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Linear
Algebra

LA.4 NORMS OF VECTORS AND MATRICES

The definition of norm for vectors and matrices provides a proper language to define
notions like “small perturbations”, “near rank deficiency” and “distance” in vector
spaces.

Definition LA.4.1 (Vector norms) – Avector normonRn, denoted as‖·‖, is a function
Rn → R, that satisfies the following properties:

i) ‖x‖ ≥ 0 ∀x ∈ Rn, ‖x‖ = 0 if and only ifx = 0;

ii) ‖γ x‖ = |γ |‖x‖ ∀ γ ∈ R, x ∈ Rn;

iii) ‖x + y‖ ≤ ‖x‖ + ‖y‖ ∀ x, y ∈ Rn.

A useful class of norms is given by Holder orp–norms defined as

‖x‖p = (|xp

1 | + . . . + |xp
n |)1/p

, p ≥ 1 (LA .4.1)

assuming that a finite limit exists forp → ∞. The most common norms can be
obtained takingp = 1, 2 and∞ in (LA.4.1):

• ‖x‖1 = |x1| + . . . + |xn|;
• ‖x‖2 =

√
|x2

1| + . . . + |x2
n| = √

xT x (l2 or Euclidean norm defining the length
of x);

• ‖x‖∞ = max1≤i≤n|xi | (l∞ or infinity–norm).

p-norms satisfy the following Holder inequality

| xT y | ≤ ‖x‖p ‖y‖q with
1

p
+ 1

q
= 1 ; (LA .4.2)

takingp = q = 2 in (LA.4.2) we obtain the Cauchy-Schwartz inequality

|xT y| ≤ ‖x‖2 ‖y‖2 . (LA .4.3)
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For any nonzero vectorx and norm, the normalized vectoru having the same direction
asx and unitary norm is given by

u = 1

‖x‖ x. (LA .4.4)

Vector norms define distances in vector spaces; thus ifx̂ denotes an approximation of
x then, for a given vector norm, the absolute error is given by

ε = ‖x̂ − x‖ (LA .4.5)

while the relative error is defined as

ε = ‖x̂ − x‖
‖x‖ . (LA .4.6)

Definition LA.4.2 (Matrix norms) – Amatrix norm, denoted as in the vector case by
‖ · ‖, is a scalar function that satisfies the following properties:

i) ‖A‖ ≥ 0 ∀A ∈ Rm×n, ‖A‖ = 0 if and only ifA = 0;

ii) ‖γA‖ = |γ |‖A‖ ∀ γ ∈ R, A ∈ Rm×n;

iii) ‖A + B‖ ≤ ‖A‖ + ‖B‖ ∀ A, B ∈ Rm×n.

A further property of matrix norms (consistency) is given by the following relation

iv) ‖A B‖ ≤ ‖A‖‖B‖.

For any vector norm‖ · ‖p, the induced matrix norm‖A‖p is defined as

‖A‖p = sup
x 6=0

‖Ax‖p

‖x‖p

. (LA .4.7)

The matrix norms corresponding to one, two and infinity vector norms are:

• ‖A‖1 = sup1≤j≤n

∑m
i=1 |aij |;

• ‖A‖2 = σmax , whereσmax denotes the largest singular value ofA;

• ‖A‖∞ = sup1≤i≤m

∑n
j=1 |aij |.

p-norms satisfy the following important property

‖Ax‖p ≤ ‖A‖p ‖x‖p ∀ x ∈ Rn, A ∈ Rm×n (LA .4.8)

where the equality must hold for at least one nonzero vectorx. A vector norm‖ · ‖
and a matrix norm‖ · ‖′ are defined as compatible when

‖Ax‖ ≤ ‖A‖′‖x‖ ∀x ∈ Rn, A ∈ Rm×n (LA .4.9)
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so that any vector norm and its induced matrix norm are always compatible. The
Frobenius norm or F–norm of a matrix is defined as

‖A‖F =
√√√√

m∑
i=1

n∑
j=1

a2
ij . (LA .4.10)

Frobenius and Euclidean norms are compatible, i.e.

‖Ax‖2 ≤ ‖A‖F ‖x‖2 ∀ x ∈ Rn, A ∈ Rm×n (LA .4.11)

and satisfy the following relations:

‖A‖F = trace
(
ATA

)
(LA .4.12)

‖A‖2 ≤ ‖A‖F . (LA .4.13)

Frobenius and Euclidean norms are invariant with respect to orthogonal transforma-
tions; thus for all orthogonal matricesQ andZ of appropriate dimensions

‖QAZ‖2 = ‖A‖2 (LA .4.14)

‖QAZ‖F = ‖A‖F . (LA .4.15)

If σ1 ≥ σ2 ≥ . . . σp ≥ 0 are the singular values ofA, then

‖A‖F =
√

σ 2
1 + . . . + σ 2

p (LA .4.16)

‖A‖2 = σ1. (LA .4.17)

If ρ(A) = r > 0 and thereforeσ1 ≥ σ2 ≥ σr > σr+1 = . . . = σp = 0, then

‖A+‖2 = 1

σr

. (LA .4.18)

Definition LA.4.3 (Condition numbers) – The condition number of a matrixA is given
by

C(A) = ‖A‖2 ‖A+‖2 = σ1

σr

. (LA .4.19)

Definition LA.4.4 (Quadratic Forms) – A quadratic form (overRn) is a functionq :
Rn → R of the type

q(x) = xTA x =
n∑

i=1

n∑
j=1

aij xixj (LA .4.20)
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whereA is a(n × n) symmetric matrix. A quadratic form is defined as

• positive definiteif q(x) > 0 ∀x 6= 0

• positive semi–definiteif q(x) ≥ 0 ∀x 6= 0

• negative definiteif q(x) < 0 ∀x 6= 0

• negative semi–definiteif q(x) ≤ 0 ∀x 6= 0

The following theorem characterizes quadratic forms by means of the eigenvalues
λi, i = 1, . . . , n of A.

Theorem LA.4.1 – A quadratic formq(x) = xTA x is

• positive definite if and only ifλi > 0, i = 1, . . . , n,

• positive semi–definite if and only ifλi ≥ 0, i = 1, . . . , n,

• negative definite if and only ifλi < 0, i = 1, . . . , n,

• negative semi–definite if and only ifλi ≤ 0, i = 1, . . . , n.

These definitions are extended to matrices as follows.

Definition LA.4.5 – A symmetric matrix is defined as positive (negative) definite if
all its eigenvalues are positive (negative), positive (negative) semidefinite if all its
eigenvalues are nonnegative (nonpositive).
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