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Introduction

This section first gives a brief introduction to fuzzy modeling. Then the structure of the
toolbox and its installation are described.

Fuzzy Modeling and Identification

Since its introduction in 1965, fuzzy set theory has found applications in a wide variety of
disciplines. Modeling and control of dynamic systems belong to the fields in which fuzzy set
techniques have received considerable attention, not only from the scientific community but
also from industry. Many systems are not amenable to conventional modeling approaches due
to the lack of precise, formal knowledge about the system, due to strongly nonlinear behavior,
due to the high degree of uncertainty, or due to the time varying characteristics. Fuzzy
modeling along with other related techniques such as neural networks have been recognized
as powerful tools which can facilitate the effective development of models.

Fuzzy models can be seen as logical models which use “if-then” rules to establish qualitative
relationships among the variables in the model. Fuzzy sets serve as a smooth interface between
the qualitative variables involved in the rules and the numerical data at the inputs and outputs
of the model. The rule-based nature of fuzzy models allows the use of information expressed
in the form of natural language statements and consequently makes the models transparent
to interpretation and analysis. At the computational level, fuzzy models can be regarded as
flexible mathematical structures, similar to neural networks, that can approximate a large
class of complex nonlinear systems to a desired degree of accuracy.

Recently, a great deal of research activity has focused on the development of methods to build
or update fuzzy models from numerical data. In order to automatically generate fuzzy models
from measurements, a comprehensive methodology is implemented in this toolbox. It employs
fuzzy clustering techniques to partition the available data into subsets characterized by a linear
behavior. From the obtained fuzzy partitions a multivariable model of the Takagi—-Sugeno
type (Takagi and Sugeno, 1985)) is constructed. A detailed description of this identification
method can be found in (Babuska, 1998)).

About the Toolbox

The Fuzzy Modeling and Identification (FMID) toolbox is a collection of MATLAB functions
for the construction of Takagi-Sugeno (TS) fuzzy models from data. The toolbox provides
five categories of tools:

e Model building. Function fmclust automatically generates a TS fuzzy model from
given input—output data. The parameters of the obtained models are stored in a single
Matlab structure. This allows the user to easily manipulate, store and document fuzzy
models. Function fmtune facilitates automatic simplification and reduction of the fuzzy
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model by removing redundant membership functions and rules. Function fmest can be
used to re-estimate the consequent parameters.

e Simulation. fmsim simulates an available fuzzy model either from the input or in a
one-step-ahead mode. This function also computes the variance accounted for (VAF)
performance index for the model. fmdof can be used to compute degrees of fulfillment
of the rules, for available data.

e Function fm2tex exports the parameters stored in the fuzzy model structure into a
I4TEXfile. A number of plot functions is provided to display the membership functions,
consequent parameters, etc.

e fmidemo opens a menu with several demonstration of static and dynamic fuzzy models.
The individual demos can serve as templates for the user’s own applications.

e In addition, the toolbox contains several utilities such as fmupdate that can be used to
upgrade fuzzy models built by older versions of the toolbox.

In addition to these tools developed specifically for fuzzy identification, a more general Fuzzy
Toolbox is available from the author. This toolbox was originally developed for MATLAB 4
and is currently being converted to MATLAB 5. Eventually, both toolboxes will be merged in
one.

Installation

The installation is straightforward and it does not require any changes to your system settings.
Proceed along the following four steps:

1. Create a subdirectory under your ....\ MATLAB\ TOOLBOX directory, call it whatever
you like, for instance FMID. If you are updating an existing installation of the toolbox,
remove all its files first.

2. Copy the toolbox files to this directory. If the toolbox was provided as a zip file, use
pkunzip to unpack it in this directory. Use the ‘-d’ option in order to extract also the
PRIVATE subdirectory which contains some utility functions used by the main toolbox

routines.

3. Modify or create the MATLAB startup.m file to include the FMID directory:

addpath c:\MATLAB\TOOLBOX\FMID

4. Start MATLAB and run fmidemo.

4 Fuzzy Modeling and Identification Toolbox
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New Features in Version 3.0

The main differences with respect to the previous version (2.1) are:

e The following functions have been added:

— fmtune simplify membership functions and reduce the fuzzy model
— fmest (re)estimates the consequent parameters in FM

— fmdof compute the degree of fulfillment (much faster than fmsim)
— plotdata plot the data in Dat (time and scatter plots)

— plotpart plot the fuzzy partition obtained by fmclust

plotout plot the output as function of individual inputs

— plotcons plot the consequent as function of the cluster centers
— fmsort sort rules in FM, using a given index vector

— fmupgrade upgrade FM from previous versions

— fm2ws export the fields of FM as variables to the workspace

e With the required number of clusters set to 1 (Par.c = 1), fmclust will generate a MIMO
linear model represented as coupled MISO models.

e The DOF variable returned by fmsim is now a cell array with the same structure as Ym
and Ylm.

e Multiple batches are no longer appended in the Dat structure; they are rather specified
as elements of a cell array, e.g., Dat.U1, Dat.U2, etc.

e An optional filed cons has been added to FM. It is used to specify the parameter esti-
mation method to be used (global, local, total, alpha-cut)

e The synopsis of fmclust has been simplified. The user-defined parameters (clustering
and dynamics) are now directly specified in FM. The fuzzy partition is returned in a
structure along with the feature (data) matrix.

e fm2tex has been improved.

e The possibilities in specifying the input and output lags and delays (Nu, Ny, Nd) have
been extended.

e A bug has been fixed in fmclust (standard deviations of the consequent parameters are
now computed correctly).

A bug has been fixed in fmsim (simulation with Ny = 0 was giving an error).

Fuzzy Modeling and Identification Toolbox 5}
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Examples

In this section, several examples of the identification of static and dynamic systems of varying
complexity are given. For additional examples, see fmidemo.

Approximating a Static Function

This example is implemented in statdemo. Let us approximate a univariate static function by
a TS fuzzy model. First, prepare the structure containing the input and output data:

u = (0:0.02:1)°;
y = sin(7%u);
Dat.U = u;

Dat.Y = y;

Second, choose the number of clusters (5), and the type of the antecedent (projected mem-
bership functions). For the remaining parameters, default values will be used.

Par.c = b;
2;

Par.ante

Now we can call the function fmclust which automatically constructs the fuzzy model and
returns it in the structure FM:

[FM,Mu] = fmclust(Dat,Par);
The output of the model can be computed for the any input data by:
[ym,VAF] = fmsim(u,y,FM);

In this case, the same input was used as was used for identification. Usually, a different data
set is used for model validation (see the following example). A plot is displayed on the screen
and the output of the model is returned in ym. The second output argument, VAF, is the
variance accounted for performance index (see vaf). Figure [ll shows the plot produced by the
fmsim command.

In addition to the output and the VAF index, the degree of fulfillment and the outputs of the
individual rules can be obtained from fmsim:

[ym,VAF,dof,yl,ylm] = fmsim(u,y,FM);

dof contains the degrees of fulfillment of the rules, yl are outputs of the individual rules. ylm
is equal to ym with the exception that all outputs but the one corresponding to the largest
dof are masked by NaN. This facilitates easy plotting of the local models. In our static SISO
example, the dof matrix represents the membership functions evaluated for the input vector,
see Fig. B2l

Now you can investigate the contents of the FM structure. To display the consequent param-
eters, for instance, type:

Fuzzy Modeling and Identification Toolbox 7
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Original function (blue) and fuzzy model (magenta)
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Figure 1: Static function (solid line) and its approximation by a fuzzy model (dashed-dotted
line). The fit of the model is VAF=99.67%.
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Figure 2: The original function and the obtained local models (top), membership functions

(bottom).
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FM.th{1}

ans =
5.7961 0.0259
-0.0023 0.8993
-5.3350 2.3972
0.5580 -1.2872
6.1772 -5.5209

In a similar way, the cluster centers and other parameters can be extracted. The function
fm2tex writes the information from FM to a IATEXfile. A part of this file is included below,
in order to see the rules and the cluster centers:

1. Ifuis A; then y=5.80-10% 4 2.59-1072
2. Ifuis Ay then y= —2.29-10"3u +8.99 107!
3. Ifuis As then y= —5.33-10% + 2.40 - 10°
4. TIfuis Ay then y=>5.58-10"1u —1.29 - 10°
5. Ifuis A5 then y=6.18-10% — 5.52 - 109
rule U

1 |7.28-1072

2 |240-1071

3 |4.53-1071

4 |6.74-107"

5 | 8.89-107!

Modeling a SISO Dynamic System

In this example, we develop a simple dynamic model for the relationship between the throttle
angle and the speed of an engine. Let us first define the Par (parameters) and Dyn (dynamics)
structures:

Par.c = 3; % number of clusters

Par.m = 2.2; % fuzziness parameter
Par.tol = 0.01; % termination criterion
Par.ante = 1; % product-space MFs

Dyn.Ny = 1; % number of lagged outputs
Dyn.Nu = 1; % number of lagged inputs
Dyn.Nd = 1; % number of transport delays

Par.c defines the number of required clusters, Par.m, and Par.tol are the fuzziness and the
termination tolerance of the clustering algorithm, respectively. The Par.ante parameter spec-
ifies that product-space membership functions will be derived. Dyn.Ny and Dyn.Nu are the
number of lags in the output and input, respectively, and Dyn.Nd is the number of pure delays
from the input to the output. Thus, we will obtain a fuzzy model of the following structure:
y(k+1) = f(y(k),u(k)). Now we load the data set, split it in halves and use the first half for
identification and the second half for validation.

10 Fuzzy Modeling and Identification Toolbox
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load data

N = size(engine_speed,1);

N2 = floor(size(engine_speed,1)/2);
Dat.U = throttle(1:N2);

Dat.Y = engine_speed(1:N2);

Dat.Ts = 0.1;

ue = throttle(N2+1:N);

ye = engine_speed(N2+1:N);

Dat.Ts is the sample time of the data. Now, the model can be constructed and validated by
simulation:

FM = fmclust(Dat,Par,Dyn);
[ym,VAF] = fmsim(ue,ye,FM); VAF

The graphical output obtained from the fmsim function is shown in Fig.[Bl Run endemol to
see this demo.

4500

4000

3500

3000

Outputl

2500

2000

1500

1000 1 1 1 1 1
0 100 200 300 400 500 600

Time [s]

Figure 3: Dynamic simulation of the engine (VAF=99.63%).

Modeling a MIMO Dynamic System

Consider a MIMO process consisting of four cascaded tanks as shown in Fig. @ The inputs
are the two flow rates u = [Q1, Q2]7, and the outputs are the four levels y = [hy, ho, h3, hy]7 .
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Figure 4: Four cascaded tanks.

A model of this system was simulated in Simulink in order to obtain input—output data
sequences for identification. The input signal is a low-pass filtered normally distributed white
noise to which white noise with a small amplitude is added, see Fig. The low-frequency
component signal drives the nonlinear system through the entire operating range, while the
high-frequency component takes care for persistent local excitation.

The measured outputs are the levels in the four tanks. They are similar to signals given in
Fig. @ The number of samples available for identification is 1000 and the sample time is 10 s.
The structure of the MIMO model is selected by using the insight in the physical structure
of the system as follows:

101 1 0 0 0 0
Lot roap ool 100 0
v=1lo 0 1 o> |1 o> |1 0

000 1 0 1 0 1

The first row of the n, matrix states that level hy(k + 1) depends on hq(k), ha(k) and hya(k),
but not on hs(k), see Fig. @ Similarly, the third row of this matrix states that hs(k + 1)
depends on h3(k), but not on the other variables. The meaning of n, and ng4 should be clear.

To construct the fuzzy model, the identification data set is first loaded and the structural
parameters of the model are defined:

load 1l4data % load input-output data
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Fuzzy Modeling and Identification Toolbox

Input data for identification.

13



LxalllpPICS

Dat.U = u;
Dat.Y = y;
Dat.Ts = 10;
Par.c = [3 3 3 3];
Par.m = 2.2;
Par.ante = 1;
Dyn.Ny = [1 0 1 1;
0111;
0010;
000 1]
Dyn.Nu = [0 O;
0 0;
1 0;
0 1]1;
Dyn.Nd = [0 O;
0 0;
10;
0 11;

-

input

output

sample time

number of clusters
fuzziness parameter
product-space MFS
output lags

input lags

transport delays

Now the fuzzy model can be constructed and validated on a different data set (ue, ye):

FM = fmclust(Dat,Par,Dyn);
[ym,VAF] = fmsim(ue,ye,FM);

The validation data set was obtained by interchanging the two input signals. A comparison
of the outputs of the fuzzy model with the process data is shown in Fig. [0l

For a comparison, a 4th-order linear state-space model was identified from the same data set
by means of a subspace identification technique (Verhaegen and Dewilde, 1992)). For the TS
fuzzy model: VAF = [99.41, 99.46, 99.47, 99.81], and for the linear state-space model: VAF
= [95.37, 85.11, 96.88, 89.64]. It is clear that the fuzzy model is considerably more accurate

than the linear one.

14
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Time [lO3 S|

Figure 6: Comparison of the process output (solid line) with the fuzzy model output (dashed-
dotted line).
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Reference

Construction and simulation of fuzzy models

fmclust  build a MIMO NARX fuzzy model by
product-space fuzzy clustering
fmsim simulate a MIMO NARX fuzzy model

Utilities
fmstruct  description of the fuzzy model structure FM

fm2tex export a fuzzy model into a LaTEX file
plotmfs  plot membership functions of a fuzzy model

rms root mean squared error
vaf variance accounted for
Demonstrations

endemol SISO model of throttle—speed relation

endemo2  MISO model of throttle-pressure relation

endemo3  SIMO model of throttle-(speed,pressure) relation
fmidemo list of all toolbox demos

lldemol SISO model of a liquid level process

ll4demol  MIMO model of a process with four cascaded tanks
statdemo  static SISO function (sine)

wwdemo SIMO model of waste-water treatment process
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Purpose

Build a MIMO input—output static or dynamic fuzzy model from data by means
of product-space fuzzy clustering (uses the Gustafson-Kessel algorithm).

Synopsis

[FM,Mu,Z] = fmclust(Dat,Par,Dyn)

Description

The fmclust function constructs a multivariable TS fuzzy model from input-output
data. The data sequences and other data-related information is given in the Dat
structure which has the following fields:

Dat.U matrix containing input data
Dat.Y matrix containing output data
Dat.Ts sample time (optional, default 1)
Dat.N number of data points per batch

The data sequences are stored in the columns of Dat.U and Dat.Y. In the sequel,
the number of model inputs (columns of Dat.U) is denoted by ni and the number
of model outputs (columns of Dat.Y) by no. Dat.Ts is the sample period of the
data. It is only stored in the model structure FM and then used in simulation
(fmsim) to get the right time scale. This parameter is optional (default Ts = 1).
With Dat.N, one can specify that the input-output data consists of several sepa-
rate batches concatenated in the U and Y matrices. Dat.N is a vector containing
as many elements as there are batches. Each element then gives the number of
data samples in the corresponding batch. For instance, N=[100 250 200] means
that the U and Y matrices consist of three batches, the first one of 100 samples,
the second one of 250 samples, and the third one of 200 samples.

User-supplied parameters related to clustering and model extraction are are given
in the Par structure which has the following fields:

Par.c number of clusters (thus also rules) per output
Par.m the fuzziness exponent per output (default 2)
Par.tol termination tolerance (default 0.01)

Par.seed seed for random generator (default sum(100*clock))
Par.ante type of the antecedent (default 1)

The number of required clusters is a scalar for MISO systems and a vector for
MIMO systems (each MISO model may have a different number of clusters). All
the remaining fields of Par are optional. Par.m is the fuzziness exponent (Par.m
> 1) with the default value Par.m = 2. Larger values imply fuzzier (more over-
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lapping) clusters. For MISO systems, it is a scalar, for MIMO systems a vector,
i.e., each MISO model may have a different degree of fuzziness in clustering. The
termination tolerance for the clustering algorithm can be given in Par.tol (default
Par.tol = 0.01). In fuzzy clustering, a random initial partition is usually gen-
erated. In order to obtain reproducible results, the random generator may be
seeded by supplying the Par.seed parameter. Its default value is sum(100*clock)).
Par.ante specifies the type of the antecedent in the fuzzy model. Currently, two
options are implemented, 1 for product-space membership functions (default), and
2 for projected membership functions. Product-space membership functions give
faster but often less accurate models. For MISO systems, Par.FMtype is a scalar,
for MIMO systems it is a 1 x no vector (each MISO model can be of a different

type).

The Dyn structure defines the dynamics of the input—output model. This structure
is optional (if not supplied, a static MIMO model y = f(u) is constructed) and
has the following fields:

Dyn.Ny number of delays in y (default 0)
Dyn.Nu number of delays in u (default 1)
Dyn.Nd number of transport delays (default 0)

Dyn.Ny is the number of delays in y (analogical to the order of the denominator
polynomial of a linear transfer function). The default value is Dyn.Ny=zeros(no,no),
i.e., a static system. For MISO systems, Dyn.Ny is a scalar (there is one output
only), for MIMO systems it is an no x no matrix. Each row corresponds to one
MISO model and specifies which delays of which outputs are included in that
model. Dyn.Nu defines the delays in u (analogical to the order of the numerator
polynomial of a linear transfer function). The default value is Dyn.Nu=ones(no,ni)
(static system). For MISO systems, Dyn.Nu is a 1 x ni vector, for MIMO systems
it is an no X ni matrix. Each row corresponds to one MISO model and speci-
fies which delays of which inputs are included in that model. Dyn.Nd defines the
number of pure transport delays in u. The default value is Dyn.Nd=zeros(no,ni)
(static system, thus no delay). For MISO systems, Dyn.Nd is a 1 x ni vector, for
MIMO systems it is an no x ni matrix. Each row corresponds to one MISO model
and specifies which the transport delays in all the inputs of that model. To obtain
a causal model y(k + 1) = f(y(k),...,u(k),...), Dyn.Nd must be set to one.

The output of fmclust is the FM structure which contains all the parameters of
the obtained fuzzy model. See fmstruct for details. The fuzzy partition matri-
ces are returned in the Mu cell array, where each cell corresponds to one output.
Similarly, Z is a cell array containing the data matrix that has been clustered. To
visualize the partition, the cells of Mu can be plotted against the columns of the
cells in Z.

Fuzzy Modeling and Identification Toolbox 19
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Algorithm

fmclust uses fuzzy clustering in the product space of the regressors and the regres-
sand in order to approximate a nonlinear system by a collection of local linear
models. Each local model then corresponds to one fuzzy rule of the Takagi-Sugeno

type. MIMO systems are identified (and simulated) as a set of coupled MISO sys-
tems. See (Babuska, 1998)) for details.

Example

Approximate a sinusoidal function by a TS fuzzy model with five rules:
Dat.U = (0:0.02:1)7;
Dat.Y = sin(7*u);
Par.c = 5;
[FM,Mu] = fmclust(Dat,Par);
[ym,VAF] = fmsim(u,y,FM); VAF

See Also

fmsim, fmstruct, fm2tex

Fuzzy Modeling and Identification Toolbox
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Purpose
Simulate a MIMO input-output fuzzy model.

Synopsis
[Ym,q,DOF,Y1,Ylm] = FMSIM(U,Y,FM,
Ymin,Ymax,show,H)

Description

The fmsim function simulates a fuzzy model FM from the input data U and com-
pares the simulated output Ym with the true output Y. The first several values of
Y are used to initialize Ym. The number of these values depends on the number of
lags defined in Dyn. The Y parameter is optional, if an empty matrix is supplied,
zero initial conditions are used. The format of data in U and Y is the same as
in fmclust. Ymin and Ymax are the lower and upper bounds on Y. During the
simulation, the outputs are constrained between these bounds. This parameter
is optional, default bounds are Ymin=-inf and Ymax=inf. The show parameter
determines what graphical output is shown on the screen. Set this parameter to
1 for on-line plot during the simulation, to 2 for a plot at the end of simulation,
and to 0 for no plot at all (optional, default 1). The H parameter (optional) spec-
ifies the prediction horizon. In this version, it only can be set to 1, which means
one-step-ahead prediction. If not supplied, simulation from input is used.

The output argument q is a performance index of the model, computed as variance
accounted for (VAF). See vaf for details. DOF is a matrix containing the degrees
of fulfillment of the rules. For multiple-output systems, the individual models
are concatenated in one matrix: [DOF_1, DOF_2, ..., DOF_no]. The contributions
of the consequents of the individual rules are returned in the matrix YI. YIm is
identical to Y| except for that all outputs but the one corresponding to the largest
DOF are masked by NaN. This format is suitable for plotting the local models.
The same holds for MIMO systems as with DOF.

Note: fmsim currently only works properly for static dynamic systems with inputs,
some minor adjustments are needed for autoregressive systems. The possibility
to include a prediction horizon and a ”single-step” mode will be added as well.

See Also

fmstruct, fmclust, vaf
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Purpose
Help on the structure of FM.

Synopsis

fmstruct or help fmstruct

Description
The parameters of a fuzzy model are stored in a MATLAB 5 structure named FM
(fuzzy model) which has the following fields:

Ts sample time

ni number of inputs

no number of outputs

N number of data samples used for identification
tol termination tolerance for clustering

seed seed for random initialization of fuzzy partition
date date of model construction

ny number of output lags

nu number of input lags

nd number of pure delays

ante type of fuzzy model

m fuzziness exponent

Alist list of indices of used antecedent variables
Clist list of indices of used consequent variables
rls rule matrix

mfs membership function matrix

th consequent parameters

s standard deviation for th

\% cluster centers

P norm-inducing matrices

zmin minima of each column of the data matrix Z
zmax maxima of each column of the data matrix Z
InputName names of input variables (cell array)
OutputName names of output variables (cell array)

Each element of the FM array corresponds to one output of the model.

See Also

fmclust, fmsim, fm2tex
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fm2tex

Purpose
Export a fuzzy model into a LaTEX file.

Synopsis
fm2tex (FM,filename)

Description
This utility function writes some of the information contained in FM into a LaTEX
file. The created file contains an introductory description of the model and its
structure. For each output, the rule base, the consequent parameters and the
cluster centers are included. FM is the fuzzy model parameter matrix and filename
specifies the name of the LaTEX file to be created. If a file with the specified
name already exists, it is overwritten without a warning.

See Also
fmstruct, plotmfs
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plotmfs

Purpose
Plot membership functions.

Synopsis
plotmfs(FM,opt)

Description
This utility plots the membership functions contained in FM on the screen. Pro-
jected membership functions are plotted directly. Product-space membership
functions, however, cannot be visualized in general. An approximate idea about
their shape is obtained by plotting their projections.

See Also

fmstruct, fm2tex
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rms

Purpose
Root-mean-squared error between two signals.

Synopsis
rms (yl,y2)

Description
Function rms computes the root-mean-squared error between two signals. The
RMS index is often used to assess the quality of a model, by comparing the true
output with the output of the model.

See Also

vaf
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vaf

Purpose
Percentile variance accounted for (VAF) between two signals.

Synopsis
vaf(yl,y2)

Description
Function vaf computes the percentile variance accounted for (VAF) between two

signals as follows:

VAF = 100% - 1_M
var(yl)

The VAF of two equal signals is 100%. If the signals differ, VAF is lower. When
yl and y2 are matrices, VAF is calculated for each column. The VAF index is
often used to assess the quality of a model, by comparing the true output with
the output of the model.

See Also

rms
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