A Wind Turbine Benchmark Model for a Fault Detection and Isolation Competition

Silvio Simani Department of Engineering, University of Ferrara Via Saragat 1E 44123 Ferrara (FE), ITALY Ph./Fax:+390532974844 Email: silvio.simani@mife.it. URL: www.silviosimani.it

(available at http://www.silviosimani.it/talks.html)

Energy and Related Issues

- Control systems have high influence on the total cost of energy
- Focus on supervision and control solutions
- The design of suitable strategies is enhanced by high-fidelity benchmark models and prototypes
- Solutions characterised by craftsmanship, quality, reliability, and proven technology

Energy, Cost, Fault Tolerance

30/05/2013

Safety-Critical Systems

Model-based FDI and FTC are proposed as new approaches for sustainable (keyword, high degree of reliability and availability) wind turbine control Keypoints: loads (storms, ...), failures and faults NOTE: FTC was firstly developed as aerospace topic, focused mainly on NASA projects, motivated by advanced aircraft that could be reconfigured by control through a high degree of flight surface redundancy

Motivations

Harsh environment - system well protected
 Offshore wind turbines are stand-alone power plants in inadequate service and maintenance attendance

 Safety-related control systems to manage incidents from lightning, storms, gusts and other periodic incidents, as well as jaults affecting the energy drive train (system/components) and the electricity production

 Production maintained even in case of failures (abrupt breakdown) and incipient faults (e.g. slowly developing and hard to detect malfunctions – their effects can be accommodated by FDI+FTC)

Example...

General FDI/FTC Structures

PFTC: Robust fixed structure controller

No fault information provided

AFTC: Real-time controller reconfiguration

Fault reconstruction by FDI – maintenance enhanced

General Fault Types

Abrupt fault: breakdown due to e.g weather conditions

- Incipient fault: e.g. ageing; slowly developing malfunctions (system/components)
- Intermittent fault: e.g. sensor bias/offset, disconnections

Time

International Competition

kk-electronic (Denmark) together with MathWorks launched a number of benchmark models for fault detection and accommodation, which allows both industrial and academic researchers to find the best schemes to handle different faults. Based on these models a series of competitions and challenges have been proposed Simple Wind Turbine FDI/FTC benchmark model Advanced WT FDI / FTC benchmark mode Wind farm FDI/FTC benchmark model Benchmarks developed by kk-electronic in Matlab and Simulink environments Extensible and easily integrated with other codes (.dll, **functions**)

http://www.kk-electronic.com/wind-turbine-control/competition-on-fault-detection.aspx

Competition Focus

 Wind turbine benchmark models proposed by kk-electronic in order to provide generic platforms for design and test different FDI and FTC solutions

- The target group was researchers in the FDI and
 - FTC community
 - Matlab enhances the application and comparison of these methods on wind turbine application
- Since the model is generic it can be provided to the public

Modelling Requirements

- Coupled aero-hydroservo-elastic interaction
- Models originate from different disciplines
 - Wind-Inflow
 - Waves
 - Aerodynamics
 - Hydrodynamics
 - Structural dynamics
 - Control systems
 - Multi-Physics Simulation Tools

NREL Design Codes National Renewable Energy Laboratory

http://wind.nrel.gov/designcodes

- FAST (Fatigue, Aerodynamics, Structures, and Turbulence) – aeroelasticity
- TurbSim turbulent inflow
- ADAMS (Automatic Dynamic Analysis of Mechanical Systems)
- NASTRAN flexible blade model

 Used heavily in industry, academia and other governmental research organizations

Important for control systems design

Design Codes

Coupled Aero-Hydro-Servo-Elastic Simulation

30/05/2013

Wind Turbine Model

Stochastic wind model including tower shadow and wind shear

 Odgaard, P.F. ; Stoustrup, J. ; Kinnaert, M. Fault-Tolerar

> Actuator models

Odgaard, P.F. ; Stoustrup, J. ; Kinnaert, M. Fault-Tolerant Control of Wind Turbines: A Benchmark Model. IEEE Transactions on Control Systems Technology, 2013

Zero-mean Gaussian distributed measurement noise

Sensor Models

Sensor Type	Symbol	Unit	Noise Power
Anemometer - Wind speed at hub height	$v_{ m w,m}$	m/s	0.0071
Rotor Speed	$\omega_{ m r,m}$	rad/s	10^{-4}
Generator Speed	$\omega_{ m g,m}$	rad/s	$2 \cdot 10^{-4}$
Generator Torque	$ au_{ m g,m}$	Nm	0.9
Generated Electrical Power	$P_{g,m}$	W	10
Pitch Angle of <i>i</i> th Blade	$eta_{i,\mathrm{m}}$	deg	$1.5 \cdot 10^{-3}$
Azimuth angle low speed side	$\phi_{ m m}$	rad	10^{-3}
Blade root moment <i>i</i> th blade	$M_{\mathrm{B},i,\mathrm{m}}$	Nm	10^{3}
Tower top acceleration (x and y directions) measurement	$egin{array}{c} \ddot{x}_{ ext{x,m}}\ \ddot{x}_{ ext{y,m}} \end{array}$	m/s^2	$5 \cdot 10^{-4}$
Yaw error	Ξ _{e,m}	deg	$5 \cdot 10^{-2}$

100.00

Actuator Models

Pitch actuator model

$$\frac{\beta(s)}{\beta_{\rm r}(s)} = \frac{\omega_{\rm n}^2}{s^2 + 2 \cdot \zeta \omega_{\rm n} \cdot s + \omega_{\rm n}^2}$$

Generator and converter model

$$\frac{\tau_{\rm g}(s)}{\tau_{\rm g,r}(s)} = \frac{\alpha_{\rm gc}}{s + \alpha_{\rm gc}},$$

> Generator power

 $P_{\rm g}(t) = \eta_{\rm g}\omega_{\rm g}(t)\tau_{\rm g}(t),$

Simulink-based Scheme

Turbine Model & Controller

- Routines for pitch, torque, & yaw controllers
- Dynamic link library (DLL):
 - DLL interface routines included with FAST archive
 - Can be Fortran, C++, etc.
- MATLAB/Simulink:
 - FAST implemented as S-Function block
 - Controls implemented in block-diagram form

30/05/2013

Reference Controller

Approximates the configuration of an existing control system

Used in the design of the fault diagnosis algorithms

Fault Scenario

Component	Fault	
Pitch sensor	Biased output	
Pitch actuator	Pump wear	
	High air content in oil	
	Hydraulic leakage	
	Valve blockage	
	Pump blockage	
Generator speed sensor	Proportional error	
	Fixed output	
	No output	

Odgaard, P.F. ; Stoustrup, J. ; Kinnaert, M. Fault-Tolerant Control of Wind Turbines: A Benchmark Model. IEEE Transactions on Control Systems Technology, 2013

Fault Scenario (cont'd)

No.	Fault	Туре
1	Blade root bending moment sensor	Scaling
2	Accelerometer	Offset
3	Generator speed sensor	Scaling
4	Pitch angle sensor	Stuck
5	Generator power sensor	Scaling
6	Low speed shaft position encoder	Bit error
7	Pitch actuator	Abrupt change in dynamics
8	Pitch actuator	Slow change in dynamics
9	Torque offset	Offset
10	Yaw drive	Stuck drive

Odgaard, P.F. ; Stoustrup, J. ; Kinnaert, M. Fault-Tolerant Control of Wind Turbines: A Benchmark Model. IEEE Transactions on Control Systems Technology, 2013

FDI and FTC Solutions

- A competition in two parts was launch on the WT benchmark model (2009)
 - Part I on FDI: solutions were presented in two invited sessions at IFAC World Congress, Milan, Italy, 2011
 - Part II on FTC: solutions were presented in two and a half invited sessions at IFAC Safeprocess, Mexico City, Mexico, 2012
 - Three prizes sponsored by kk-electronic a/s and Mathworks

http://www.kk-electronic.com/wind-turbine-control/competition-on-fault-detection.aspx

Fault Accommodation

Component	Fault	Fault Accommodation Method		
Pitch sensor	Biased output	Signal correction of measurement and reference signals		
Pitch actuator	High air content in oil	Active and passive fault-tolerant control		
	Pump wear			
	Hydraulic leakage	Shut down the wind turbine		
	Valve blockage			
	Pump blockage			
Generator speed sensor	Proportional error	Signal correction of measurement signal		
	Fixed output	Signal correction of measurement signal (PL)		
	No output	Active and passive fault-tolerant control (FL)		

http://www.kk-electronic.com/wind-turbine-control/competition-on-fault-detection.aspx

Active and Passive FTC

Conclusion

Recent Challenges

- Original benchmark model is combined with NREL's FAST with a more detailed aerodynamic and structural model
- Contributions were submitted as invited session at ACC 2013 (June 17–19, Washington, DC)
- A benchmark model for FDI and FTC of wind turbines on a wind farm level have been proposed, and a new competition in two parts – FDI and FTC have been launched and running
- FDI solutions under evaluation for the next CDC 2013 (December 10-13, Florence, Italy)
- Prizes sponsored by MathWorks and kk-electronic

Open Research Issues

Q

Wind Farm FDI/FTC

Floating Wind Turbine Control

30/05/2013