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3.3 LEAST SQUARES ESTIMATE OF ARX MODELS

ARX models are mainly used for prediction and control so that the cost function
introduced for their determination is the sum of the squares of prediction errors on
the set of available data. Consider an assumed order,n, for an ARX model and the
one–step–ahead predictor(3.2.1). If the input–output sequences{u(·), y(·)} have been
observed in the time interval [1, L], predictor(3.2.1)can be used to compute predicted
output values in theN = L − n timesn + 1, . . . , L. The mean square prediction error
on the available data is thus given, for a given set of parameters

θ = [α1 . . . αn β1 . . . βn ]T , (3.3.1)

by

J (θ) = 1

N

L∑
t=n+1

(
y(t) − y(t |t − 1)

)2= ‖ y◦ − yp(θ)‖2
2

N
= εT (θ) ε(θ)

N
(3.3.2)

where

yp(θ) = [
y(n + 1|n) . . . y(L|L − 1)

]T
(3.3.3)

y◦ = [
y(n + 1) . . . y(L)

]T
(3.3.4)

ε(θ) = y◦ − yp(θ) . (3.3.5)

By introducing now the following Hankel matricesHn(y) andHn(u)

Hn(y) =



y(1) . . . y(n)
...

...

y(L − n) . . . y(L − 1)


 (3.3.6)
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Hn(u) =



u(1) . . . u(n)
...

...

u(L − n) . . . u(L − 1)


 (3.3.7)

it follows that
yp(θ) = [

Hn(y) Hn(u)
]
θ = Hθ . (3.3.8)

The parameter vectorθ minimizing cost function(3.3.2)is given by

θ◦ = H+ y◦ (3.3.9)

whereH+ denotes the pseudoinverse (or generalized inverse) ofH . In fact, assuming
θ = θ◦ we get

yp(θ◦) = HH+ y◦; (3.3.10)

HH+ performs the orthogonal projection ofy◦ on imH ; yp(θ◦) is the vector of imH

which minimizes the Euclidean norm of the error‖y◦ − yp(θ)‖2, and thus even cost
function(3.3.2).

3.3.1 Algorithmic aspects

The pseudoinverse,H+, of H can be computed by means of relation

H+ = (
HTH

)−1
HT = S−1HT (3.3.11)

whenH has maximal rank, that is in our case, when its columns are linearly indepen-
dent; in this case the solution minimizing cost functionJ (θ) (3.3.2)is unique and is
given by the well–known least squares formula

θ◦ = S−1HT y◦ . (3.3.12)

Expression(3.3.12)can be directly deduced from(3.3.2)zeroing the gradient ofJ (θ),
∂J (θ)/∂θ . We obtain, remembering that∂(AT θ)/∂θ = A, ∂(θTAθ)/∂θ = (A+AT )θ ,
∂(θTA)/∂θ = A,

∂J (θ)

∂θ
= ∂

∂θ

[
εT (θ) ε(θ)

N

]
= 1

N

∂

∂θ

[
(y◦ − Hθ)T (y◦ − Hθ)

]

= 1

N

∂

∂θ

[
θT HTHθ − θT HT y◦ − y◦T

Hθ + y◦T
y◦ ]

= 2

N

(
HTHθ − HT y◦) (3.3.13)

which, under the assumption of invertibility forHTH , leads to(3.3.12). In the practical
implementation of the least squares algorithm it is not recommended to compute the
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inverse ofS = HTH by means of standard algorithms because of its possible ill–
conditioning. SinceS is symmetrical and positive definite it is possible to use numerical
approaches that take advantage of these properties to computeθ◦. Among suggested
methods it is possible to mention Choleski factorization ofS to computeS−1, singular
value decomposition (SVD) ofH to solve(3.3.9)or Golub–Householder method.
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