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3.13 KALMAN FILTERING IN RECURSIVE ESTIMATION

An alternate approach to using weighted least squares in on–line identification can
be based on Kalman filtering. Assuming model(3.1.1)as non stationary, the time
dependence of its parameters is described by relations

αi(t + 1) = αi(t) + wi(t) (i = 1, . . . , n) (3.13.1a)

βi(t + 1) = βi(t) + wi+n(t) (i = 1, . . . , n) (3.13.1b)

wherewi(·) (i = 1, . . . , 2n) denote white Gaussian processes with null expected
values; every process is assumed as independent from remaining ones. Consider then
the matrix

C(t) = [
y(t − n) . . . y(t − 1) u(t − n) . . . u(t − 1)

]
(3.13.2)

and the parameter vector

θ(t) = [
α1(t) . . . αn(t) β1(t) . . . βn(t)

]T
. (3.13.3)

Parameter variations and process observations can now be described by the dynamical
system

θ(t + 1) = θ(t) + w(t) (3.13.4a)

y(t) = C(t) θ(t) + e(t). (3.13.4b)

Using a Kalman filter to estimate the state of system(3.13.4)we obtain, at timet , the
estimate

θ̂ (t) = θ̂ (t − 1) + K(t)
(
y(t) − C(t) θ̂(t − 1)

)= θ̂ (t − 1) + K(t) ε(t). (3.13.5)
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Gain matrixK(t) is given by

K(t) = P(t − 1) CT (t)

C(t)P (t − 1)CT (t) + σ 2
e

(3.13.6)

while P(t) is obtained solving the Riccati difference equation

P(t) = P(t − 1) − P(t − 1)CT (t)C(t)P (t − 1)

C(t)P (t − 1)CT (t) + σ 2
e

+ Q(t). (3.13.7)

σ 2
e = E [e2(t)] denotes the variance of the processe(·) whileQ(t) = E [w(t) wT (t)] is

the covariance matrix of the processw(·). It can be easily verified that the most simple
expression of recursive least squares (obtained updatingS(t)−1 instead ofR(t)−1) can
be obtained from(3.13.7)assumingQ(t) = 0 (constant parameters) andσ 2

e = 1.
Assuming alsoe(·) as Gaussian,P(t) can be interpreted as covariance matrix of the
estimate.

When the process to be identified is stationary, relation(3.13.4a)could be substi-
tuted withθ(t + 1) = θ(t), eliminatingQ(t) in (3.13.7). This would, however, lead to
an increase in the sensitivity of the filter to errors in formulating its equations and to
possible estimation errors not described byP(t); it is thus preferable to considerw(t)

as always present by introducing, when the process is stationary, covariance matrices
very small but sufficient to avoid thatK(t) → 0 for t → ∞.
Kalman filtering can be applied, as recursive least squares, only once a certain number
of samples ofu(·) andy(·) are available; from expression(3.13.2)of C(t) it follows
that the minimal number of samples necessary to start the algorithm equalsn. It is
also necessary to introduce, in the equations of the filter, estimates ofσ2

e , Q, of the
initial value of θ̂ (t) (that should be equal to its expected value) and of the initial value
of the covariance matrix,P(t0). It is common practice to set, in absence of specific
information,θ̂ (t0) = 0, P(t0) = σ 2I whereσ 2 is a relatively large value. This leads,
initially, to a large gain matrix which allows fast variations ofθ̂ (t); if a better initial
estimate ofθ(t0) is available,σ 2 will be proportionally reduced in order to reduce also
the sensitivity to innovationsε(t).

It can be observed that Kalman filtering offers more degrees of freedom than
recursive weighted least squares because of the possible choices for the entries ofQ.
Even limiting the choice to constant and diagonal matrices, it is possible to introduce
higher variances for the noises corresponding to parameters subject to larger variations.
The estimate ofσ 2

e can rely on(3.10.5)or (3.14.10).
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