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Introduction
1.2 EVOLUTION OF MATHEMATICAL MODELS

Despite the comparatively recent growth in the role of mathematical models, their origin
can be traced back (in western culture) to Aristotle (384–322 B.C.) who recognized
the importance of numerical and geometrical relations within science indicating also
mechanics, astronomy, optics and harmonics as fields where mathematical relationships
linking physical quantities are particularly important.

Mathematical models were used to describe the motion of planets by Ptolemy
(85–165), who also observed that different models can be constructed to describe the
same astronomical observations. Galileo (1564–1642) formulated the law of falling
bodies as a mathematical model obtained on the basis of experimental and theoretical
work. Copernicus (1473–1543), Kepler (1571–1630), Newton (1642–1727), Halley
(1656–1742) are among the best known scientists who used mathematical models as
interpretation tools for the physical world.

Mathematical models have been defined as sets of relations among the measur-
able attributes of a system, describing the links established by the system among these
quantities. This limits the descriptive capability of mathematical models to attributes
that can be expressed by means of numbers and furthermore shows that these models
constitute, in any case, only an approximate description of reality. The intrinsic ap-
proximation performed by introducing models can be better evaluated in the context
of a classification based on the purposes of modeling.

1.2.1 Interpretative models

The rationale of these models lies in satisfying scientific curiosity and rationalizing
the behavior of observed processes. They can also be seen as ways to extract essential
information from complex experiments or to substitute (large amounts of) data with
a data generating mechanism. Models of this kind have been developed by Ptolemy,
Copernicus, Kepler, Galileo, Newton and Halley to describe the motion of physical
objects. The purpose of interpretative models is to increase the understanding of a slice
of reality existing behind the observed phenomena; they must thus “interpret” sets of
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collected data but they don’t necessarily have any capability to generate other (future)
sets of data (that will be) generated by the same system.

Interpretative models are used in a large number of disciplines like econometrics,
ecology, life sciences, agriculture, physics. Most physical laws can be seen as models
of this kind. Ptolemy’s observation on the possibility of describing the same observa-
tions with different models highlights that the interpretation essentially concerns some
measurable attributes of phenomena and not (necessarily) their actual nature. Another
important observation concerns the approximations of interpretative models and/or
their limited range of validity. So Newton’s law of motion, giving a simple relation
between the force acting on a mass and its acceleration, leads to large errors for speeds
approaching the speed of light.

Example 1.2.1 – Sunspot cycle

The plot of Figure 1.2.1 shows the yearly mean sunspot count from 1749 to 1983,
computed from daily relative sunspot numbers evaluated on the basis of more than
fifty observing stations around the world.
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Figure 1.2.1 – Yearly mean sunspot count from 1749 to 1983

Estimating from this sequence (after subtracting its mean value) a second order autore-
gressive (AR) model with the least squares algorithm, we obtain the modely(t + 2) =
1.3873y(t + 1) − 0.6937y(t) whose poles,p1,2 = 0.6936± i 0.4611, indicate a
periodicity of 10.71 years for the phenomenon. This “law”, obtained by means of
a mathematical elaboration of the observations, compares well with the commonly
assumed period of 11 years and with the approximate evaluation that can be directly
obtained from the plot.

1.2.2 Predictive models

The rationale of predictive models is forecasting the future behavior of a system i.e.
interpolating available observations into the future. This is probably the most frequent
use of mathematical models, with applications in many different fields (e.g. forecasting
demands of specific products, weather conditions, population growth, the future state

SUNSPOT DATA
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of an ecosystem or of a plant). The predictions obtained in this way are often used
to manipulate the inputs of the considered system to achieve specific objectives like
the desired attitude of an aircraft or of a missile, the position of a robot arm, the
degree of purity of the output of a distillation column or the inflation rate. Other
less obvious applications of predictive models concern speech and image processing to
reduce bandwidth requirements in transmission and recording. A model can, of course,
be at the same time an interpretative model and a predictive model. As observed by
Norton (1986), when Halley in 1704 realized that the observations of 1531, 1607 and
1682 referred to the same comet and computed its orbit, he constructed an interpretative
model that predicted accurately the subsequent return of 1758.

Example 1.2.2 – Forecast of a river flow

Since 1975 the Welsh Water Authority operates a real–time flow forecasting system
on the River Dee as part of extensive water supply and flood control schemes for the
catchment. The River Hirnant’s subcatchment, with an area of 33.9 km2, is situated
west of Bala Lake, in North Wales. It is composed mainly of rocks, providing very little
storage for rainfall. Furthermore, because of its steep slopes, it causes a fast streamflow
response to rainfall. Figure 1.2.2 reports a rainfall recording over a period of 60 hours
and Figure 1.2.3 the corresponding streamflow measured at Plas Rhiwaedog; the data
are sampled at half–hourly intervals.
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Figures 1.2.2 and 1.2.3 – Rainfall on the catchment and River Hirnant streamflow

Also the forecast of a model, obtained with identification techniques, whose input is
given by rainfall, is reported (black line) in Figure 1.2.3. While short–term forecasts
(few hours), useful for early flood warning, can rely on the available rainfall measures,
long–term forecasts, useful for water resources management, must rely on weather
forecasts and are, consequently, less accurate.

1.2.3 Models for filtering and state estimation

The rationale is here the extraction of some external variables (output) from the noisy
measurements performed on the system and/or the estimation of some internal variables
(state) from the external noisy measures.

NORTON
Norton, J.P. (1986).An Introduction to Identification. Academic Press, London.
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The data concerning this example can be found on:Andrews, D.F. and A.M. Herzberg (1985).Data: A Collection of Problems from Many Fields for the Student and Research Worker. Springer-Verlag, New York.
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Applications concern the reception and processing of radio signals (e.g. telemetry
and pictures sent from a spacecraft), transmission of digital data over noisy channels
(e.g. telephone lines), processing of radar signals, analysis of electrocardiographic and
electroencephalographic signals, geophysical data processing, monitoring of industrial
plants and of natural systems, demography. An application frequently cited is the
Kalman filter used to estimate the state (position and velocity) of the spacecraft (Apollo
11) in the first manned lunar mission; all other space missions to Mercury, Venus, Mars
and beyond relied, even more heavily, on these techniques.

Example 1.2.3 – Tracking of a maneuvering target

The altitude of a maneuvering target, given every 10 s by a radar system is affected
by an error with a standard deviationσa = 49 m. The actual altitude is estimated by
means of a Kalman filter that reduces the error standard deviation toσ̂a = 43 m (Figure
1.2.4). The state of the Kalman filter gives also an estimate of the vertical speed of the
target, reported in Figure 1.2.5 against its actual value.
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Figures 1.2.4 and 1.2.5 – Altitude error and estimated vertical speed of the target

1.2.4 Models for diagnosis

The computation of the specific model best fitting a set of data collected on a process
allows its general behavior to be compared with a class of behaviors established as a
reference, evaluating abnormal conditions like a sensor fault in an industrial process or a
disease in a patient. The sulfobromophthalein (BSP) and the glucose tolerance (IVGT)
tests are routinely used in the medical practice as aids in the assessment of hepatobiliary
and pancreas diseases. In both cases the test starts with intravenous injections of
these substances and is followed by measures of their plasmatic concentrations at
specific intervals. Values beyond certain limits indicate a slow metabolism that could
be associated to hepatitis or diabetic conditions.
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Example 1.2.4 – Intravenous glucose tolerance test (IVGT)

The control of blood sugar levels in the human body is carried out by the insulin secreted
by the pancreas when the sugar level exceeds the physiological equilibrium value. The
rate of change of blood sugar levels after a glucose injection gives a reliable description
of the efficiency of this regulation mechanism as follows from the comparison of Figure
1.2.6, reporting the response of a normal individual, with Figure 1.2.7 regarding the
response of a diabetic. The measures performed on a patient, compared in Figure 1.2.8
with the standard response, allow to diagnose the presence of abnormal conditions.
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Figures 1.2.6 and 1.2.7 – Response of normal and diabetic patients to a glucose loading
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Figure 1.2.8 – Standard response and abnormal measures obtained on a patient

1.2.5 Models for simulation

The rationale is here the substitution of real systems with their models to evaluate their
response to assumed control policies (inputs). A substitution of this kind can be very
rewarding from an economic point of view and can also allow performing operations
that would have been otherwise impossible or risky on real systems (e.g. demographic
studies, the responses in a national economy to changes in interest rates, pilot training,
major nuclear reactor incidents etc.). Of course the usefulness of simulations depends
on the accuracy of the model in reproducing the behavior of the actual system; the
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etymology of simulation (the Latinsimulare= to pretend) seems to suggest the possible
ambiguity of this substitution.

Example 1.2.5 – Simulation of a sodium heat exchanger

PEC is a LMFBR (Liquid Metal Fast Breeder Reactor) with a thermal power of 120
MW, designed to test experimental fuel elements developing powers up to 3 MW in the
thermal and neutron flux conditions that are met in large fast breeder nuclear reactors.
The cooling of the core is performed by means of a double sodium primary loop and
sodium–sodium heat exchanger, a secondary loop and sodium–air heat exchangers. The
dynamical behavior of the reactor in emergency situations (e.g. failure of the pump in
one of the primary loops) has been investigated by means of a large simulation package
which includes the models of every part of the plant. This model is, however, unsuitable
for real–time simulations because of its size. A reduced–order model obtained with
identification techniques has been developed for real–time simulations regarding both
operator training and process control.
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Figures 1.2.9 and 1.2.10 – Output temperatures of the PEC sodium heat exchangers

Figures 1.2.9 and 1.2.10 show the output temperatures of the primary and secondary
sodium heat exchangers given by the model (black line) against the true values for
variations of the inputs (primary and secondary sodium flows and input temperatures)
of approximately 20%. The limited error given by this model is fully compatible with
its planned use.
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PEC
The PEC (Prova Elementi di Combustibile) reactor was in an advanced construction stage at Lake Brasimone, near Bologna  when Italy decided to shut down its nuclear plants. The project was not completed and existing structures were converted to other research activities.


