Teaching Control Engineering Courses: Is integrating theory & practice a recipe for success? Silvio Simani Department of Engineering, University of Ferrara. Ferrara (FE), ITALY Email: silvio.simani@unife.it URL: www.silviosimani.it

Contents

- > The story
- EnDiF courses
- Control topics in Engineering programs
- Combining theory concepts with practice
- Engaging students: learning by doing
- > Bridging theory & practice: tools & examples
- Is a recipe for success?
- Final remarks

The Engineering Institute

The Engineering Institute

- Our story: from the Institute to Department
- > 1990: the Faculty of Engineering
- > 2012: the Department of Engineering
- Courses organisation
 - 1992: academic year of 8 months
 - 1993: 2 semesters
 - 2000 2004: from bimester to trimesters
 - 2005 : 2 periods of 4 months per year

Engineering Dept: EnDiF

Engineering Dept: EnDiF

- \Box 2000: from 5 years degree to 3 + 2
- □ Bachelor and Master programs: 3 + 2
 - 4 groups: Computer Science, Electronics, Telecommunications and Automatic Control
- I common Bachelor degree in Electronics & Computer Science (2012, former 'Information Science')
- 2 Master degrees in Automatic Control & Computer Sciences, Electronics & Telecommunications

Current Organisation

Engineering Curriculum

- Bachelor program:
 - 1st year: Mathematics, Physics & Computer Science basic courses
 - 2nd year: Mathematics, Physics & Computer Science basic courses + curricula courses
 - 3rd year: curricula courses (Elect. or Comp. Sc.)
- Master program:
 - 1st year: basic + elective courses
 - 2nd year: elective courses

Control Topics in BSc & MSc

Control Topics in BSc & MSc

- ✓ Bachelor program:
 - 2nd year: Automatic Control (II semester)
 - 3rd year: Digital Control Systems + System Identification (II semester)
- ✓ Master program:
 - 1st or 2nd year: Advanced Control Techniques + Fault Diagnosis (I semester)
- ➤ 2002 : reduction in teachers' hours
- Laboratory facilities & tools
- Courses' organisation & BSc/MSc structure
- Teaching strategy 'optimisation'

Theory & Practice Integration

Theory & Practice Integration

✓ Difficult task:

- 'Substrate' quality
- Previous basic course levels (instructor skills)
- Lecture distribution: lecture rooms & labs facilities
- Variable course topic development
- ✓ 'Adaptive' system
- ✓ Standard tools? Apps, GUI, ...
- Teaching methodology 'optimisation'
- Matlab & Simulink

Engaging Students

Engaging Students

- Learning by doing
- Bridging theory & practice
- Tools: Matlab & Simulink basics
 - 2nd & 3rd years of BSc
- ✓ Automatic Control & Digital Control Systems
- ✓ 2016: Basic issues of Estimation Theory
- Adaptive' teaching strategy required
- Matlab & Simulink @ EnDiF

Numerical Tools

Numerical Tools

- 1993: Matlab @ Ferrara University
- 1999: Simulink
- > Other numerical & programming codes
 - ➢ Pascal, Fortran, C...
- ✓ 2000: Matlab & Simulink used in Automatic
 Control courses & lecture notes
- \checkmark 2003: practice disconnected from theory
- Adaptive' teaching methodology development
- Examples with Matlab & Simulink

Bridging Theory & Practice

MathWorks Research Summit – Boston 2016

Bridging Theory & Practice (1)

- Example: difference equations (Digital Control)
- ✓ Fibonacci equation
 - From theory
- ✓ To practice
 - Solution
 - Stability concepts
 - Matlab arrays
 - Graphs
 - Simulin blocks

$$F_{n} = \frac{(1 + \sqrt{5})^{n} - (1 - \sqrt{5})^{n}}{2^{n}(\sqrt{5})}$$

Bridging Theory & Practice (2)

- Example: digital control system design
- Analytical approach
 - From theory
- ✓ To practice
 - Transfer functions
 - Root locus
 - Lead & lag networks
 - Simulink PID autotuning
 - >Advanced control...

Bridging Theory & Practice (3)

- > Example: PID controllers
- ✓ Design approach
 - Z-N + oscillation method
- ✓ To practice
 - Critical gain
 - PID parameters
 - Autotuning with Simulink
 - Matlab code
 - Matlab functions

Controller	K_p	T_i	T_d
Р	$0.5 K_{\rm cr}$	Infinity	0
PI	$0.45 K_{cr}$	$P_{\rm cr}/1.2$	0
PID	$0.6 K_{\rm cr}$	$P_{\rm cr}/2$	$0.125 P_{\rm cr}$

Bridging Theory & Practice (4)

- Example: nonlinear control
- Analytical approach
 - From theory (FL SM)
- ✓ To practice
 - Neural networks

Fuzzy logic

> ANFIS

- ➤ nntool
- ≻ LQR/LQG

A Recipe for Success?

Bridging Theory & Practice

Tough task

- Complex trade-off
 - 'Substrate' quality: varies every year
 - Topic development: changing requirements
- □ Lecture topic synchronisation
- □ Advanced tool standardisation (e.g. Apps, GUI)
- It can be enhanced using basic tools

... Still working on it!

Concluding Remaks

- Theory & practice integration
- ✓ Matlab & Simulink tools
- ✓ Integrated in Control Engineering curriculum
- Interdisciplinary teaching enhanced
- Courses are connected with a common set of tools
- University-industry technology transfer
- Independent study essential for professional engineer

Thanks You for Listening

MathWorks Research Summit – Boston 2016