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LA.6 MATRIX FUNCTIONS

Consider a scalar functiofi(x) : & — R admitting the power expansion

[e.0]
f) =Y cix'. (LA.6.1)
i=0
Definition LA.6.1 — The matrix functionf (A) of the squarén x n) matrix A is defined
as - |
A=) c Al (LA.6.2)

i=0
This definition leads to the following properties.

Property LA.6.1 — The multiplication of a square matrix by any of its functions is
commutative, i.e.
A f(A) = f(A)A. (LA .6.3)

Property LA.6.2 — The spectrum off (A) is given by f(A1), ..., f(A,) Whereiq,
..., A, denotes the spectrum df

COMPUTATION OF MATRIX FUNCTIONS

A possible way to compute matrix functions relies on the interpolating polynomial
algorithm. Consider, to this purpose, the minimal polynomiad pf

m) =2 +ag M a1 A+ a; (LA .6.4)
then for any eigenvalue of, 1;, and for any integet,

MAE = g )T 28— a0k (LA .6.5)


LEVEL

Module LA.6 concerns the following levels:

ADVANCED (SHORT and EXTENDED)

Playing ants have been designed by Fabio Vettori

CONTENTS

Module LA.6 defines matrix functions and describes the interpolating polynomial algorithm for their computation.
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By substituting(LA.6.5) in (LA.6.1) it is thus possible to eliminate all powers greater
or equal tou and obtain the relation

u—1
FO) =) v (LA.6.6)
i=0

for suitable values of the coefficients The polynomia(LA.6.6)is called arinterpo-
lating polynomiabf f (x) because itassumes the same valug@$sin correspondence
of theu scalarsiy, ..., ,. When the zeros ofi(1) are distinct it is possible to write
the system of equations

Vy=f (LA.6.7)
whereV is the Vandermonde matrix
1 a ... AT
|t 2 o (LA.6.8)
1, . pit
y=[rov1-o s vuea]’ (LA.6.9)
F=[f00, G2, ... 01" (LA.6.10)

because of the nonsingularity &f, the vector of coefficientg is given by
y=V'f. (LA.6.11)

When the multiplicity of one or more zerosmf(}) is greater than 1, it is still possible

to write u independent equations observing that any multiple zero of a polynomial
annihilates also its derivatives up to its multiplicity minus one. Assuming, for instance,
the multiplicity of A1 equal to 2, matriXLA.6.8) will be substituted by

(1 a0 A2 L at
0 1 24 ... (u—1A?

V=1 2 2 ... st (LA.6.12)
|1 a1 A2 M

and f (LA.6.10) by

fF=[f0, 00, FG2) ..., fOu-D]". (LA .6.13)
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Since the minimal polynomial of is annihilated byA, also f(A) can be expressed as

u—1
fA)=> yA. (LA .6.14)
i=0
Once that the coefficientg have been computed by means(bA.6.11) it is thus
possible to obtairf (A) using relationLA.6.14).

ALGORITHMS BASED ON SIMILARITY TRANSFORMATIONS

Consider the similarity transformation
B=T71AT (LA.6.15)
whereT is a nonsingulatrn x n) matrix. Since
B* =T171AFT, (LA.6.16)
from definition(LA.6.2) it follows that
fB) =T f(AT (LA.6.17)

or
f(A)=T f(B) T (LA .6.18)

A class of algorithms to compute matrix functions relies on transformations leading to
matrices whose structure (triangular, companion, Jordan form) allows an easier com-
putation of f (B); the desired functiorf (A) is then computed by means @fA.6.18).

The functions of matrices in the Jordan form can be obtained easily; considering,
for instance, the functiotf (A) = 4!, for the Jordan matrix

Jiu 0 ... O
0O Jip ... O

J = ) _ . ] (LA.6.19)
0 0 ... Jy

where the generi¢k x k) Jordan block/;; associated with,; is

A1 0 ... 0
O A 1 ... O
Jik=1 . . . . s (LA.6.20)

0O 0 O ... X
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we obtain

eJ11t o ... 0
I 0 /22 .. 0
O (LA 6.21)
0 0 ... elwt

where the exponentials of the Jordan blocks exhibit the following structure

e)»l't te)»,'l‘ tze)»,'t/z
0 el tehit

elikt = | , , . (LA.6.22)
0 0 0 erit

Simple expressions can be given also fgr) = A*

Jll
0o JE ... 0
= 0 TR (LA.6.23)
0 Tir

k—1
0 A %

Jk —

1

Ak ke — pak2
(LA .6.24)




