynamic

; . ) model

e = Approximated via a

quasi-static NN

= Nonlinear dynamic

. system identification
y 8 s Recall “linear system

identification”

Figure 2.1 Input-output model
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Nonlinear System Identification

u®
[Q u(k)
) ] ypkt1)
E f()
[j y,®
: l ~
LAY i oO— e(k+l)
L_l ! ynet(k) %
Figure 2.1 Input-output model
uk) EL‘ neural
: net
y net(k+l)
ZE']

Target function: 'y, (k+1)=1(.)
ldentified function: yygr(k+1)=F()
Estimation error:  e(k+1)
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CMAC plant

u

*
u
C.

d: reference/desired response
y:
u: system input/controller output

system output/desired output

desired controller input

: NN output

controller/network error

22/10/2025

The goal of training is to find an
appropriate plant control u from

the desired response d. The weights
are adjusted based on the difference
between the outputs of the networks
I & II to minimise e. If network I is
trained so that y =d, thenu=u".
Networks act as inverse dynamics

identifiers.
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