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3.16 EXAMPLE 3.2

TheARX process considered now has been generated using themodel

y(t) = 0.5y(t − 1) − 0.08y(t − 2) − 0.096y(t − 3) + 0.3413u(t − 1)

+ 0.0683u(t − 2) − 0.1638u(t − 3) + e(t). (3.16.1a)

for t ≤ 150 and themodel

y(t) = 0.4y(t − 1) + 0.2y(t − 2) − 0.048y(t − 3) − 0.3413u(t − 1)

− 0.3413u(t − 2) − 0.0307u(t − 3) + e(t). (3.16.1b)

for t > 150. Thewholelenght of theavailableinput–output sequencesisL = 320. The
input sequence, reported inFigure3.16.1, hasnull meanvalueandvariance, computed,
as subsequent ones, on 300 samples, σ 2

u = 1.
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Figure3.16.1 – Input sequenceof process (3.16.1)

LEVEL

Module ID3.16 concerns the following levels:

BASIC
STANDARD
ADVANCED

Playing ants have been designed by Fabio Vettori.

CONTENTS

Module ID3.16 proposes an example concerning  on-line identification of a time dependent process. The identification is performed using weighted least squares and Kalman filtering.
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Figure 3.16.2 – Output sequence of process (3.16.1)

The variance of the output sequence (Figure 3.16.2) is, in absence of noise (e(t) = 0),
σ 2

y∗ = 1; e(·) is a stationary and Gaussian process with null expected value and variance

σ 2
e = 0.04. With reference to the decomposition of Figure 3.1.2, the colored noise

v(t) has a variance, computed, as previous ones, on the first 300 samples, given by
σ 2

v = 0.0509; these values can be interpreted as the presence, on the data, of an amount
of noise of

100
σv

σy∗
= 22.6 %.

The data of this process will be used to describe some of the problems that can be
met in modelling non stationary processes and to compare the results obtainable with
on–line identification algorithms.

3.16.1 Determination of the model order

Computing the values of the PPCRE forN = 300 andk = 1, . . . , 7 we obtain the
results reported in Figure 3.16.3. This plot does not give any useful indication on the
choice of a suitable model order; the only indication concerns a modest stabilization
corresponding ton = 6.
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Figures 3.16.3 and 3.16.4 – PPCRE and FPE criteria forN = 300

FPE and AIC criteria, reported in Figures 3.16.4 and 3.16.5, show similar behaviors
indicating 6 as most suitable order and 5 as acceptable. The MDL criterion (Figure
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3.16.6) does not give, in this case useful indications having its absolute minimum at
k = 1 and a local minimum atk = 4.
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Figures 3.16.5 and 3.16.6 – AIC and MDL criteria forN = 300

The analysis of the results given by previous tests could lead to select a model with
order 6 and this indication cannot be considered completely wrong since, in fact, the
sequences have been generated using two models with order 3 without common poles;
they are thus influenced by six different time constants. The discordances between the
tests and the lack of a real stabilization in the PPCRE indicate, however, problems in
fitting the data with models belonging to the considered class.

46%

48%

50%

0 2 4 6 k

PPCRE
o

o

o o

o
o o

0.042

0.044

0 2 4 6 k

FPE

o

o

o

o o
o

o

Figures 3.16.7 and 3.16.8 – PPCRE and FPE criteria forN = 100
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Figures 3.16.9 and 3.16.10 – AIC and MDL criteria forN = 100

In situations of this kind it can be advisable to test a possible time dependence of the
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process performing tests on reduced–length sequences. In our case the tests have been
applied to the first 100 samples obtaining the results reported in Figures 3.16.7, 3.16.8,
3.16.9 and 3.16.10. The PPCRE criterion shows that the prediction error increases
passing from a model with order 3 to an order 4 one. Also FPE and AIC criteria
indicate 3 as optimal order for the model while MDL has only a local minimum for
k = 3. The conclusion of previous analysis is that the process exhibits a time dependent
(or, possibly, nonlinear) behavior and that it cannot be properly described by means of
a single stationary (or linear) model.

It can look surprising, comparing Figures 3.16.3 and 3.16.7 to observe PPCRE
values that are higher on the first 100 samples than on 300 samples, while computing the
variance of the equation error with(3.14.16)we would find higher values forN = 300
(approximately double than forN = 100). The explanation is linked to the definition
of the PPCRE as ratio between the standard deviations of the prediction error and of
the output; in this example the standard deviation of the first 100 output samples is
considerably lower than that of the whole sequence as can be observed in Figure 3.16.2.

3.16.2 Parameter estimate

For a better evaluation of the opportunity of using, in this case, on–line identification
techniques, a first set of parameters has been estimated from the whole sequence
(N = 300) using an order 3 model. The obtained parameters are

α1 = −0.0713

α2 = 0.0188

α3 = 0.9826

β1 = 0.0355

β2 = −0.1243

β3 = 0.0214.

The one–step–ahead prevision given by this model is compared in Figure 3.16.11 (black
line) with the observed output. The residuals are plotted in Figure 3.16.12.
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Figure 3.16.11 – Model prevision (black line) and observed output



VirtUE R. Guidorzi: DYNAMIC SYSTEM IDENTIFICATION ID3.16.5

-1

0

1

0 50 100 150 200 250 Samples

R
es

id
ua

ls

Figure 3.16.12 – Residuals of a single order 3 model

The mean square prevision errorJ (θ◦
300) of this model is

J (θ◦
300) = 0.0879

and the corresponding estimate of the variance ofe(t) given by(3.10.5)is σ̂ 2
e = 0.0897.

Using this value we obtain, by means of(3.8.5), the following covariance matrix

covθ◦
300 = 10−3




3.261 −3.286 0.164 0.123 −0.103 −0.068
−3.286 6.569 −3.306 −0.283 0.287 −0.029

0.164 −3.306 3.380 0.325 −0.152 0.076
0.123 −0.283 0.325 2.008 −1.244 −0.550

−0.103 0.287 −0.152 −1.244 2.588 −1.255
−0.068 −0.029 0.076 −0.550 −1.255 1.921




.

The standard deviations of the single parameters are thus,

stdα1 = 0.057 stdβ1 = 0.045

stdα2 = 0.081 stdβ2 = 0.051

stdα3 = 0.058 stdβ3 = 0.044

and with the exception ofα1, are somehow high with respect to the parameter values.
The unsatisfactory behavior of the model is highlighted by the plot of its previsions;
in fact, looking at Figure 3.16.11, we see that the prevision reproduces the observed
output well but with a delay equal to one sampling interval (α1 ' 1); this prevision is
thus useless.

3.16.3 On–line least squares identification

A first on–line identification has been performed using recursive weighted least squares
with a forgetting factorκ = 0.97. The obtained one–step–ahead prevision (black line)
is compared in Figure 3.16.13 with the observed output. The corresponding residuals
are reported in Figure 3.16.14.
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Figure 3.16.13 – Model prevision (black line) and observed output
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Figure 3.16.14 – Residuals of weighted least squares on–line identification

We can observe an increase in the prediction error in correspondence with the switch
of the process from the first model to the second one att = 150 and the subsequent
adaptive behavior of the model. It can be of some interest to plot the values of the
parameters at every identification step; Figures 3.16.15 – 3.16.20 report the estimated
values ofα1, α2, α3, β1, β2 andβ3 against true ones (dashed line). The mean square
prevision error is

J (θ◦
300) = 0.0685,

lower, as expected, than the value associated with a single model (0.0879).
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Figures 3.16.15 and 3.16.16 – Weighted least squares: estimates ofα1 andα2
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Figures 3.16.17 and 3.16.18 – Weighted least squares: estimates ofα3 andβ1
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Figures 3.16.19 and 3.16.20 – Weighted least squares: estimates ofβ2 andβ3

3.16.4 On–line identification by Kalman filtering

A second on–line identification has been performed using a Kalman filter, using the
procedure described in module ID3.13. The initial parameter estimate inserted in the
algorithm has beenθ(3) = [0 0 0 0 0 0]T , the covariance of the initial estimate has
been set atP(3) = 0.1I and the covariance matrix of the noise on the filter state has
been set equal toQ = 0.0005I .
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Figure 3.16.21 – Model prevision (black line) and observed output
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Figure 3.16.22 – Residuals of on–line identification performed by Kalman filtering

The variance of the filter observation noise has been obtained, by means of(3.14.16),
from the first 100 samples and is given byσ̂ 2

e = 0.0395. The one–step–ahead prevision
given by the filter is reported (black line) in Figure 3.16.21 where it is compared with
the observed output. The corresponding residuals are reported in Figure 3.16.22. It is
interesting to note, by comparing Figure 3.16.22 with Figure 3.16.14, that, the residuals
obtained using Kalman filtering are quite similar to those given by weighted least
squares; in both cases the residuals constitute a good approximation of the equation
errore(t).
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Figures 3.16.23 and 3.16.24 – Kalman filtering identification: estimates ofα1 andα2
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Figures 3.16.25 and 3.16.26 – Kalman filtering identification: estimates ofα3 andβ1
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Figures 3.16.27 and 3.16.28 – Kalman filtering identification: estimates ofβ2 andβ3

Also in this case it is possible to observe how the prediction error increases in corre-
spondence with the commutation of the process from the first model to the second and
how the filter rapidly adapts to this change. The mean square prevision error is given
by

J (θ◦
300) = 0.0619,

better than the value obtained with weighted least squares. The estimates ofα1, α2,
α3, β1, β2 andβ3 at every step are reported in Figures 3.16.23 – 3.16.28 where they
are compared with actual values (dashed lines).
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