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3.14 ORDER ESTIMATION AND MODEL VALIDATION

In previous sections it has always been assumed to know the correct value of the model
ordern, and to use this value in estimating the parameters. In the identification of
real processes the only available information concerns input–output sequences to be
interpreted by an ARX model. In such a context the estimation of a suitable model
order consists in performing on the data and/or on the model, tests allowing a compar-
ison between different orders. Validating a model consists, instead, in evaluating its
capability to describe the process that has generated the data in a way compatible with
its planned use.

These problems, even if conceptually different, exhibit many synergies and inter-
actions. A validation failure leads, in fact, to reconsider all identification steps, starting
from the estimation of the order of the model; moreover order selection and validation
tests are often based on common criteria.

3.14.1 PPCRE and singularity of the moments matrix

Consider an ARX process with ordern, an integerk > 0 and the(N × 2k + 1) matrix
of input–output samples given by

H ∗
k = [

Hk(y) Hk(u) y◦
k

]
(3.14.1))

whereHk(y) andHk(u) are defined by(3.3.6)and(3.3.7)and

y◦
k = [

y(k + 1) . . . y(L)
]T ; (3.14.2)

so thaty◦
n = y◦. Under identifiability conditions and fore(t) = 0 we would find

rankH ∗
k = 2k + 1 for k < n (3.14.3a)

rankH ∗
k = 2k for k = n. (3.14.3b)
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It would be then possible to consider thesequenceof second order moments matrices

S1 S2 . . . Sn−1 Sn . . .  (3.14.4)

where
Sk = H ∗

k
T
H ∗

k (3.14.5)

evaluating their singularity; the position of the first singular matrix Sn, would define
the correct order for the model. The presence of e(t) in model (3.1.1) leads to the
nonsingularity of every matrix in sequence(3.14.4), even for k ≥ n. Consider now the
following matrices

H ∗
n = [

H y◦ ]= [
H (Hθ∗ + e◦)

]
(3.14.6)

Sn = H ∗
n

T
H ∗

n = [
H y◦]T [

H y◦]= [
HT

(Hθ∗ + e◦)T

] [
H (Hθ∗ + e◦)

]
(3.14.7)

=
[

HTH HTHθ∗ + HTe◦

θ∗THTH + e◦TH θ∗THTHθ∗ + θ∗THTe◦ + e◦THθ∗ + e◦Te◦

]
;

sinceE[HTe◦] = 0 (3.5.15), it follows that

E
[
Sn

]=
[

E[HTH ] E[HTH ]θ∗

θ∗T E[HTH ] θ∗T E[HTH ]θ∗ + E[e◦Te◦]

]
. (3.14.8)

Relation (3.14.8) shows that e(·) affects only the last element of the main diagonal of
E[Sn] through theadditional term E[e◦Te◦] = N σ 2

e . Assumenow to know E[Sn] > 0;
using aproperty of thedeterminant of partitioned matrices wecan write

det E
[
Sn

] = (
θ∗T E[HTH ] θ∗ + N σ 2

e − θ∗T E[HTH ] θ∗) det E
[
HTH

]
= N σ 2

e det E
[
HTH

]
(3.14.9)

σ 2
e = det E

[
Sn

]
N det E

[
HT H

] . (3.14.10)

Consider now thequantity

σ 2
ek = det E

[
Sk

]
N det E

[
HT

k Hk

] (3.14.11)

where Hk = [Hk(y) Hk(u)]; σ 2
ek > σ 2

e for k < n because E[Sk] > 0 even for null
equation errors, while for k ≥ n, σ 2

ek ' σ 2
e . A possible criterion to evaluate n can
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thus be obtained by substitutingSk andHT
k Hk to their expected values in(3.14.11). If

N is large enough we should observe a sequence of decreasing values followed by a
stabilization once the correct value of the order is reached. This criterion can be used
to evaluate a suitable order or, at least, an interval of admissible orders for the model
before computing its parameters.

Previous results can be used to set up a singularity criterion for moments matrices
useful in selecting models on the basis of their previsional properties even when the data
have not been generated by an ARX process. Consider, to this purpose, the quantity

sk = detSk

N det
[
HT

k Hk

] ; (3.14.12)

it is easy to show thatsk coincides with the mean square prediction errorJ (θ) (3.3.2)
for an ARX model with orderk parameterized byθ◦

k = [HT
k Hk ]−1HT

k y◦
k . Assuming

a null mean value for the residuals, the standard deviation of the prevision error is given
by

σεk = √
sk =

√
detSk

N det
[
HT

k Hk

] (3.14.13)

and, defining the percent one–step–ahead prediction error as 100 times the ratio be-
tween the standard deviation of the prediction error and that of the output, we obtain
thePPCRE (Predicted PerCent Reconstruction Error) criterion given, for zero–mean
output sequences, by

PPCRE(k) = 100

√
detSk

y◦
k
Ty◦

k det
[
HT

k Hk

] . (3.14.14)

This criterion gives the prediction error of an orderk ARX model without requiring
any computation of its parameters. The application of thePPCRE criterion consists
in computing the sequence

PPCRE(1) PPCRE(2) . . . PPCRE(k) PPCRE(k + 1) . . . (3.14.15)

and in selecting the minimal order that, once increased, does not lead to a significantly
better performance. Of course sequence(3.14.15)has the same properties of(3.14.11)
and it is thus reasonable to expect a stabilization whenk reaches the order of the process.
Previous results allow deducing a different expression for the estimate(3.10.5)of σ 2

e ,
given by

σ̂ 2
e = 1

N − d

L∑
t=n+1

ε(t)2 = N

N − d
J (θ) = detSn

(N − d) det
[
HT H

] . (3.14.16)
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Relation(3.14.16)gives the same estimate as(3.10.5)but does not require computing
the parameters of the model and its prevision; it can also be used in the application of
FPE, AIC and MDL criteria with the same advantage.

3.14.2 FPE (Final Prediction Error) criterion

This criterion consists in minimizing the expected value of the prediction error variance
σ 2

ε (3.10.3). Substituting estimatêσ 2
e (3.10.5)in (3.10.4)we obtain, for an orderk

model, the quantity

FPE(k) = N + d

N − d
J
(
θ◦
N

)= N + d

N(N − d)

L∑
t=n+1

ε(t)2 (3.14.17)

that, differently fromJ (θ◦
N), tends to infinity ford → N . Applying this criterion

means computing the sequence

FPE(1) FPE(2) . . . FPE(k) FPE(k + 1) . . . (3.14.18)

and selecting, as correct model order, the integer associated with the minimum value
of the criterion. The analysis of the properties of this criterion, under the assumption
that the data have been generated by an ARX process, shows that the probability of
overestimating the order of the model is non null.

3.14.3 AIC (Akaike Information Criterion)

The FPE criterion penalizes, for increasing values ofd, the decrease ofJ (θ◦
N). A

family of alternative criteria can be based on structures of the type

N log
[
J (θ◦

N)
]+ γ (N, d) (3.14.19)

whereγ (N, d) penalizes high order models. Choosingγ (N, d) = 2d we obtain the
AIC criterion

AIC = N log
[
J (θ◦

N)
]+2d (3.14.20)

which is asymptotically equivalent to FPE since, for large values ofN , logFPE is
given by

log

[
1 + d/N

1 − d/N
J(θ◦

N)

]
= log

[
1 + d

N

]
− log

[
1 − d

N

]
+ log

[
J (θ◦

N)
]

' 2d

N
+ log

[
J (θ◦

N)
]
. (3.14.21)

Note that the AIC criterion reduces the penalization on the order of the model for high
values ofN , leading thus to select models with larger orders whenN is high.
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3.14.4 MDL (Minimum Description Length) criterion

While FPE and AIC criteria are based on statistical considerations, the MDL criterion
is based on the minimization of the information necessary to describe a model and
its prediction error. Increasing the dimension of the model, an increased information
is necessary to describe its parameters while the information required to describe its
prediction error decreases. The MDL criterion consists in the expression

MDL = log
[
N

]
d + N log

[
J (θ◦

N)
]
. (3.14.22)

The only difference with AIC consists in multiplying the number of parameters,d, by
log[N ] instead than by 2. For usual lengths of the sequences used for identification
(some hundred samples) log[N ] > 2 so that the MDL criterion leads to models with
orders lower than those selected by AIC and FPE.

3.14.5 Whiteness test on residuals

It has been shown that the prevision errors (residuals) of an ARX model with correct
order estimated from input–output sequences generated by an ARX process, constitute
asymptotically, a white process. The whiteness of residuals is usually evaluated by
computing the sample covariances

RN
ε (τ) = 1

N

N∑
t=1

ε(t) ε(t + τ) (τ = 1, . . . , M). (3.14.23)

If ε(t) is a white process, then the quantity

ζN,M = N

Rε(0)2

M∑
τ=1

(
RN

ε (τ)
)2

(3.14.24)

will have, asymptotically, aχ2(M) distribution. The independence between residuals
can thus be verified testing whetherζN,M < χ2

α(M), theα level ofχ2(M) distribution,
for a significant choice ofα. Typical choices range from 0.05 to 0.005.

3.14.6 Test on the independence between residuals and previous inputs

The whiteness of residuals should lead also to the independence betweenε(t) and
the input sequenceu(t). This independence can be evaluated computing the sample
covariances

RN
εu(τ ) = 1

N

N∑
t=1

u(t)ε(t + τ). (3.14.25)

When ε(·) and u(·) are independent, the variable
√

NRN
εu(τ ) assumes a Gaussian

distribution with null expected value and varianceσ 2
εu given by

σ 2
εu =

∞∑
k=−∞

Rε(k)Ru(k) (3.14.26)
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where

Rε(k) = E
[
ε(t)ε(t − k)

]
(3.14.27a)

Ru(k) = E
[
u(t)u(t − k)

]
. (3.14.27b)

An efficient way of reporting the results of this test consists in plottingRN
εu(τ ) against

τ ; sinceσ 2
εu does not depend onτ , the confidence limits are represented by horizontal

lines and any deviation from non correlation assumptions can be easily appreciated.
This test can be used also to check the presence of delays in the process and/or the
choice of improper values for the delays inserted in the model.

The correlation betweenε(t) andu(t − τ) can evidentiate also other inadequacies
in the description of a process by means of a model; the scattering of the points
(ε(t), u(t−τ)) has been, for instance, proposed as evidence of the presence of nonlinear
behaviors not described by the model. Of course every practical implementation of
this test will approximate(3.14.26)with a limited number of terms.

3.14.7 Cross validation by simulation

A very effective way of evaluating the adequacy and flexibility of identified models
consists in their use for performing complete simulations (i.e. using only the initial
samples of the observed outputs) and in comparing the obtained previsions with ob-
served output samples. This procedure, that can be applied when a single set of data
is available, gives best results when applied to sequences different from those used
to identify the model. A quadratic criterion like(3.3.2)applied to the difference be-
tween the observed output and that obtained by simulation can then be used to compare
models with different orders.

A possible variation of this criterion consists in performing, when suggested by
specific applications of the models,k–step–ahead simulations, that is using, at timet ,
only the observed values of the output at times lower thant − k and those obtained
by simulation at timest − k, . . . , t − 1. Obviously a hybrid simulation of this kind
coincides with a complete simulation whenk > n.
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