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ID2
Equation error
Identification
2.1 EQUATION ERROR MODELS

The most simple input–output relation that can be considered for linear, time–invariant,
discrete–time and single–input single–output (SISO) systems, is the linear difference
equation

y(t) = αny(t − 1) + . . . + α1y(t − n) + βnu(t − 1) + . . . + β1u(t − n) (2.1.1)

whereu(t) andy(t) are the system input and output andn is the order of the model.
Denoting withz the unitary advance operator (e.g.,z y(t) = y(t + 1)) and withz−1

the unitary delay operator, model(2.1.1) can be written in the more compact form

q(z−1) y(t) = p(z−1) u(t) (2.1.2)

where

q(z−1) = 1 − αn z−1 − . . . − α1 z−n (2.1.3)

p(z−1) = βn z−1 + . . . + β1 z−n. (2.1.4)

Models of this type can be used in the realization of input–output sequences but not
in identification applications where, even assuming a linear, finite–dimensional and
time–invariant process behind the data, the presence of non measurable input(s) (dis-
turbances) and of measurement errors, is not compatible with exact links like(2.1.1).
The most simple way to take into account these deviations consists in describing their
resulting effect by means of an error term,e(t); this leads toequation error modelsof
the type

y(t) = αny(t −1)+ . . . +α1y(t −n)+βnu(t −1)+ . . . +β1u(t −n)+e(t) (2.1.5)

or, equivalently,
q(z−1) y(t) = p(z−1) u(t) + e(t). (2.1.6)
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In equation error identification, equation errors are described by means of stochastic
processes constituted by white noises (ARX and AR models), moving averages of white
noises (ARMAX, ARMA, ARIMAX and ARIMA models), autoregressions of white
noises (ARARX and ARAR models), ARMA processes (ARARMAX and ARARMA
models) or by the output of filters driven by white noises (Box–Jenkins models).

Remark 2.1.1 – The notation used in(2.1.1)ad in all equation error models that follow
can look unnatural and does not coincide with usual notations that are of the type

y(t) = α1y(t − 1) + . . . + αny(t − n) + β1u(t − 1) + . . . + βnu(t − n). (2.1.7)

Notation (2.1.7)is absolutely natural as long as “backward” single–output or multi–
output non canonical models are considered, but its extensions to describe canoni-
cal input–output and state–space multivariable models are unnecessarily complicated.
Since the treatment of multivariable identification is an essential part of this course, it
has been considered as preferable to adopt a uniform notation oriented at the descrip-
tion of the most complex environments. The alternative of using different notations
for different models has been considered as not advisable because it would prevent the
direct deduction of SISO and MISO models as particular cases of MIMO ones. More-
over the notation that has been adopted is more natural than standard one in “forward”
models (seeRemark 2.1.4).

Remark 2.1.2 – Models (2.1.1), (2.1.2), (2.1.5)and (2.1.6)arepurely dynamicsince
the output at timet is not affected by the value of the input at the same time. The
extension of equation error identification procedures to non purely dynamic models is
avoided because of the prevalent use of these models for prediction and control.

Remark 2.1.3 – Equation error models are usually written in the form

y(t)+α1y(t−1)+. . .+αnα y(t−nα) = β1u(t−1)+. . .+βnβ u(t−nβ)+e(t) (2.1.8)

which, besides the differences described inRemark 2.1.1and the irrelevant change of
sign in theαi parameters, differs from(2.1.5)because of different memory values,nα

andnβ , in the autoregressive and moving average parts of the model. Different values
for nα andnβ introduce, apparently, a further degree of freedom in the model. Making
reference to the most general class of models for dynamic systems, i.e. state–space ones,
we see, however, that assumingq(z−1) andp(z−1) as coprime, any minimal state–
space realization of model(2.1.8)has ordern = max(nα, nβ). Different values fornα

andnβ correspond thus toa priori assumptions on the values of the parameters. This
practice derives from the introduction of equation error modelsbeforethe introduction
of state–space models and realization theory. In the following we will always assume
nα = nβ = n.



VirtUE R. Guidorzi: DYNAMIC SYSTEM IDENTIFICATION ID2.1.3

Previous SISO models can be extended, in a straightforward way, to multi–input single–
output (MISO) systems, defining input–output relations of the type

y(t) =
n∑

i=1

αi y(t + i − n − 1) +
r∑

i=1

n∑

j=1

βij ui(t + j − n − 1) + e(t) (2.1.9)

or

q(z−1) y(t) =
r∑

i=1

pi(z
−1) ui(t) + e(t) (2.1.10)

wherer denotes the number of inputs and

pi(z
−1) = βinz

−1 + . . . + βi1 z−n . (2.1.11)

Remark 2.1.4 – Alternative representations of models(2.1.5) and (2.1.9) rely on
forward instead than backward time notations. Model(2.1.5)can thus be written in
the form

y(t +n) = αny(t +n−1) + . . .+ α1y(t)+βnu(t +n−1) + . . .+ β1u(t) + e(t +n)

(2.1.12)
or

q(z) y(t) = p(z) u(t) + zn e(t) (2.1.13)

where

q(z) = zn − αnz
n−1 − . . . − α2z − α1 (2.1.14)

p(z) = βnz
n−1 + . . . + β2z + β1 . (2.1.15)

Model (2.1.9)can be written as

y(t + n) =
n∑

i=1

αi y(t + i − 1) +
r∑

i=1

n∑

j=1

βij ui(t + j − 1) + e(t + n) (2.1.16)

or

q(z) y(t) =
r∑

i=1

pi(z) ui(t) + zne(t) (2.1.17)

with
pi(z) = βin zn−1 + . . . + βi2 z + βi1. (2.1.18)

These notations are equivalent to previous ones; it must only be remembered that the
asymptotic stability condition for models(2.1.13)and (2.1.17)requires all zeros of
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q(z) (system poles) inside the unit circle while the condition for models(2.1.6)and
(2.1.10)requires all zeros ofq(z−1) outside this circle.
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