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Course Overview

1. Introduction
i.  Course introduction
ii. Introduction to neural network
iii. Issues in neural network

2. Simple neural network
I. Perceptron
ii. Adaline

. Multilayer Perceptron
I.  Basics

3
4. Genetic Algorithms: overview
5
6

Radial basis networks: overview
Fuzzy Systems: overview
/. Application examples
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Machine Learning

= Improve automatically with experience

= Imitating human learning
= Human learning

Fast recognition and classification of complex classes
of objects and concepts and fast adaptation

=« Example: neural networks
Some techniques assume statistical source
Select a statistical model to model the source

= Other techniques are based on reasoning or
inductive inference (e.G. Decision tree)
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iMachine Learning Definition

A computer program is said to learn from
experience E with respect to some class of
tasks T and performance measure P, if its
performance at tasks in T, as measured by P,

improves with experience.

14/04/2009 5/148
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i Examples of Learning Problems

Example 1: hanadwriting recognition:

= T: recognizing and classifying handwritten words
within images.

P: percentage of words correctly classified.

= E: a database of handwritten words with given
classification.

Example 2. learn to play checkers:
= T: play checkers.
= P: percentage of games won in a tournament.
= E: opportunity to play against itself ( ).
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i Issues in Machine Learning

= What algorithms can approximate functions
well and when?

= How does the number of training examples
influence accuracy?

= How does the complexity of hypothesis
representation impact it?

= How does noisy data influence accuracy?

s How do you reduce a learning problem to a
set of function approximation ?
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i Summary

s Machine learning is useful for data mining, poorly
understood domain (face recognition) and
programs that must dynamically adapt.

= Draws from many diverse disciplines.

= Learning problem needs well-specified task,
performance metric and training experience.

= Involve searching space of possible hypotheses.
Different learning methods search different
hypothesis space, such as numerical functions,
neural networks, decision trees, symbolic rules.
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"

introduction to Neural
Naetworks

14/04/2009 9/148

Lecture Notes on Neural Networks and Fuzzy Systems Silvio Simani

i 2rzln

= 10! neurons (processors)
= On average 1000-10000 connections

‘. ‘/f dendrites |"put

Zone
ks cell body
axon
-|-. = T '_'HH-_‘C:‘:_‘» .
axon endings e
Output Zone |
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| Ariiflcial Meuron
/b1as
= Zj wyy; +b

net,
\ l /
. Wi
J R
—
Y= J(net;)
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ﬁ Artificial Nauron

= Input/Output Signal may be.
= Real value.
= Unipolar {0, 1}.
= Bipolar {-1, +1}.
= Weight : wj, —strength of connection.

Note that w; refers to the weight from
unit j to unit /7 (not the other way round).
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Artificial Neuron

= The bias b is a constant that can be written as
Wy, With y0= b and Wip= 1 such that

Z Wy

= The function 7 is the unlts activation function.
In the simplest case, 7 is the identity function,
and the unit’s output is just its net input. This
is called a /inear unit.

= Other activation functions are : step function,
sigmoid function and Gaussian function.

14/04/2009 13/148
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hen Should 2|\ Solution Be Consicarad ?

»The solution to the problem cannot be explicitly described
by an algorithm, a set of equations, or a set of rules.

»There is some evidence that an input-output mapping exists
between a set of input and output variables.

»There should be a large amount of data available to train

the network.
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Problems Thzat Can Laad to Poor Parformanca ?

= The network has to distinguish between very similar cases
with a very high degree of accuracy.

= The train data does not represent the ranges of cases that
the network will encounter in practice.

= The network has a several hundred inputs.

= The main discriminating factors are not present in the
available data, e.g. trying to assess the loan application
without having knowledge of the applicant's salaries.

= The network is required to implement a very complex
function.

14/04/2009 16/148




Lecture Notes on Neural Networks and Fuzzy Systems Silvio Simani

Applications oi Artificial Neural Networks

= Manufacturing : fault diagnosis, fraud detection.

= Retailing : fraud detection, forecasting, data
mining.

= Finance : fraud detection, forecasting, data mining.

= Engineering : fault diagnosis, signal/image
processing.

= Production : fault diagnosis, forecasting.

= Sales & marketing : forecasting, data mining.
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Dztz) Pra=procassing

Neural networks very rarely operate on the raw
data. An initial pre-processing stage is essential.

Some examples are as follows:
= Feature extraction of images: for example, the analysis of x-rays
requires pre-processing to extract features which may be of interest
within a specified region.

= Representing input variables with numbers. For example "+1" is the
person is married, "0" if divorced, and "-1" if single. Another example
is representing the pixels of an image: 255 = bright white, 0 = black.
To ensure the generalization capability of a neural network, the data

should be encoded in form which allows for interpolation.
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i Dzita) Pre=-orocassing

= CONTINUOUS VARIABLES

= A continuous variable can be directly applied to
a neural network. However, if the dynamic
range of input variables are not approximately
the same, it is better to normalize all input

variables of the neural network.
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.

Simple Neural Networks

Simple Perceptron

14/04/2009 20/148




Lecture Notes on Neural Networks and Fuzzy Systems Silvio Simani

i Outlines

> The Perceptron

e Linearly separable problem
e Network structure

e Perceptron learning rule

e Convergence of Perceptron

14/04/2009 21/148
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THE PERCEPTRON

»The perceptron was a simple model of ANN introduced
by Rosenblatt of MIT in the 1960 with the idea of
learning.

»Perceptron is designed to accomplish a simple pattern
recognition task: after learning with real value training data

{x(i), d@i), i=12, .., p} where d(i) = 1 or -1

»For a new signal (pattern) x(i+1), the perceptron is
capable of telling you to which class the new signal
belongs

X(iF]) —)p | erceptron = lor-1
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i Perceptron

s Linear Threshold Unit (LTU)

O(X): { 1 if Zi=0n Wi Xi >0

-1 otherwise

----------------------
by
"y
L]
]
L]
-~
.

.
.
.
un®
---------------
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| emati ‘the Perceptro

v = £ W +b) = F( wx)

We can always treat the bias 6 as another weight with
inputs equal 1

where f is the hard limiter function i.e.

-

Lif > w,x,+b >0
Y= i=1m
—lifz w.x,+b <0

l l

_ l:1
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capable of solving linearly separable problem ?

Zm: wx, +b=0
=1

m

m
wx, +b<0

Z i wx, +b>0

i=1 ;
i=1
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Learning rule

An algorithm to update the weights w so that finally
the input patterns lie on both sides of the line decided
by the perceptron

Let £be the time, at ¢ = 0, we have
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algorithm to update the weights w so that finally
Input patterns lie on both sides of the line decided by the
perceptron

Let £be the time, at £ = 1

14/04/2009 27/148
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earnmg rule

ate-the-weights w so that finally
input patterns lie on both sides of the line decided by the
perceptron

Let £be the time, at £ =2
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Learning rule

e-weights w so that finally
e input patterns lie on both sides of the line decided by the
perceptron

Let £be the time, at £ =3

w(3)
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In Math

+ 1if x(t)in class +
— 1if x(t)in class -

C

d(t)={

Perceptron learning rule

w(t+1)=w(t)+n(t)ld((r)-
sign  (w (t)e x(1))] x(t)
Where n(t) is the learning rate >0,
+1 if x>0
sign(x) = [ hard limiter function
-1 if x<=0,
NB : d(t) is the same as d(i) and x(t) as x(i)
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i In words:

o If the classification is right, do not update the
weights

o If the classification is not correct, update the
weight towards the opposite direction so that the
output move close to the right directions.

14/04/2009 31/148
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erceptron convergence theorem
(Rosenblatt, 1962)

Let the subsets of training vectors be linearly separable. Then
after finite steps of learning we have

lim w(t) = w which correctly separate the samples.

The idea of proof is that to consider ||w(t+1)-w||-||w(t)-w]|
which is a decrease function of t
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ummary of Perceptron learning ...
i Variables and parameters

X(t) = (m+1) dim. input vectors at time ¢

= (b/ X] (U/ XZ(U/ ""/Xm(z))

w(t) = (m+1) dim. weight vectors

=(-Z/ W](z)/ ress g Wm(U)

b = bias

y(t) = actual response

Nn(Y = learning rate parameter, a +ve constant < 1
d(t) = desired response

14/04/2009 33/148

crrSUiffary 6f PErtEptron learning ...° "™

#ta_aérﬂl di)), i=1,...,p}

v Present the data to the network once a point

v' could be cyclic :

(x(1), d(1)), (x(2), d(2)),..., (X(p), a(p)),
(X(p+1), d(p+1)),...

v or randomly

(Hence we mix time t with i here)
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Summary of Perceptron learning (algorithm)

1. Initialisation Set w(0)=0. Then perform the following
computation for time step t=1,2,...
2. Activation At time step t, activate the perceptron by applying

input vector X(%) and desired response d(t)
3. Computation of actual response Compute the actual response
of the perceptron
) = sign ( w(®) " x(t))

where sign is the sign function
4. Adaptation of weight vector Update the weight vector of the
perceptron

w(t+1) = w(t)+ n@® [d©) - )] xt)

5. Continuation

14/04/2009 35/148
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Questions remain

Where or when to stop?

By minimizing the generalization error

For training data {(X(7), d(1)), i=1,...p}

How to define training error after t steps of learning?

E(t)= 2P, [d(i)-sign(w(t) . x(i)]*
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»

We next turn to ADALINE learning,
from which we can understand
the learning rule, and more general the

Back-Propagation (BP) learning
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»

Simple Neural Network

ADALINE Learning
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i Outlines

s ADALINE
s Gradient descending learning

s Modes of training

14/04/2009 39/148
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%happy Over Perceptron Training

= When a perceptron gives the right answer, no

learning takes place

= Anything below the threshold is interpreted
as 'no’, even it is just below the threshold.

= It might be better to train the neuron based

on how far below the threshold it is.
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ADALINE

DALINE is an acronym for ADAptive LINear Element
(or ADAptive LInear NEuron) developed by Bernard
Widrow and Marcian Hoff (1960).

e There are several variations of Adaline. One has
threshold same as perceptron and another just a bare
linear function.

eThe Adaline learning rule is also known as the least-
mean-squares (LMS) rule, the delta rule, or the Widrow-
Hoff rule.

e It is a training rule that minimizes the output error

using (approximate) gradient descent method.
14/04/2009 41/148
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e Replace the step function in the perceptron with a
continuous (differentiable) function 7/ e.g the simplest is

¢ With or without the threshold, the Adaline is trained based
on the output of the function 7 rather than the final output.

Teac:her Ot
i

Teacher |
— -

&
Error
+
Fl )
Error
&
Perceptron Learning Delta Rule

(Adaline)
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.

After each training pattern x(i) is presented, the correction to
apply to the weights is proportional to the error.

EGY) =v[di)-iwmt) xi@)]? i=1..p
N.B. If fis a linear function f(w(t) - x(i)) = w(t) - x(i)

Summing together, our purpose is to find W which minimizes

E@®) = 2; EGt)

14/04/2009 43/148
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i General Appreach gradient descent method

Jo find g
w(t+1) = w(t)+g( E(W(t) )

so that w automatically tends to the
global minimum of E(w).

w(t+1) = w(t)- E(w(®))n(®)
(see figure in the following...)
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radient dlrectlon is the direction of uphill
e Figure, at position 0.4, the
( Fis E, consider one dim case )

radient is uphill

F(w) .|
o Gradient direction
ey F10.4)

1 1
-1 08 06 -04 -02 0O 02 04 06 08 1
A%
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e In gradient descent algorithm, we have

w(t+1) = w(t) - Fim(t)) n(v)
therefore the ball goes downhill since — F'(w(t))
is downhill direction

F(w) -
0.9
0.8
07} ]
s Gradient direction
0.5 I
0.4 - /
0.3 (
0.2
0.1 /

1 1
-1 -0.8 0.8 -0.4 -0.2 u] 0.2 0.4 0.6 0.5 1

A%
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e In gradient descent algorithm, we have

wt+1) = w(t) - Fimt)) n(z)
therefore the ball goes downhill since — F'(w(t))
is downhill direction

F(w)
0.9
0.8
0.7 F ]
081 Gradient drection
0.5 ]
0.4
0.3 F '
oz
0.1 )
o 1 ""I/ 1
-1 (= 0.6 0.4 o2 o o2 a4 0.5 (= 1
A%
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Zero

F(w) "
0.9 -
a.a
a7 —
06t Gradient drrection
a.s —
0.4
a.3
0.2 F
o.1F /
D—‘1 0.3 0.5 D.Ix'l —EI.I2 DI - D.I2 D.Ix'l 0.5 0.3 1
%

14/04/2009 48/148




Lecture Notes on Neural Networks and Fuzzy Systems Silvio Simani

* * In words
radient method could be thought of as a ball rolling down

from a hill: the ball will roll down and finally stop at the valley

Thus, the weights are adjusted by

wi(t+1) = wi(t) +n@®) 2 [d(i) - AwW©) - X(7) ] () F

This corresponds to gradient descent on the quadratic error
surface E

When f’ =1, we have the perceptron learning rule (we have in
general f">0 in neural networks). The ball moves in the right
direction.
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i Two types of network training:

Sequential mode (on-line, stochastic, or
per-pattern) :

Weights updated after each pattern is
presented (Perceptron is in this c/ass)

Batch mode (off-line or per-epoch) :
Weights updated after all patterns are
presented
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omparison Perceptron and
Gradient Descent Rules

Perceptron learning rule guaranteed to succeed if

= Training examples are linearly separable

= Sufficiently small learning rate n

dLinear unit training rule uses gradient descent
guaranteed to converge to hypothesis with
minimum squared error given sufficiently small
learning rate n
= Even when training data contains noise
= Even when training data not separable by hyperplanes

14/04/2009 51/148
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Perceptron

W(t+1)= W(t)+n(t) [ d(t) - sign (w(t) . x)] x

Adaline (Gradient descent method)
W(t+1)= W(t)+n(t) [ d(t) - f(w(t) . x)] x F'
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Multi-Layer Perceptron (MLP)

Idea: “Credit assignment problem”

« Problem of assigning ‘credit’ or ‘blame’ to
individual elements involving in forming overall
response of a learning system (hidden units)

e In neural networks, problem relates to dividing

which weights should be altered, by how much
and in which direction.
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Lecture Notes on Neural Networks and Fuzzy Systems Silvio Simani

Example: Three-layer networks

orp Output

S/gna/ raut/ng

Input layer  Hidden layer Output layer
14/04/2009 54/148




Lecture Notes on Neural Networks and Fuzzy Systems Silvio Simani

| Properties of architecture

« No connections within a layer

e No direct connections between input and output layers

e Fully connected between layers

e Often more than 2 layers

e Number of output units need not equal number of input units

e Number of hidden units per layer can be more or less than
input or output units

= = Each unit ‘mm" is a perceptron
|
y . = f(zlw]x]+ b )
=
/]
14/04/2009 55/148
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PP (Back Propagation)
N\

gradient descent method
_|_

multilayer networks
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»

MultiLayer Perceptron |

Back Propagating
Learning
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BP learning algorithm
Solution to “credit assignment problem” in MLP

Rumelhart, Hinton and Williams (1986)

BP has two phases:

Forward pass phase: computes ‘functional signal’,
feedforward propagation of input pattern signals through
network

Backward pass phase: computes ‘error signal’,
propagation of error (difference between actual and desired
output values) backwards through network starting at output
units
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|BP Learning for Simplest MLP,
. £I,-d} to minimize

£ = (d oF /2 WO /
= [d - (W(ONT)) F /2
= [d - (W(OWDI)) F /2

w(t)
Error function at the output unit
L 2layers
Weight at time t is w(t) and W(t), example
intend to find the weight w and W at time t+1

Where y = f(w(t)I), output of the input unit

14/04/2009
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i Forward pass phase 1
S O

uppose that we have w(t), W(t) of time t .........

For given input I, we can calculate

WO /‘
y = f(w(t)l) ;
and y
° 2 1Y ]
= f f(w(t) 1))
Error function of output unit will be 1
(d - 0)2/2 2 layers
example
14/04/2009
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Backward Pass Phase

J )
W+1)=W(t)—n dE W)
dw (1)
dE d
=W(t)—n ; de /y
jdw (1) % w(t)
=W (@t)+n(d—-o)f'W()y)y
I
E= (d-07/2 o= f(W()y)
14/04/2009 61/148
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| Backward pass phase
O

o dE_df
ALY @ ’
= (1) +7(d = o) fTW (1)y) w0
=W (t) + nAy
I

where A= (d-0) "’

14/04/2009 62/148




Lecture Notes on Neural Networks and Fuzzy Systems Silvio Simani

Backward pass phase
i_ e, 0

{dE

-----------
..............

.
.......

o= f(W(D)y)
= (WO f(w®)I))
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welight updates are local

L+ D) —w (0)=no ,(¢)1,(¢) (inputunit)
ij (t+1)— ij (1) =nA,(#)y; () (output unit)
output unit
W +1) =W, () zgA, (t)y, (1)
n(d,(t) =0 (f)),f (Ak% (1) y (1)

mputumt
D) —w, (1) = 775 (1) 1,(1)

S et ()Y A OW 1,0

Once weight changes are computed for all units, weights are
updated at same time (bias included as weights here)

We now compute the derivative of the activation function 7().
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Activation Functions

o compute 9; and A,we need to find the derivative of
activation function 7
>to find derivative the activation function must be smooth

Sigmoidal (logistic) function-common in MLP

1
1 +exp(—knet (1))

J (net;()) =

where Kk is a positive constant. The sigmoidal function gives
value in range of O to 1

Input-output function of a neuron (rate coding assumption)

14/04/2009 65/148
Lecture Notes on Neural Netu:orks and I;'uzzy Systems . Silvio Simani
Shape of sigmoidal function
15 i
A saturated
0.5 L
input signal
a
saturated
_|:|5 1 | 1 1 1 | 1 1
-10 -g -B -4 -2 a 2 4 G g 10

Note: when net =0, f= 0.5
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Shape of sigmoidal function derivative

0251

02r

015

01

0.05

Derivative of sigmoidal function has max at x= 0, is symmetric
about this point falling to zero as sigmoidal approaches extreme
values
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Retyirning to local error gradients in BP algorithm we have for

For input units we have

5,(1) = f '"(net [ (1)Y A (OW,

k

= ky ()1 —= y, () A ()W,

k

Since degree of weight change is proportional to derivative of
activation function, weight changes will be greatest when units
receives mid-range functional signal than at extremes
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ork training:
aining set shown repeatedly until stopping criteria are met
ull"presentation of all patterns = ‘epoch’
%+ Randomise order of training patterns presented for each
epoch in order to avoid correlation between consecutive
training pairs being learnt (order effects)

Two types of network training:

\

» Batch mode (off-line or per -epoch)

14/04/2009 69/148
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dvantages and disadvantages of different

modes

Batch mode:
e Faster learning than sequential mode
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* MultiLayer Perceptron I

Dynamics of MultiLayer
Perceptron

reeure RGammvary-of Network Trainirmge s

T I, w(), net(t), y(1), W(t), Net(t), O(t)
Backward phase:
Output unit

Input unit

Wji(t+1)_ wij(t) — 775 j(t)li(t)
= nf "(net (1) D, A (W, (),(1)
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i Network training:

Training set shown repeatedly until stopping criteria are met.

Possible convergence criteria are
» Euclidean norm of the gradient vector reaches a
sufficiently small denoted as 0.
»When the absolute rate of change in the average squared

error per epoch is sufficiently small denoted as 0.
»Validation for generalization performance : stop when
generalization reaching the peak (illustrate in this lecture)
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oals of Neural Network Training

To give the correct output for input
training vector (Learning)

To give good responses to new unseen
input patterns (Generalization)
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Training and Testing Problems

e Stuck neurons: Degree of weight change is proportional
to derivative of activation function, weight changes will be
greatest when units receives mid-range functional signal than
at extremes neuron. To avoid stuck neurons weights
initialization should give outputs of all neurons approximate 0.5

o Insufficient number of training patterns: In this
case, the training patterns will be learnt instead of the
underlying relationship between inputs and output, i.e. network
just memorizing the patterns.

e Too few hidden neurons: network will not produce a
good model of the problem.

e Over-fitting: the training patterns will be learnt instead
of the underlying function between inputs and output because
of too many of hidden neurons. This means that the network
will have a poor generalization capability.

14/04/2009 75/148
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Dynamics of BP learning

is to minimise an error function over all training
rns by adapting weights in MLP

Recalling the typical error function is the mean
squared error as follows

E(t)= ;—Z (d, (1)~ 0, (1)

The idea is to reduce E(t) to global minimum point.
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Dynamics of BP learning

In single layer perceptron with linear activation
functions, the error function is simple, described
by a smooth parabolic surface with a single

minimum
E
W
14/04/2009 77/148
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Dynamics of BP learning

P with non-linear activation functions have complex error
aces (e.g. plateaus, long valleys etc. ) with no single
minimum

An Ugly Cost Surface

local
minima

|

plateau

v

global

PRI LT

l

For complex error surfaces the problem is learning rate must
keep small to prevent divergence. Adding momentum term is
a simple approach dealing with this problem.

W
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Momentum
o ‘ instability while increasing
rate of convergence

e Adding term to weight update equation can
effectively holds as exponentially weight history of
previous weights changed

Modified weight update equation is

Wij(n + 1)_ wij(n) — U§J(n)yz(n)+
+ a[Wij(n)_ wij(n - 1)]

14/04/2009 79/148
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Selecting Initial Weight Values

» Choice of initial weight values is important as this
decides starting position in weight space. That is,
how far away from global minimum

> Aim is to select weight values which produce
midrange function signals

> Select weight values randomly from uniform
probability distribution

» Normalise weight values so number of weighted
connections per unit produces midrange function
signal

14/04/2009 81/148
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onvergence of Backprop
minumum with fast convergence:
= Add momentum
= Stochastic gradient descent
= Train multiple nets with different initial weights

Nature of convergence

= Initialize weights ‘near zero’ or initial networks
near-linear

= Increasingly non-linear functions possible as
training progresses
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iﬁ of Available Data Set for Training

available data set is normally split into three
sets as follows:

= Training set — use to update the weights.
Patterns in this set are repeatedly in random
order. The weight update equation are
applied after a certain number of patterns.

= Validation set — use to decide when to stop
training only by monitoring the error.

s Test set — Use to test the performance of the
neural network. It should not be used as part
of the neural network development cycle.

14/04/2009 83/148
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arller Stopping - Good Generalization

many epochs may overtrain the
etwork and result in overfitting and perform
poorly in generalization.

> Keep a hold-out validation set and test accuracy
after every epoch. Maintain weights for best
performing network on the validation set and stop
training when error increases increases beyond
this.

A

Validation set
error
Training set
No. of epochs l
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“ModélrSeléétion BY Cross-validation™

«@eo few hidden units prevent the network from
rning adequately fitting the data and learning
the concept (rnore than two layer networks).
= Too many hidden units leads to overfitting.

> Similar cross-validation methods can be used to
determine an appropriate number of hidden units
by using the optimal test error to select the model
with optimal number of hidden layers and nodes.

A

Validation set
error
Training set

No. of epochs
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History Background

= Idea of evolutionary computing was introduced in the 1960s by 1.
Rechenberg in his work " Evolution strategies' ( Evolutionsstrategie in
original). His idea was then developed by other researchers. Genetic
Algorithms (GAs) were invented by John Holland and developed by him
and his students and colleagues. This lead to Holland's book "Adaption in
Natural and Artificial Systems" published in 1975.

= In 1992 John Koza has used genetic algorithm to evolve programs to
perform certain tasks. He called his method “Genetic Programming"
(GP). LISP programs were used, because programs in this language can

expressed in the form of a "parse tree", which is the object the GA works

on.

14/04/2009 87/148
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Biological Background
Chromosome.

= All living organisms consist of cells. In each cell there is the same set of
chromosomes. Chromosomes are strings of DNA and serves as a model for
the whole organism. A chromosome consist of genes, blocks of DNA. Each
gene encodes a particular protein. Basically can be said, that each gene
encodes a trait, for example color of eyes. Possible settings for a trait (e.g.
blue, brown) are called alleles. Each gene has its own position in the

chromosome. This position is called locus.

=  Complete set of genetic material (all chromosomes) is called genome.
Particular set of genes in genome is called genotype. The genotype is with
later development after birth base for the organism's phenotype, its physical

and mental characteristics, such as eye color, intelligence etc.
14/04/2009 88/148
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Reproduction.

= During reproduction, first occurs recombination (or

crossover). Genes from parents form in some way the
whole new chromosome. The new created offspring can
then be mutated. Mutation means, that the elements of
DNA are a bit changed. This changes are mainly caused by

errors in copying genes from parents.

= The fitness of an organism is measured by success of the

organism in its life.

14/04/2009 89/148
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Evolutionary Algorithms

utation population of genotypes

o
prood

phenotype space

——
N T .
coding schem O O
recombination selection
e——
1001 1000 *
fithess
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| Pseudo Code of an Evolutionary Algorithm

Create initial random population

Evaluate fitness of each individual

v
. . . YES
Termination criteria satisfied ? ‘—p[ sto
¥ Nno P

Select parents according to fitness
v

Recombine parents to generate offspring
\4

Mutate ovffspring

Replace population by new offspring

14/04/2009
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A Simple Genetic Algorithm

ptimization task : find the maximum of f(x)

for example f(x)=xesin(x) X e[0,x]
« genotype: binary string s<[0,1]° e.g. 11010, 01011, 10001
* mapping : genotype = phenotype ,,_;

binary integer encoding: x =7 ° -21 g ¢ 2=l /(2n-1)

Initial population

genotype integ. phenotype fithess prop. fithess
11010 26 2.6349 1.2787 30%
01011 11 1.1148 1.0008 24%
10001 17 1.7228 1.7029 40%

00101 5 0.5067 0.2459 6%
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Radial Basis Functions
Overview
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Hladial-basis function (RBF) networks

e RBF = radial-basis function

e a function which depends only on the
radial distance from a point
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asis function (RBF) networks
w

Fs are functions taking the form
where ¢ is a non-linear activation function, xis the

o (I x— x, )

input and x; is the /%A position, prototype, basis or

centre vector.

The idea is that points near the centres will have
similar outputs (i.e. if x ~ x/ then F(x) ~ f (xi))
since they should have similar properties.

The simplest is the linear RBF : ¢(x) =||x — x|
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b Multi-quadrics
2 2N\1/2
p(r)=(r"+c”)

for some c>0
(b) Inverse multi-quadrics

¢(7"): (r2+62)_1/2
for some c>0
(c) Gaussian 5

p(r) =

for some o >0
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> Idea is to use a weighted sum of the outputs from the

basis functions to represent the data.
» Thus centers can be thought of as prototypes of input

data.

%
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distributed local
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Starting point: exact interpolation

Each input pattern x must be mapped onto a
target value d

!
ry

Approximation (Fitting)
MLP

1 1 1 1 1 1 1 1 1
0 0.1 0.z 03 04 ns 08 07 ng 09 1
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hat is, given a set of N vectors X;and a corresponding set

d;(the targets), find a function F that
atisfies the interpolation condition:

F(x)=d fori=1,..,6N

or more exactly find:
N
F(x) =2 wo(llx —x,|1)
j=
satisfying:

F@J=iW#W%—%m=i
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| ¢ (=0, (Ily-x,[))

W

Input Output

Input layer : O (Y)=0y (|[¥-xnl1)

e output = 2w, ¢; (¥ - X))

e adjustable parameters are weights w;

e number of input units <number of data points
e Form of the basis functions decided in advance

14/04/2009 101/148
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To summarize:
i For a given data set containing N points (X, d,), i=1,...,.N
Choose a RBF function ¢

J
’0

L)

Calculate ¢(x; — x;)
Solve the linear equation ® W = D
Get the unique solution

Done

*e

%

53

*%

%o

*

> Like MLP’s, RBFNs can be shown to be able to approximate
any function to arbitrary accuracy (using an arbitrarily large
numbers of basis functions).

> Unlike MLP’s, however, they have the property of ‘best
approximation’ i.e. there exists an RBFN with minimum
approximation error.
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biems with exact mterpolatlon
produce poor generalisation performance as only data

ping
Overfitting problem

Bishop(1995) example

Underlying function f(x)=0.5+0.4sine(2r x)
sampled randomly for 30 points

added Gaussian noise to each data point
30 data points 30 hidden RBF units

fits all data points but creates oscillations due added noise
and unconstrained between data points

14/04/2009 103/148
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1.0
y
05
0.0
0.0

All Data Points 5 Basis functions

14/04/2009 104/148




Lecture Notes on Neural Networks and Fuzzy Systems Silvio Simani

To fit an RBF to every data point is very
nefficient due to the computational cost of
matrix inversion and is very bad for

generalization so:

v Use less RBF’s than data points, 7.e. M<N

v Therefore don’t necessarily have RBFs centred at data points
v" Can include bias terms

v Can have Gaussian with general covariance matrices but
there is a trade-off between complexity and the number of

parameters to be found eg for drbfs we have:
14/04/2009 105/148
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i Introduction

Silvio Simani

» The ability to cluster data (concepts, perceptions, etc.)

= essential feature of human intelligence.

> A cluster is a set of objects that are more similar to each

other than to objects from other clusters.

> Applications of clustering techniques in pattern recognition

and image processing.

» Some machine-learning techniques are based on the
notion of similarity (decision trees, case-based reasoning)

» Non-linear regression and black-box modelling can be

based on the partitioning data into clusters.

14/04/2009
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* Section Outline

» Basic concepts in clustering
= data set
= partition matrix
= distance measures

» Clustering algorithms
= fuzzy c-means
= Gustafson—Kessel
> Application examples
= System identification and modelling
= diagnosis

14/04/2009

Silvio Simani
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* Examples of Clusters

Silvio Simani
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Problem Formulation

Iven is a set of data in R” and the (estimated)
number of clusters to look for (a difficult problem,
more on this later).

» Find the partitioning of the data into subsets
(clusters), such that samples within a subset are
more similar to each other than to samples from
other subsets.

» Similarity is mathematically formulated by using a
distance measure (i.e., a dissimilarity function).

» Usually, each cluster will have a prototype and the
distance is measured from this prototype.

14/04/2009 110/148
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* Distance Measure

FPCTTL bbbt T
[ ] [ ]
[
[ P ®
e .0
o Y
L 1 J
o R
e [ *
'''''
"l -
_______________________

Cluster centers (means):

v= [0 ]
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Distance Measures

» Euclidean norm:

X dZ(Zj, Vi) = (Zj — Vi)T (Zj o Vi)

» Inner-product norm:

n d? Ai(Zj’ vi) = (z; = v))TA{z; —v))

» Many other possibilities . . .
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* Optimisation Approach

» Objective function (least-squares criterion):

e .-'\'T
J(Z:V,U,A) =D " uldy (z),v))

i=1 j=1
» subject to constraints:
0<p; 5 <1, i=1,...,c. j=1,....N membership degree
O migly d=1; e no cluster empty
J=1
p
Z;_L,-_J =1, =] o wpd¥ total membership
=1
1 [V T &9OUT + LI LTU
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* Fuzzy Algorithm
Repeat:

AT

1. Compute cluster prototypes v; = SN
=1 H ik

(means):
2. Calculate distances: dip = (2 — vi) (2, — v))
- .. o 1
3. Update partition matrix: |/ = > ()

until ||AUJ| <e

14/04/2009 114/148




wwe i) @ta~Driven-(Black-Box) s
* Modelling

Prior knowledge
¢ Output data
/

u ) 4
. Model -
! i "

(

Input data

» Linear model (for linear systems only, limited in use)
» Neural network (black box, unreliable extrapolation)
» Rule-based model (more transparent, ‘grey-box’)

14/04/2009 115/148

Lecture NotExtrMaienSyef Rules by Silvio Simani
* Fuzzy Clustering

A

““ | BN ....
X, .‘ o "‘
1 et L o L]
proj ection m © P oo 1
— o @9 L) 4
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* Fuzzy Clustering

y Cluster 4
10}
8 L
st 5
E
2
o
4} 5

Takagi-Sugeno model 2 4 6 8 X
Rule-based description: o n | W
If x is A, theny = a,x + b, T A A, T A A,
IfxisA,theny =ax+b, 2T
etc... —
2 4 (S 8 X
48
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Example: Non-linear
sive System (NARX)

v(k+1) = fla(k)) + e(k)

p
20— 2, 0O <uw

fl)=4¢ =22, —0.5<x <05

\2a7+2, r < —0.5
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* Data Preparation

1. Choose model order p

w(k+1)= flelk),x(k=1),....0(k —p+1))

xfz)
2. Form pattern matrix Z to be clustered

x(1) x(2) x(p) x(p+1)

" x(2) x(3) x(p+1) x(p+2)

7l _
(N=p) a(N—=p+1) ... a(N-=1) x(N)
14/04/2009 1197148
Lecture Notes on Neural Networks and Fuzzy Systems Silvio Simani

* Clustering Results

14/

257
at

1.5
1k

1 0sF

x(k+1)

oF
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1T,

1.5
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-2.5
-1.5

lembership grade

M

0.6

=
i)

2
'Y

o 2
o b
3
-

Validity measure

=

(=]

optimal model order
and number of clusters

p=2-7

(]

Megative

3 4 5
Number of clusters

About zero Positive
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* Rules Obtained

1) If x(k) is Positive  then x(k+ 1) = 2.0244x(k) — 2.0289
2) If w(k)is About zero then x(k+ 1) = —1.8852x(k) + 0.0005

3) If (k) is Negative then x(k+ 1) = 1.9050x(k) + 1.9399

original function:  f(x) =< —2z, —0.5<x<0.5
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o Cl@Mtification of Pressure-
* Dynamics

JLOut]e??a]ve u,
7

Controlled h%
Pressure

Water

& ’_/lnlet air flow
M

ass-flow | U,
controller -
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Input DATA Output
) 2
5 2
S 2
- 2
(=9
- > >
Time Time
Rules FUZZY MODEL  Membership f.
1) If Valve is Open and Open  Halfclosed Closed
Pressure is Low then .... !
2) If Valve is Closed and
Pressure is High then ....
3) ... °% 50 100

: B

PREDICTIVE CONTROLLER

Valve Pressure
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‘ Application Examples

Neural Networks for
Non-linear ldentification, Prediction and Control
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Nonlinear Dynamic System

s [ake a static
NN

s From static to
dynamic NN

= "Quasi-static”
NN

= Add inputs,
outputs and
delayed signals

(k) = F(u(k =1),u(k —2),u(k =3), 5(k=1), 7 (k -2), 7 (k -3))

Example of Quasi-static NN
with 3 delayed inputs and outputs,

14/04/2009
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i Nonlinear System Identification

: = f(.), unknown target
Hia function
= Nonlinear dynamic
L m D) model | |
rr- ¥ Apprpxnm:—:\ted via a
quasi-static NN
\ = Nonlinear dynamic
] system identification
7,0 » Recall “linear system
identification”
Figure 2.1 Input-output model
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| Nonlinear System Identification

—

Y, ® [l

=]

Figure 2.1 Input-output model

u(k)

i :

!."'—I_J

] ypletD)

1) C i

[=']

L@ |
FIR o W

c e(k+1)

T P— ]
]
u(k) neural
| net

14/04/2009

L’ﬂ_ Ynet®HD)
Target function: yp(kt1) =1(.)

ldentified function: yygr(k+t1)=F(.)
Estimation error:

e(k+1)

127/148

‘“‘Fﬁnﬁﬁwfs Systerii Neural Contiol”

d
—_— u ¥y
CMAC plant e
¥

cl

u

*
u
c.

d: reference/desired response
y:
u: system input/controller output

system output/desired output

desired controller input

: NN output

controller/network error

14/04/2009

The goal of training is to find an
appropriate plant control u from

the desired response d. The weights
are adjusted based on the difference
between the outputs of the networks
I & II to minimise e. If network I is
trained so that y =d, thenu=u".
Networks act as inverse dynamics

identifiers.
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Neural Networks for Control

r Yd u - y

1
1 -
n | . .“l’ B
— M » NNc d G
1 4
v e
| - Figure 3: Training the neural network NN¢

Figure 1: Direct Inverse Control using neural networks

Figures 1 and 3 Problems.

* Open-loop unstable models
* Disturbances

—ﬁ(f—. NN s G ',

Figure 2: Model Reference Control using neural networks

129/148
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Neural Model Reference Adaptive Control

The signal e 1s used to train

—<1} or adapt online the weights

T of the controller NN.. Two

_ﬁ?_‘ e 1 ° g are the approaches used to

design a MRAC control for

Figure 2: Model Reference Control using neural networks | dIl unknown plant: Direct
and Indirect Control.

M

Direct Control: This procedure aims at designing a controller
without having a plant model. As the knowledge of the plant is
needed in order to train the neural network which corresponds to the
controller (i.e. NN.), until present, no method has been proposed to
deal with this problem.
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Neural Model Reference Adaptive Control

Indirect Control

Figure 2: Model Reference Control using neural networks " ;
M 4".04_
The signal e, is used to 5 L
0 o E . '\l;“'-\l ';04—1‘
train or adapt online the ; ; e
weights of the neural : PV ;
NI "‘( G -
controller NN.. I
¥
Figure 4: Indirect MRAC
14/04/2009 IOT/ IO
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i Indirect Control: NN, & NN

W e 1 This approach uses
|V oOommn two neural
networks: one for
modelling the plant
.' dynamics  (NN,,),
o Oy and another ol\;lle
trained to control the
% ! G Y real plant (G) so as

1ts behaviour is as
close as possible to
the reference model

Figure 4: Indirect MRAC (M) via the neural
controller (NN).

N e E E T e E E - - -
r

h
h
~

v
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i Indirect Control (1)

Yot
R e O
« &
_______________
]
]
1
1
1
, ll.‘ -‘i
1 - 'y 1
1 L 2 P ,e_\q
] <, 4 .
1 L
. MEBSSVIN . TR
' . ’ .' + -
1 12°
: .tl s
’
r
——M ’ u y
NN G
H
»
¥

Figure 4: Indirect MRAC

14/04/2009

The neural network
NN,; 1s trained to
approximate the plant
G iput/output relation
using the signal ey,
This 1s usually done
offline, using a batch
of data gathered from

the plant in open loop.
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Indirect Control (2)

o M ‘4"04_‘

oy

Figure 4: Indirect MRAC

Then, NN,, 1s fixed, its output and
behaviou are known and easy to

compute.
14/04/2009

Once the model NN, is
trained, 1t 1S used to train the
network NN. which will act
as the controller. The model
NN,, i1s used instead of the
real plant’s output because the
real plant is unknown, so
back-propagation algorithms
can not be used. In this way,
the control error e. 1is
calculated as the difference
between the desired reference
model output y, and y, which
1s the closed loop predicted
output.
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i Model Reference Control

Matlab and Simulink solution

Reference 9
Model
®
® Controller Model State
Demand Network rorce Network

\ Error

Neural controller, reference model, neural model
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t Matlab NNtool GUI (Graphical User Interface)

...') N etwork /D ata M anages | — I ] _Dﬂ
g uts: Metworks; Cutputs;
] netuork] outs
retuark2 outl O
Targets: Errors!
W ErrS
errifl
Ihput Delay States: Layer Delay States:

rMetworks and Data
Help ‘ hew Data.. ‘ NewNetwork...J

Impﬁrt.. I Export.. J Vi J [Delete ‘

- Ietwarks only -
Initialize...l Simulate___J Train.. J Adapt... ‘
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;ﬁ Control of a Robot Arm Example

Model Reference Controller

M Clock |
Random Reference @l
Tarque Angle >
.
X(2Y)
Plant Graph
(Robot Arm)
Neural Network Model Reference Control of a Robot Arm _
{Double click on the *?" for more info) Double click
here for
Simulink Help
To start and stop the simulation, use the "Starl/Stop”
selection in the "Simulation” pull-down menu
14/04/2009 137/148
Lecture Notes on Neural Networks and Fuzzy Systems Silvio Simani

Control of a Robot Arm Example

<} Model Reference Control Z E|E|
File ‘Window Help

Modw! Refersnce Cortroles

e—

Random Retence

Model Reference Control

Metwaork. Architecture

Size of Hidden Layer 13 Mo. Delayed Reference Inputs 2 ool Hlotuork Mods! Fatarance ol of okl Aem - I o i
Simubnk Help
Mo. Delayed Controller Dutputs 1 T e ™.

- Ma. Delaved Plant Outputs 2

Training Data

t arimum Feference Yalus o7 Cantraller Training S amples 5000

Minirmum Reference Walue 07 "
1 1
b awirmum |nterval Yalue [sec) 7 Fieference Model: Erowse u »- ‘ g s > s .;@

- — y
L Veloci Position
Minirur [nteryal Walue [sec) | k] |mb0t[ef ty
Generate Training D ata | Irmpart D ata | Export Data |

Training Paraneters Friction
Cantroller Training Epochs 10 Contraller Training Segments an 107sin(u(1)) |
WV Use Curent Weights [ Use Curnulative Training -
Gravity
Flant Idertification | rait Eartialen | [ Cancel | A |

Perform plant identification before controller training. |
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<} |Plant ldentification |Z”E|E|
File ‘Window Help

Flant Identification

MHetwork Architecture

Size of Hidden Layer 10 Ma. Delaved Plant Inputs 2
Sampling Interval [sec) 0.05 Mo. Delayed Plant Outputs ,T

[ Mamalize Training Data

Training Data

Training Samples | 10000 W Limit Dutput Data

bl airnurn Plant Input 15 bl i Plart Dutput 31

Mirirmurm Plant Input ,T Mirirnurm Plant Output ,T - -
Maximum |nterval Value [sec] ,T Simulink Flant Model: Erowse Plant Identlfi catlon :

MinimLim [nbereal Value [sec) | i | robotarm

Generate Training D'ata | Impoart D ata | Export Data | Data generation from the
Training Parameters
Training Epachs 300 Training Function ’m Reference MOdeI f9r‘
v Usze Curent 'Weights [v Uszealidation D ata v Usze Testing Data Neu ral Network tral n l ng

[rafty ettt | (o | Cancel | AppE| |

Generate or import data before training the neural network plant. ‘
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After Plant
Identification:

B n D = ow s
T T

Gimdlstion conchided.
Accept Doty Fepct Dot Plraen Accepd o Hepeed Dala bn conlinue,

Neural Network training

14/04/2009 140/148




Lecture Notes on Neural Networks and Fuzzy Systems Silvio Simani

Control of a Robot Arm Example

<} Plant Identification
File Window Help

Flant ldentification

w

Random Retence

MHetwork Architecture

Size of Hidden Layer 10 Ma. Delayed Plant Inputs 2 ‘
Mo. Delayed Plant Outputs 2 | !

| Homalee Tranina Dete e ik o o 3 o e ey e
Trainng Data T g
| 10000 v
I B
After Plant
[ er rian
|

| Identification:

Eraze Generated Data | Import Data | Expart Data

Training Parameters

Training Epochs 00 Training Function | ziim -
¥ Use Current weights v Use“alidation D ata ¥ Use Testing Data Neu ral Network trai n i ng

Train Metwork | [ | Cancel | Al |

Your training data set has 10000 samples.
Y'ou can now train the network.
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'l Fil= Edit “iew Insert Tools ‘Window Help
Input Plant Output Input Plant Output
20 20
10 E 1 " m 2
a0 1] 1] 1]
10 5 0| -0 2
-20 -20
1] 100 200 1] 100 200 0 a0 100 1] 50 100
w10 Error NN Output w10 Error NN Output
2 1 2
2 2
| 0
1] o ]
| 2
2 -2
-2 | -4
1] 100 200 1] 100 200 o a0 100 1] A0 100
time [s) time [s) | time (s) time (=)

Training and Validation Data
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h .

File Edit Wiew Insert Tools ‘Window Help
- ! el L. . Performance is 2.46085e-010, Goal is 0
1D T T T T T T
10 2
=
a1}
0 ] e
o
e
-10 E =
=
20 @
&0 100 0 &0 100 &
z
« 10t Error NN Qutput =
2 =
ek}
=
2 @
[=2]
i=
1=
D 0 =
2 1|:|'1D 1 1 1 1 1 1
2 0 1 2 3 4 5 B 7
a 50 100 a 50 100 Stop Training_| 7 Epochs
time (g] time (g] T
Testing Data and Training Results
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<) Model Reference Control

File ‘Window Help
=

Model Reference Control

Metwork Architecture

Size of Hidden Layer 13 Mo, Delayed Reference Inputs 2
Ma. Delayed Controller Dutputs 1 '|."\v-|',
I Mo. Delayed Plant Dutputs 2 Fco: Fomm o

Training D ata

Maximum Reference Value o7 Contraller Training Samples F000

Minimum Reference Yalue 07 |Defines how many data points will be genera

b agimurn Interval ¥ alue [sec] 2 Reference Model: Browse

Minimum [nterval Walue [sec) | 01 | rabotref

ncs Corfrale

r

Tio start and £200 7 SMULSOR, USS the “STrSng”
‘SelecH0n i the “Samuaton” pull-Gown meny

Generate Training Data I Impaort Cata I Export Data |

Training Parameters

Cantraller Training E pochs 10 Controller Training S egretits n

v Use Current weights [ Usge Cumulative Training

Plantldentificationl rait Eamtal Er I 1] Cancel | S 1] |

‘ Generate or import data before training the neural network controller. |

Plant identification with a NN
Data Generation for NN Controller Identification
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<} Input-Output Data for NN Model Reference Control |:|E|E|
== Reference Model Input
1 T r r . .
05
D L

Referunce

™ RelBnce

o &0 100 150 200 280
time (5]
Reference Model Output ) ) )
1 i : : : : e | o
05 SaleCHON N the “Samuation” pul-cown menuy
ot
05¢
-1 1 | | | |
o &0 100 150 200 280
time (s]

Simulation concluded.
Accept Data I Refuse Data I Please Accept or Reject Data to continue.

Accept the Data Generated for
NN Controller ldentification
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<} Model Reference Control

File ‘window Help

Model Reference Control

. Mide! Refer Cortruder
Metwork Architectune e

Size of Hidden Layer 12 Mo. Delayed Reference [nputs ]
Mo, Delayed Contraller Outputs 1

I Mo, Delaved Plant Outputs ]
Traiting D ata Dosble ik an o 3 o e
| 07 EEl
li

R
| |

Erase Generated D ata I Import Data | Export D ata |
NN Controller
Contraller Training Epochs 10 Contraller Training Segments a0 Trai n i ng
v Use Current weights [ Use Cumulative Training
Flart |dentification | Train Contraller I iy Cancel I SEpl I

Your raiming data set has 6000 samples.
You can now train the network.
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File Edit ‘iew Insert Tools ‘Window Help HE
3 Performance is 3.12467 e-005, Goal is 0
10 i i i , . Reference Model Input
1 . . :
0.5 4
D L
05t
3 _1 1 1 1 1 1
o, 0 a0 100 160 200 280
fax) i .
= I tlme'&s)
= Reference Model Qutput (blue), Heural Network Output (green)
= 1 r T T T .
05 . l
i |
ast
10° ' ' ' ' ' ' ' ' ' g 50 1 50 200 250
0 1 2 3 4 5 (5 7 a8 9 10 time ()
Stop Training | 10 Epochs

NN Controller Training and Results
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Random Retence

u Hewral Notwork Model Rederence Control of 2 Robot Am
{Dioutls chick on the “7* ket mees inl) s I
T 52301 and $200 1he smulason. use the “F1arSing”
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