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4.5 YULE–WALKER EQUATIONS

Rewrite AR model(4.1.1)in the form

y(t) − αn y(t − 1) − αn−1 y(t − 2) − . . . − α1 y(t − n) = e(t) (4.5.1)

and multiply both members of(4.5.1)by y(t − k); by computing their expected values
we obtain the expression

E
[
y(t) y(t−k)−αn y(t−1) y(t−k)− . . . −α1 y(t−n) y(t−k)

]= E
[
e(t) y(t−k)

]
.

(4.5.2)

Sincee(·) is a white and stationary process with null expected value, it follows that

E
[
e(t) y(t − k)

]= 0 for k > 0; (4.5.3)

defining now the quantities

rk = E
[
y(t) y(t − k)

]
, (4.5.4)

which are covariances because E[y(t)] = 0, expression(4.5.2)assumes the form

rk − αn rk−1 − αn−1 rk−2 − . . . − α1 rk−n = 0 for k = 1, 2, . . . (4.5.5)

Relations(4.5.5)are known as Yule–Walker equations. Define now the(m×n) Toeplitz
matrixRm and the vectorρm given by

Rm =




r0 r1 . . . rn−1
r1 r0 . . . rn−2
...

... . . .
...

rm−1 rm−2 . . . rm−n


 ρm =




r1
r2
...

rm


 (4.5.6)
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and denote withθR the parameter vector with entries in reverse order with respect to
(4.3.1), i.e.

θR = [
αn αn−1 . . . α2 α1

]T
. (4.5.7)

The Yule–Walker equations that can be obtained fork = 1, . . . , m can be written, since
r−k = rk, in the compact form

Rm θR = ρm for m ≥ n . (4.5.8)

If the quantitiesri are known, the model parameters can be deduced from(4.5.8)taking
m = n; in fact, sinceRn has always full rank, it follows that

θ◦
R = R−1

n ρn . (4.5.9)

(4.5.9)is called minimal Yule–Walker estimate. Takingm > n the estimate is given
by

θ◦
R = R+

m ρm = (
RT

mRm

)−1
RT

m ρm (4.5.10)

and is called overdetermined Yule–Walker estimate. Note also that

E
[
e(t) y(t)

]= E
[
αn e(t) y(t −1)+ . . . +α1 e(t) y(t −n)+ e(t)2 ]= σ 2

e ; (4.5.11)

taking thusk = 0 in (4.5.5)we obtain the relation

r0 − αn r1 − . . . − α1 rn = σ 2
e (4.5.12)

which allows, when the parametersαi and the covariancesri are known, to determine
the variance ofe(·). In the practical implementation of this scheme the covariancesri
will not be known and it will be necessary to substituteRm andρm with the sample
quantities

Rs
m = 1

N




∑
t y(t − 1) y(t − 1)

∑
t y(t − 2) y(t − 1) . . .

∑
t y(t − n) y(t − 1)

∑
t y(t − 1) y(t − 2)

∑
t y(t − 2) y(t − 2) . . .

∑
t y(t − n) y(t − 2)

...
...

...∑
t y(t − 1) y(t − m)

∑
t y(t − 2) y(t − m) . . .

∑
t y(t − n) y(t − m)




(4.5.13)

ρs
m = 1

N

[ ∑
t y(t) y(t − 1)

∑
t y(t) y(t − 2) . . .

∑
t y(t) y(t − m)

]T

(4.5.14)



VirtUE R. Guidorzi: DYNAMIC SYSTEM IDENTIFICATION ID4.5.3

whereN denotes the number of terms in the sums, where it has been omitted to avoid
an unnecessarily heavy notation. Of course it is advantageous to use as many terms
as possible so that, assumingm = n and denoting withL the length of the available
sequences,N will be taken equal toL − n.
It is interesting to observe that takingm = n in relations(4.5.13)and(4.5.14)we obtain
the least squares estimate because the entries ofRs

n coincide with those ofHTH and the
entries ofρs

n with those ofHTy◦, modulo a reordering linked to the reverse order of the
parameters inθ andθR. It must, however, be observed that Yule–Walker equations lead
to a least squares estimate only takingk = 1, . . . , n in (4.5.5); using a larger number of
equations or shiftingk we obtain other estimates that, as will be shown in the following,
belong to Instrumental Variable methods. It can also be observed that the coincidence
of Yule–Walker and least squares estimates vanishes if we approximate matrix(4.5.13)
with a Toeplitz matrix (having equal values on its main diagonal) since in(4.5.13)they
will be (slightly) different because they are computed from finite shifted sequences.
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