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4.6 LEVINSON ALGORITHM

It has alreday been observed that it is useful, in some applications, to compute families
of models with increasing order for the same AR process taking advantage of all
previous computations. Considering the minimal Yule–Walker estimate it is possible
to take advantage of the Toeplitz structure ofRn to deduce a simple expression linking
the parameters of a model to those of previous one.
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whereρRn = [rn . . . r1]T denotes a vector having the same entries ofρn but in reverse
order; because of the Toeplitz structure ofRn, relation(4.5.9)implies that
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expression(4.6.3), quite similar to(4.4.5), has been obtained expanding the denomi-
nator expression
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Substituting the expression ofR−1
n+1 in (4.6.1)we obtain, with simple passages, the

following expressions
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Note that relation(4.6.6)shows how the equation errore(t) decreases increasing the
order of the model. Note also that previous relations, which constitute Levinson algo-
rithm, can be used only if the matricesRk have a Toeplitz structure. This condition is
not satisfied using the sample matrixRs

m (4.5.13)because, as already noted, its entries
are computed from finite shifted samples; whenN is large this aspect does play only a
secondary role and it is possible to force a Toeplitz structure onRs

m computing sample
estimates of its entries from the whole sequence.
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