VirtUE R. Guidorzi: DYNAMIC SYSTEM IDENTIFICATION 1D4.5.1

B D4

Igl AR [ .
|dentification

4.5 YULE-WALKER EQUATIONS
Rewrite AR mode(4.1.1)in the form

yO) —anyt =D —ap1y(t =2) —... —a1y(t —n) = e(t) (4.5.1)

and multiply both members ¢#.5.1)by y(r — k); by computing their expected values
we obtain the expression

E[y®) yt—k)—ay y(t—1) y(t—k)— ... —a1 y(t—n) y(t—k) |= E[ e(t) y(t—k) ].
(4.5.2)
Sincee(-) is a white and stationary process with null expected value, it follows that

E[e() y(t —k)]=0 fork > 0; (4.5.3)
defining now the quantities
rne=E[y®)yt—k], (4.5.4)
which are covariances becauseg &)] = 0, expressiorf4.5.2)assumes the form
Tk — Oy Tkl —Op1Tk—2— ... —01tk—p =0 fork=12,... (4.5.5)

Relationg4.5.5)are known as Yule—Walker equations. Define now(the n) Toeplitz
matrix R,, and the vectop,, given by

ro ri e 'n—1 ri

l"l ro P rn_z 7"2
Ru=| | : : pm= . (4.5.6)


LEVEL

Module ID4.5 concerns the following levels:

BASIC
STANDARD
ADVANCED

Playing ants have been designed by Fabio Vettori.

CONTENTS
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and denote witl#r the parameter vector with entries in reverse order with respect to
(4.3.1) i.e.

Or = [an o1 ... 02 Ot]_]T. (4.5.7)

The Yule—Walker equations that can be obtainedferl, ..., m can be written, since
r_r = rg, in the compact form

Ry Or = pm for m >n. (4.5.8)

If the quantities; are known, the model parameters can be deduced(#dnB)taking
m = n; in fact, sincer,, has always full rank, it follows that

05 =R 1p . (4.5.9)
(4.5.9)is called minimal Yule—Walker estimate. Taking > n the estimate is given

by
o -1
0p = R} p = (RLRw) R 0, (4.5.10)

and is called overdetermined Yule—Walker estimate. Note also that
E[e®)y®) ][=E[ane®) y(t =D+ ... +are®) yt —n) +e()? ]= 7 (4.5.11)
taking thusk = 0 in (4.5.5)we obtain the relation
ro—Oprl—...— 01l = Uez (4.5.12)
which allows, when the parametersand the covariances are known, to determine
the variance oé(-). In the practical implementation of this scheme the covariances

will not be known and it will be necessary to substit&g andp,, with the sample
guantities

[ Y oy -Dye -1 Y, yt-dyt—-1 ... Y,yt-n)yt-1 ]

RS _i Yyt =Dyt —=2) Y ,yt—=2yt—-2) ... Y, ,yt—-n)yt—2)
"N z z z

| Xy =Dye—m) Yyt =2yt —m) ... 3 y(t—n)y@t—m) |

(4.5.13)

1 T
p=2 | L0y -1 Loymye-2 .. Yoy@ye—m |
(4.5.14)
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whereN denotes the number of terms in the sums, where it has been omitted to avoid
an unnecessarily heavy notation. Of course it is advantageous to use as many terms
as possible so that, assumimg= n and denoting withl. the length of the available
sequencesy will be taken equal td. — n.

Itis interesting to observe that taking= n in relationg4.5.13)and(4.5.14)we obtain

the least squares estimate because the entrigsafincide with those of/ ’H and the
entries ofp? with those ofH Ty°, modulo a reordering linked to the reverse order of the
parameters i anddg. It must, however, be observed that Yule—Walker equations lead
to a least squares estimate only taking 1, ..., n in (4.5.5) using a larger number of
equations or shifting we obtain other estimates that, as will be shown in the following,
belong to Instrumental Variable methods. It can also be observed that the coincidence
of Yule—Walker and least squares estimates vanishes if we approximate (#&rix3)

with a Toeplitz matrix (having equal values on its main diagonal) sin¢¢.513)they

will be (slightly) different because they are computed from finite shifted sequences.
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