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LA.6 MATRIX FUNCTIONS

Consider a scalar functionf (x) : R → R admitting the power expansion

f (x) =
∞∑
i=0

ci xi . (LA .6.1)

Definition LA.6.1 – The matrix functionf (A) of the square(n×n) matrixA is defined
as

f (A) =
∞∑
i=0

ci Ai. (LA .6.2)

This definition leads to the following properties.

Property LA.6.1 – The multiplication of a square matrix by any of its functions is
commutative, i.e.

A f (A) = f (A) A. (LA .6.3)

Property LA.6.2 – The spectrum off (A) is given byf (λ1), . . . , f (λn) whereλ1,

. . . , λn denotes the spectrum ofA.

COMPUTATION OF MATRIX FUNCTIONS

A possible way to compute matrix functions relies on the interpolating polynomial
algorithm. Consider, to this purpose, the minimal polynomial ofA,

m(λ) = λµ + a1 λµ−1 + . . . + an−1 λ + an; (LA .6.4)

then for any eigenvalue ofA, λj , and for any integerk,

λ
µ+k
j = −a1 λ

µ+k−1
j − . . . − an−1 λk+1

j − an λk
j . (LA .6.5)

LEVEL

Module LA.6 concerns the following levels:

ADVANCED (SHORT and EXTENDED)

Playing ants have been designed by Fabio Vettori

CONTENTS

Module LA.6 defines matrix functions and describes the interpolating polynomial algorithm for their computation.
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By substituting(LA.6.5) in (LA.6.1) it is thus possible to eliminate all powers greater
or equal toµ and obtain the relation

f (λj ) =
µ−1∑
i=0

γi λi
j (LA .6.6)

for suitable values of the coefficientsγi . The polynomial(LA.6.6) is called aninterpo-
lating polynomialof f (x) because it assumes the same value asf (x) in correspondence
of theµ scalarsλ1, . . . , λµ. When the zeros ofm(λ) are distinct it is possible to write
the system of equations

V γ = f (LA .6.7)

whereV is the Vandermonde matrix

V =




1 λ1 . . . λ
µ−1
1

1 λ2 . . . λ
µ−1
2

...
...

. . .
...

1 λµ . . . λ
µ−1
µ


 (LA .6.8)

γ = [
γ0, γ1, . . . , γµ−1

]T
(LA .6.9)

f = [
f (λ1), f (λ2), . . . , f (λµ)

]T ; (LA .6.10)

because of the nonsingularity ofV , the vector of coefficientsγ is given by

γ = V −1f. (LA .6.11)

When the multiplicity of one or more zeros ofm(λ) is greater than 1, it is still possible
to write µ independent equations observing that any multiple zero of a polynomial
annihilates also its derivatives up to its multiplicity minus one. Assuming, for instance,
the multiplicity ofλ1 equal to 2, matrix(LA.6.8) will be substituted by

V =




1 λ1 λ2
1 . . . λ

µ−1
1

0 1 2λ1 . . . (µ − 1)λ
µ−2
1

1 λ2 λ2
2 . . . λ

µ−1
2

...
...

...
. . .

...

1 λµ−1 λ2
µ−1 . . . λ

µ−1
µ−1




(LA .6.12)

andf (LA.6.10)by

f = [
f (λ1), f

′(λ1), f (λ2) . . . , f (λµ−1)
]T

. (LA .6.13)
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Since the minimal polynomial ofA is annihilated byA, alsof (A) can be expressed as

f (A) =
µ−1∑
i=0

γi Ai. (LA .6.14)

Once that the coefficientsγi have been computed by means of(LA.6.11) it is thus
possible to obtainf (A) using relation(LA.6.14).

ALGORITHMS BASED ON SIMILARITY TRANSFORMATIONS

Consider the similarity transformation

B = T −1A T (LA .6.15)

whereT is a nonsingular(n × n) matrix. Since

Bk = T −1Ak T , (LA .6.16)

from definition(LA.6.2) it follows that

f (B) = T −1f (A) T (LA .6.17)

or
f (A) = T f (B) T −1. (LA .6.18)

A class of algorithms to compute matrix functions relies on transformations leading to
matrices whose structure (triangular, companion, Jordan form) allows an easier com-
putation off (B); the desired functionf (A) is then computed by means of(LA.6.18).

The functions of matrices in the Jordan form can be obtained easily; considering,
for instance, the functionf (A) = eAt , for the Jordan matrix

J =




J11 0 . . . 0

0 J12 . . . 0
...

...
. . .

...

0 0 . . . Jhr


 (LA .6.19)

where the generic(k × k) Jordan blockJik associated withλi is

Jik =




λi 1 0 . . . 0
0 λi 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . λi


 , (LA .6.20)
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we obtain

eJ t =




eJ11t 0 . . . 0

0 eJ12t . . . 0
...

...
. . .

...

0 0 . . . eJhr t


 (LA .6.21)

where the exponentials of the Jordan blocks exhibit the following structure

eJikt =




eλi t teλi t t2eλi t /2 . . .

0 eλi t teλi t . . .
...

...
...

...

0 0 0 eλi t


 . (LA .6.22)

Simple expressions can be given also forf (A) = Ak:

J k =




J k
11 0 . . . 0

0 J k
12 . . . 0

...
...

. . .
...

0 0 . . . J k
hr


 (LA .6.23)

J k
ij =




λk
i kλk−1

i k(k − 1)λk−2
i . . .

0 λk
i kλk−1

i . . .

...
...

. . .
...

0 0 . . . λk
i




. (LA .6.24)
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