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The purpose of this manual is to describe the Transfer Function Interpreter, a
package in Matlab 1 that was specifically developed to provide an effective interactive
environment for control system design, useful both in didactics and profession.

The manual consists of two main parts:

General Information, including an Introduction, that presents the features of
the package and its use as a lab support in Automatic Control System courses, and
an Installing, setting, and starting section, that describes installation procedures
and possible personalizations.

TFI and Its Applications, containing a detailed description of the Transfer
Function Interpreter environment. For every one of the applications accessible from
TFI, that are considered in alphabetical order, the presented material consists of
a Recall section, containing some elements of the underlying theory, an Operation
section, with the procedure(s) of use in some detail, and an Examples section, that
for graphical applications includes numerous reproductions of screen layouts.

All the Matlab m-files contained in the file INTP.ZIP must be located in the
directory INTP which can be defined by the user in the general directory TOOLBOX
of Matlab. The directory INTP must be included in the Matlabpath with the
path browser, which is accessible with the command “set path” from the Matlab
Command Window.

Upgrades of the software can be freely downloaded from the web page:

htpp://www3.deis.unibo.it/Staff/FullProf/GiovanniMarro/gm tfi.htm

The TFI software that comes with this manual works with Matlab5 and Matlab6
(Releases 12 and 13). It can also be adapted to Matlab 7 (Release 14) by using an
upgrade downloadable from the above web page.

1Matlab is a registered trademark of The Mathworks, Inc., Cochituate Place, 24 Prime Park
Way, Natick MA, 011760 USA.
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Chapter 1

Introduction

1.1 What TFI is

What is TFI? The Transfer Function Interpreter (TFI) is a package of Matlab
m-files that create a specific computer-aided design environment for interactive
control system analysis and synthesis. Its main feature is direct definition of transfer
functions with the keyboard. Transfer functions are permanently saved in the work
directory of the hard disk as *.mat files.

Hence, is TFI a Matlab toolbox? TFI is not exactly a toolbox even if it is
installed in the same way, because it uses a second-level interpreter. When TFI is
entered, a new prompt appears on the screen (> instead of >>), to inform that the
Command Window has been changed into a new one, with another syntax. However,
since entering end exiting TFI from the Matlab Command Window are immediate,
it may be simply considered an addition of new tools to the Matlab environment.

Is TFI simply an interpreter? No, besides direct transfer function manipu-
lation, TFI also provides a great number of CAD functions that enable many topics
of control system analysis and synthesis to be thoroughly managed. These are: in-
verse transformation of rational functions, linear system analysis in the time and
frequency domain, stability problems and root locus, compensator and regulator
design, robustness of stability in closed-loop systems, and nonlinear system analysis
and design with the describing function method.

Why TFI is convenient? TFI makes the interactive approach to automatic
control problems easier, since knowledge of Matlab programming language is not
necessary. This feature simplifies its use both in basic didactics and in industrial
design. Moreover, all the available graphic applications are provided with a friendly
menu that allows very direct modification of the figure features, such as axes scales,
grids, colors, and provides information useful for design.

1



2 Chapter 1. Introduction

Does TFI consider discrete-time systems? Yes, TFI recognizes and handles
both continuous-time transfer functions (ratios of polynomials in s) and discrete-time
transfer functions (ratios of polynomials in z), both accessible in a unique environ-
ment. Definition of a sampling time is interactively requested when entering TFI in
order to match continuous and discrete. Utilities like discrete-time antitransforma-
tion, conversion from continuous to discrete and w-plane conversion, are provided
for sampled-data control system design.

Does TFI consider state-space models? No, it only handles transfer func-
tions. Strict multivariable system design is not available in the TFI environment,
that has been specifically developed for introductory control system courses, while
state-space analysis is usually presented in second-level courses. However, the pole
assignment problem is approached in TFI environment with the Diophantine equa-
tion. This makes a complete presentation of the analytic design of regulators possible
by using only transfer functions.

Is TFI a well-tested and reliable software? Yes, TFI has been developed
as a teaching aid, copyrighted and distributed in Italy since September 1994 in a
diskette enclosed with the most widespread textbook on Automatic Control Systems.
It has been used in labs of numerous universities for several years, with continuous
improvement, mainly due to suggestions coming from students.

What about numerical robustness of the computational routines? Par-
ticular attention has been given to numerical robustness in TFI. When transfer func-
tions are stored, factorized forms are preferred to polynomial ones, so that multiple
poles and zeros are robustly preserved. For instance, in conversion from continuous
to discrete time a multiple pole at the origin robustly results in a unit pole with
the same multiplicity, since the converted transfer function is provided in factorized
form.

Are the computational methods used in TFI accessible to users? Yes,
in this handbook every application is presented with a Recall section, that briefly
reports the theory involved and the method of solution.

Are there new methods in TFI, that are not available in standard text-

books? Yes, these are the inversion formulae for lead and lag compensator design
(see the Recall section of applications regnich and pidnich), that may also be taught
in basic control theory courses, since they make trial-and-error design procedures
faster, and perfect tracking in nonminimum-phase digital control systems (see the
Recall section of application perftra), obtained through preview and preaction, that
is now only available in technical papers, not yet in books.

Is there any TFI application particularly teaching-oriented? Yes, ap-
plications deftf and regrootl , that define transfer functions and regulators by direct
allocation of their poles and zeros with the mouse, are particularly useful to easily
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point out the correlation between pole/zero layout and time and frequency responses
of linear dynamic systems, both continuous-time and discrete-time. They enable
quick comparison of a certain number of different cases, whose pole/zero maps and
time/frequency response plots are presented together in different colors. Other ap-
plications teaching-oriented are lagc, leadc, pidc, pidd, pidnich and regnich, that also
enable to immediately show the effects of the free choices in trial-and-error synthesis
methods.

What is the main feature of the TFI environment? It is making available
powerful synthesis methods: basic applications like regnich, pidnich and regrootl
have no equivalent in other teaching aids for automatic control systems. These are,
in general, oriented towards time and frequency domain analysis and state-space
synthesis, and do not include any means to speed up the fundamental trial-and error
design methods based on gain and phase margins or dominant-pole location, that
are the most convenient means to achieve sensitivity and insight on feedback system
behavior. Furthermore, the standard analysis tools for time response, frequency
response and root locus (applications tresp, fresp and rootl) are more complete
and easily accessible than elsewhere, being provided with very unified and friendly
interactive menus, that also enable a professional output in printers.

Is it possible to define transfer functions in parametric form? Yes, in
the TFI environment it is possible to define transfer functions whose coefficients are
any closed-term expression of one or several parameters, but their use is restricted
to parametric robustness analysis (application robpar).

Is it possible to consider finite delays? Yes, both directly in open-loop
frequency response diagrams (application fresp) and by using Padé approximants in
the closed-loop case.

Does TFI require the Control System Toolbox? No, it uses specific
computational and graphic routines.

Is there any intersection between using Simulink and TFI? No, Simulink
is a very complete analysis-oriented tool, while TFI is a synthesis-oriented tool
restricted to SISO systems.

Is there any difference between TFI and the Matlab’s LTI systems?

They are two different solutions of the same problem, i.e. to handle systems besides
matrices with Matlab. TFI also perfectly works with Matlab 4, while the LTI
systems are a specific feature of Matlab 5.

Is TFI compatible with the Matlab Student Edition? Yes, the two
versions of TFI available (intp4 and intp5) are wholly compatible with the Matlab 4
and the Matlab 5 Prentice Hall Student Editions, respectively.
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Why many commands in the TFI environment are keyboard-oriented?

There are several reasons for this: i) we decided to make all the figures of the TFI
design sessions continuously available, and use of the mouse is unadvisable when
managing many Matlab-generated figures, since selection by mouse may disturb the
running program; ii) a figure can arbitrarily be reduced or enlarged with the mouse,
but the fonts of axes and text are fixed, so that its aspect is generally worsened
with respect to the standard one, that in the TFI environment is full-screen for low-
resolution monitors; iii) there are some functions, very useful to obtain or export
professional figures for publications, like change of axes scales and/or graduations, or
change of step when drawing a root locus, that are more easily done with keyboard
than with mouse; iv) the Matlab’s Command Window maintains a record of the
session, that can be printed. Nevertheless, the mouse is used in all the design
procedures that require selection of points on diagrams, in order to speed up trial-
and-error methods.

1.2 TFI in a basic course on Control

The Transfer Function Interpreter has been developed for high-speed interactive
analysis and design of single-input single-output automatic control systems. It is
very useful in labs, specially those organized by teams, since it greatly facilitates
learning by stimulating criticism. We will now see how TFI itself and the appli-
cations available in its environment are related to the topics usually considered in
a standard course on Control, thus suggesting a chronological order for presenting
these applications in connection with problem-solving. The reader interested in eval-
uating the TFI environment should check the programs in the same order as they
are mentioned below.

1. Basic Concepts. Systems and mathematical models. Feedback versus
feedforward. Block diagrams and signal-flow graphs. Some mathematical models
of dynamic systems. Linearity and time-invariance.

TFI-based lab: TFI is introduced (by entering “tfi” from the Matlab Command
Window) and applied to reduce purely algebraic block diagrams or signal-flow graphs
to the minimal form. Transmission coefficient of blocks or branches are real numbers
in the purely algebraic case, but it may be shown that the same reduction procedures
and expressions apply when they are ratios of polynomial in s or z.

2. Time-domain analysis. Differential equations. Laplace transform, direct
and inverse. The concept of transfer function. Impulse, step and ramp responses.
Convolution integrals. Elementary first and second order systems.

TFI-based lab: Operations on transfer functions. Different forms of a transfer
function (“gi=”, factorized, “gi :”, time-constant, “gi ;”, pole-zero map). Applica-
tion invtr is used to solve or to check the solutions of exercises involving the inverse



1.2. TFI in a basic course on Control 5

Laplace transform, and tresp to plot these inverse Laplace transforms versus time,
to see graphs of impulse, step and ramp responses and to display the most impor-
tant parameters of the step response (maximum overshoot, delay, rise and settling
times, steady-state tracking error). Application deftf makes it possible to show the
correlation between zero/pole layouts and step and frequency responses for one or
more transfer functions whose zeros and poles are located with the mouse.

3. Frequency-domain analysis. The frequency response. Connection between
time and frequency responses. Bode diagrams of the first and second-order elemen-
tary systems. Nichols diagrams. Nyquist (polar) diagrams.

TFI-based lab: Application fresp, that is the most important of the TFI envi-
ronment, is used to see the various types of diagrams of the frequency response and
to compare their features.

4. Stability and feedback. Definitions and theorems on stability. The Routh
criterion. General properties of feedback. Steady-state tracking error and system
type. The Nyquist criterion. Gain and phase margins. Constant M and N loci.
Resonance peak and frequency, bandwidth. Stability and behavior of systems with
pure delays.

TFI-based lab: Application routh directly gives the stability interval(s) in terms
of gain of a feedback system, and is used to illustrate the Routh criterion. Stability of
feedback systems in the most general cases (open-loop unstable systems) is studied
by using fresp again (with the “Nyquist diagram” option), that also provides in-
formation about stability margins and closed-loop behavior (resonance, bandwidth
and steady-state tracking errors). Pure delays can be directly introduced in the
open-loop frequency response plots with an option of fresp, or taken into account by
means of Padé approximants, that are provided by the application deftf . Stability
margins may be directly computed with gpmarg , that uses a closed-term computa-
tional procedure.

5. The root locus. Definition of root locus. Properties. The root contour.

TFI-based lab: Application rootl directly plots the root locus of a given transfer
function, with the asymptotes and, possibly, the constant damping coefficient loci. It
also provides information on the most important features of the locus, like branching
points and displays numerical parameters of the asymptotes. It also makes it possible
to complete a root locus with one or several root contours drawn in different colors,
and to derive the value of the gain corresponding to specific root locations with the
mouse.

6. Compensator and regulator design. The most important compensators:
lag, lead, lead-lag, bridget T. The standard regulators: P, I, PD, PI, PID. The
analytic design of regulators (model-reference). Pole assignment and two-degree-of-
freedom regulators.
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TFI-based lab: The basic applications for compensator and regulator design are
regnich and pidnich, that make trial-and-error procedures very fast, by directly
selecting all the possible solutions with the mouse on Nichols diagrams and com-
paring them in the time or frequency domain. Another computer aid for design is
regrootl , that is based on direct selection of the compensator zeros and poles lo-
cations with the mouse, while the gain is selected by clicking on the root locus of
the overall system. Trial-and-error design of lag and lead compensators and PI,
PD or PID regulators is also provided by lagc, leadc and pidc, that refer to Bode
diagrams. Reference transfer functions for model-reference design are provided by
deftf (Bessel and Butterworth filter type, with the possibility of inserting a suitable
zero for type 2 regulator synthesis). In connection with model-reference design, that
often requires perfect pole-zero cancellation, factf , defactf and select programs are
very useful. Complete pole assignment by the Diophantine equation, by also con-
sidering a fixed regulator part, is provided by regdph. Robustness of stability of any
feedback regulator in presence of plant parameter variations can be checked by using
robpar .

7. Nonlinear systems. The describing function method. Stability criteria.
Systems using relays.

TFI-based lab: Application nlsim provides the time response of a nonlinear
system to any input (given in terms of its Laplace transform), while descrf deals
with describing function analysis, and provides limit cycles for any linear system
connected in a feedback loop with an algebraic nonlinearity of some standard types;
it also allows taking a finite delay into account.

8. Sampled-data control systems. The Z-transform of a sampled signal. The
aliasing phenomenon. The transfer function of a sampled-data system. Frequency
response of a discrete-time system. Nyquist stability criterion and stability margins.
Root locus. Using the w-plane equivalence in design. Zero and first-order hold in
discrete-to-continuous conversion.

TFI-based lab: Application convert provides the Z-transform of a discrete-time
signal obtained by sampling a continuous-time signal given in terms of Laplace trans-
form. It also considers the zero-order and first-order hold equivalence. Application
wplane provides the w-plane equivalent if applied to a discrete-time transfer function
or the inverse w-plane equivalent if applied to a continuous-time transfer function.
Applications invtr , tresp, fresp, routh, rootl , regnich consistently work also in the
discrete-time case, while pidd is used instead of pidc for designing discrete-time PID
regulators. Program perftra provides an interesting design method for the feedfor-
ward part of a two-degree-of-freedom digital controller that achieves almost perfect
tracking also in the nonminimum-phase case.



Chapter 2

Installing, setting, and starting

2.1 How to install

The suggested installation procedure is the following.

1. Enter Matlab and type the command “matlabroot” to know the name of
the Matlab root directory and “which startup” to check if the file startup.m already
exists and, if so, to know its path. Usually the matlabroot is c:\matlab and startup.m
does not exist. Exit Matlab.

2. Create the directory [matlabroot]\toolbox\intp (where [matlabroot] denotes
the information obtained at step 1) and copy into it all the files from \intp.zip.

3a. Add the directory where the files have been copiep to the matlabpath
with the path browser accessible from the Command Window or use the following
alternative procedure.

3b. If the file startup.m does not exist, edit a file with this name in the directory
[matlabroot]\toolbox\local with the text line:

path([path,’;’,matlabroot,’\toolbox\intp’])

that includes the directory \intp in the matlabpath when Matlab is entered. If
startup.m already exists, simply add the above text line to the existing text.

NOTE. The name intp for the directory where the TFI files are to be copied is
obligatory to obtain a correct operation.

2.2 How to get started

TFI produces numerous data files of the type *.mat (for instance, those with the
transfer functions). It is advisable, although not strictly necessary, to use a special
work directory for TFI, different from that of Matlab. Suppose the Matlab work
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8 Chapter 2. Installing, setting, and starting

directory is c:\matlab\work and that of TFI is c:\matlab\workint (this is an ex-
ample: the names and paths of both are completely arbitrary). Of course, both
these directories must exist when entering TFI for the first time. We recall that the
Matlab work directory can be specified:

- as a property of the Matlab icon in the Windows environment;
- with a change of directory using the file startup.m.

Since setting up the icon property is far from being simple and unified, we insist
upon the second way, that is very straightforward: simply add in file startup.m,
besides the path statement considered in the above installation procedure, the text
line:

eval([’cd ’,matlabroot,\work’])

that changes the work directory, overriding the icon property.
The most important TFI settings (in particular, the name of the TFI work

directory) are contained in the file set tfi5.mat , repeated in both the Matlab and
TFI work directories, that does not exist at the first TFI call. When the Matlab
work directory has been suitably set up, from Matlab (with prompt >>) enter “tfi”
or “intp”: the following appears:

**** passing to the TFI environment - wait, please

**** file set_tfi#.mat has not been found

the current work directory is : C:\MATLAB\WORK

do you want to confirm this as a directory

from which TFI is invoked ? (1) :

If we simply press the return key, we go back to the Matlab environment. On
the other hand, on entering 1 we obtain:

**** INFORMATION ON THE TFI ENVIRONMENT

the Matlab work directory is C:\MATLAB\WORK

the TFI work directory is C:\MATLAB\WORK

the matlabpath IS NOT REDUCED

the figure background IS BLACK

the figure locations ARE NOT PERMANENTLY STORED

legend in figures IS NOT ACTIVATED

use "startint" from TFI to change the TFI environment

**** press any key to continue

When any key is pressed, the file set tfi5.mat , that contains the above settings, is
stored in the Matlab work directory and the Command Window is switched to the
TFI environment (the new prompt > appears). It is necessary to enter “startint”
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Figure 2.1: When TFI is first entered from Matlab with command “tfi” or “intp”, the Command
Window layout must be adjusted with the mouse as shown. This figure refers to a low-resolution
monitor: in the higher-resolution cases the Command Window location may be different. The
figure background color is black, but can be permanently changed with application “startint” or
temporarily with command “whitebg”.

immediately to change the settings, in particular to switch the work directory to
c:\matlab\workint . This completes the installation in the case of the example
referred to. It is possible to call TFI from several directories, thus obtaining as
many files set tfi5.mat , possibly each with a different setting. In any case the call
directory, whatever it is, is recovered on exit from TFI to Matlab.

2.3 How to continue and quit

Continuing with the first-time session, or when “tfi” or “intp” is entered from Matlab
another time, we should obtain the layout of the Command Window shown in
Fig. 2.1. If the layout is different, it is necessary to use the mouse to change size
and/or location of the Command Window, in order that the small figure window
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located in the upper-right corner of the screen is partially visible. To exit from TFI
to Matlab at the end of a TFI session, enter “exit” or “quit”. The Matlab work
directory and the complete matlabpath are automatically restored.

2.4 How to change some TFI settings

Command “startint” from TFI can be used:

- to define the work directory of TFI;

- to reduce the matlabpath in the TFI environment if necessary;

- to set the background color of the figures as black or white;

- to enable/disable storing of figure locations for next sessions;

- to activate or disactivate the legend in figures.

See the specification of this command for more information.

An important TFI setting concerns the Command Window and uicontrol fonts. In
Matlab 4 they are both accessible from the Command Window control bar as Options

/ Command Window Font and Options / Uicontrol Font. To obtain correct display
of transfer functions it is necessary to use, in the Command Window, a character
with uniform letterspacing, like Fixedsys or Courier New. We suggest Fixedsys (size
9) for the Command Window and MS Sans Serif (size 8, style bold) for uicontrol.
In Matlab 5 the Command Window font setting is accessible as File / Preferences /

Command Window Font, while that of uicontrol windows is not accessible (it is set
in the file startint.m, that is run when TFI is entered from Matlab). We suggest
setting the Command Window font as Fixedsys (size 11).

Command “whitebg” from TFI can be used to change the background color of
the figures, thus making it different from the default, that is set with the application
startint . This command has a toggling effect. The default value of Matlab 4 is black,
that has the following advantages:

- it emits less radiation from the screen;

- it uses pure basic colors for plots, that result in a neat trace in color prints.

Nevertheless, Matlab 5 came with a white background, whose advantages are:

- the screen appears like in other Window applications (e.g., Word);

- it is more suitable for bitmap reproductions of the screen.

Since the figure background color is a matter of taste, in the TFI environment
its choice is left to the user. When it is changed, all the colors of plots and
messages are accordingly slightly modified, to reinforce visibility and readability.
The corresponding RGB color tables, one for plots and one for messages, both
repeated for black and white backgrounds, are available as the matrices A1 , A2 ,
A3 and A4 in the file coltbl.m and should be edited and modified by the user if
necessary (color shade may depend on monitor). For correct color reproduction it
is necessary that the monitor driver supports at least 256 colors.
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Figure 2.2: In a design session it is possible to open several graphic windows with figures by
simply using the command “new”. With “ordf” they are reduced to small size and arranged as
shown. This enables selection and enlargement with mouse or keyboard (commands “fig1”,“fig2”,...,
“lar”) to see each figure at full size again; “sma” restores previous size and location. Note that all
the figures appear with white background in this case.

The file startint.m specifies the default font name, size and style of the text
messages in figures and, separately, of the axes graduations, titles and x/y labels. In
the Matlab 5 version it also defines those used in uicontrol text. This file should be
edited and modified if desired (in some cases a different font size or the style bold
may be preferable for text messages displayed in figures or axes graduations).

2.5 How to manage figures

When a graphic application is run from TFI, the corresponding figures (one or more)
generally appear at full size, but, when it is quitted, they arev reduced as small on
the upper-right corner of the screen, as shown in Fig. 2.2.

You can use the command “new” to create a new figure window, thus maintaining
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Figure 2.3: A block diagram at medium size is often temporarily shown to check the command
correctness. The figure refers to application nlsim, that computes and plots the time response of a
control loop with a nonlinear element to any input signal given through a Laplace transform.

the previously generated ones for possible comparisons, “fig1”, “fig2”,... to select a
particular figure, “ordf” to arrange all figures like a card deck, as shown in Fig. 2.2.
Commands “sma[ll]”, “med[ium]” and “lar[ge]” – or, to obtain intermediate sizes,
“enl[arge]” and “red[uce]” – change the size of the current figure, “last” selects
the highest-numbered figure, “delf” deletes all the figures, “shg” shows the selected
figure at full size, while the Esc key can be used to recover the Command Window
from any figure window. Of course, you can also use the mouse to manage figures
according to the Windows rules.

When a command is entered from TFI, a medium-size graphic window with the
corresponding block diagram is often shown as in Fig. 2.3 to check if the syntax used
is correct.

In most graphic applications there are some facilities added at the top command
line of the figures obtained: Recall, that makes it possible to see the names of
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Figure 2.4. Nichols diagram exported with command “print -deps file.eps”.

the transfer functions involved in the application and to temporarily display these
transfer functions, superimposed on the figure in the same color as the corresponding
plots, Grid on/off, that enables or disables the grid in the figure, and Zoom on/off.
When using high-resolution monitors the current figure and the Command Window
are contemporarily visible on the screen, and many figures may be adjusted with
the mouse to appear together. Their sizes and locations are permanently saved in
the hard disc, until the command “resfiglo” (reset figure location) is used.

IMPORTANT NOTICE: if when entering a graphical application the figure dimen-
sion and/or location appears to be non-correct (for instance, the figure is always
“small”), this is due to improper previous exit from the same application: use the
command “resfiglo” to recover the default figure settings.

2.6 How to print figures

Some applications of the TFI environment produce high-quality figures and provide
useful facilities, like easy change of axes scales, drawing multiple plots in different
colors, and simple choice of the fonts for graduation of plots. It may be required
to translate the figures into prints or files in order to include them in class notes
or technical papers. To this end you can use the Matlab print facility from the
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Figure 2.5. Step responses exported with command “print -deps file.eps”.

Command Window (enter “help print” from TFI or Matlab to see all the options).
For instance, “print -dps xx.ps” generates the PostScript file xx.ps that contains the
current figure, while “print -dps -append xx.ps” appends the figure to others in the
same file. Let us recall that the option -dpsc instead of -dps provides color printing,
and -deps, -depsc produce Encapsulated PostScript, that can be used to insert figures
in Latex or Microsoft Word documents. Examples are shown in Fig. 2.4 and Fig. 2.5.
You can also use the Windows printing facility from the graphic window. However,
the quality of the figures so obtained is worse. To pass from the Command Window
to the current graphic window, enter “shg” (from TFI) or use the mouse on the
Windows option shown at the top of the screen.

The figures of this manual, that reproduce complete screen layouts also with many
windows open, came from the Matlab 4 version, set for white figure background and
were exported by using the PrtSc key and the Paste facility in Microsoft Word. For
better black-and-white results, the plots and messages were obtained with all the
colors converted to black by simply changing the A3 and A4 color tables in the
file coltbl.m. The figures with plots at full-screen size have been obtained with a
low-resolution monitor (640× 480).
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TFI and Its Applications

3.1 Tfi

The command

>> tfi (enter)

from Matlab produces access to the Transfer Function Interpreter environment: a
message is displayed and a new prompt appears on the screen ( > instead of >>), to
inform that the syntax of the Command Window has been changed.

3.1.1 Operation and Examples

A transfer function is entered by typing a string of characters, where the transfer
function name is first specified, followed by = and by characters denoting numbers,
brackets, operators, and the symbol s or z .

When such a string is entered, TFI first operates a check on the balancing of
brackets, then begins the lexical analysis. This is pointed out on the screen by
a line of dots scanning the analysis, letter by letter. The dots are the same number
as the characters of the string. When a mistake is encountered, the sequence
of dots stops and an error message is displayed (see forward). When the lexical
analysis is successfully performed, the display of a solid line denotes the beginning
of syntactical-semantic analysis and a second sequence of dots points out that it
is in progress. Also in this case the interpretation may be interrupted by an error
message in the case of illegal operations. Let us consider some examples.

The transfer function

g1(s) =
40

s (s + 1) (s + 10)

is entered by typing:

15



16 Chapter 3. TFI and Its Applications

> g1=40/(s*(s+1)*(s+10)) (enter)

First, it is interpreted. Interpretation is shown as:

g1=40/(s*(s+1)*(s+10))

......................

____________________

....................

Then, it is saved in file g1.mat , and displayed as:

40

g1 = ------------------

s (s + 1) (s + 10)}

Assume that g1(s) is the transfer function of a controlled system. The transfer
function gc(s) of a lead compensator can be entered as:

> gc=10*(s+1.413)/(s+14.13) (enter)

and shown in the display as:

10 (s + 1.413)

gc = --------------

(s + 14.13)

Then, the open-loop overall transfer function g2(s) is computed by typing:

> g2=g1*gc (enter)

Going on with the example, the overall feedback system transfer function g0(s)
is computed by:

> g0=g2/(1+g2) (enter)

and displayed as:

400 (s + 1.413)

g0 = -----------------------------------------------

(s^4 + 25.13*s^3 + 165.4*s^2 + 541.3*s + 565.2)

TFI recognizes the symbols +,-,*,/,^ : power refers to integer numbers only,
both positive and negative.
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You can have any defined transfer function displayed by simply entering its name:

> g0 (enter) , or, if you want it in zero-pole form, by typing:

> g0= (enter) , that produces:

400 (s + 1.413)

g0 = -------------------------------------------------

(s + 1.746) (s + 17.25) [(s + 3.068)^2 + 3.059^2]

or else, in time-constant form, by typing:

> g0: (enter)

that produces:

1 (0.7077*s + 1)

g0 = -----------------------------------------------------------

(0.05798*s + 1) (0.05327*s^2 + 0.3269*s + 1) (0.5729*s + 1)

Finally, by typing:

> g0; (enter)

a full-size plot of the zero-pole map is obtained.

A long transfer function can be split into many lines, as follows:

> g3=10*(s+2-g1*> (enter)

> (s+4))/((s^2+s+10)*(g1+g2)) (enter)

The dummy variable ans is automatically used if the left-hand member is not
specified; for instance, entering:

> g0*(1+g2) (enter)

produces:

400 (s + 1.413)

ans = ------------------------------

s (s + 1) (s + 10) (s + 14.13)

The variable ans is saved like a transfer function, so that the request:

> g2-ans enter

produces:

0

ans = -

1
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The defined transfer functions can be evaluated at specified values of s or z , as
follows:

> g0(0) (enter)

value of g0(0): 1

abs.value: 1; angle: 0 degrees (0 radians)

> g0(10) (enter)

value of g0(10): 0.07919

abs.value: 0.07919; angle: 0 degrees (0 radians)

> g0(j) (enter)

value of g0(1i): 1.014-0.3078i

abs.value: 1.06; angle: -16.89 degrees (-0.2947 radians)

> g0(10*j) (enter)

value of g0(10i): -0.1938-0.03008i

abs.value: 0.1961; angle: -171.2 degrees (-2.988 radians)

TFI also makes it possible to perform some numerical computations with Matlab’s
syntax. If the string to be computed begins with a number, it can be directly
entered since in this case the Matlab interpreter is automatically called in; if not, it
is necessary to put the expression in square brackets. Examples:

> 78*9 (enter)

ans =

702

> [sin(5*pi)] (enter)

ans =

6.125e-016}

The dummy variable ans used in this case comes from Matlab’s interpreter, not
from the TFI interpreter, and so it is temporary.
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Syntax errors such as unbalanced brackets and illegal symbol sequences are
pointed out by specific error messages:

> g101=89/(s+125)) (enter)
error: unbalanced brackets

> g101=89*/(s+125) (enter)

g101=89*/(s+125)

........

error: character after operator is illegal

> g101=89*(s+125,8) (enter)

g101=89*(s+125,8)

.....

error: character "," in the expression

You can also handle discrete-time transfer functions by simply using z instead of
s while entering them. Since the conversion routines available from TFI require a
sampling time T , you are asked to define it at the beginning of the first session: it
is permanently saved in the special file time#.mat and can be changed at any time
in interactive mode by typing:

> samptime (enter) .

See the specification of this command for more information.

Mixing symbols s and z or continuous and discrete-time transfer functions in a
single expression is illegal and causes the following error message:

> g101=89*(s+1258+z) (enter)

g101=89*(s+1258+z)

..................

error: "s" & "z" in the same expression
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Let us see other possible types of errors:

> ss2tf enter

ss2tf.mat or application ss2tf does not exist

> ss2tf,g1 (enter)

application ss2tf does not exist

> g0=h2/(1+g2) (enter)

g0=h2/(1+g2)

.....

h2.mat does not exist

(transfer function h2 is not defined)

> g3=g2^g1 (enter)

g3=g2^g1

........

____________________

error: not integer number after ^ !

> g3=g2^((s+1)/(s+2)) (enter)

g3=g2^((s+1)/(s+2))

...................

____________________

..............error: not integer number after ^ !
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Using the TFI transfer functions in the Matlab environment

TFI saves transfer functions of dynamic systems to files of the type gi.mat , hence
it works with objects rather different from those used in Matlab Command Window
and m-files, which usually refer to matrices. In fact, the standard representations of
transfer functions in Matlab 4 are [num,den] and [z,p,k]. It is possible to convert
the Matlab to the TFI form and vice versa by using two simple interface programs,
named importf.m and exportf.m, that make exchanges between the two environments
possible.

1 - Conversion from [num,den] or [z,p,k] to ’gi’:

>> importf(num,den,’gi’,[1]) (enter) ,
>> importf(z,p,k,’gi’,[1]) (enter) .

Any one of the two Matlab forms of a transfer function is converted to the TFI
form and saved in file gi.mat ; option [1] allows for saving as discrete-time (default
is continuous-time).

Example: the transfer functions g1(s) and gc(s) defined at the beginning of this
section can be created in an m-file through the following program lines:

z1=[]; p1=[0;-1;-10]; k1=40;

importf(z1,p1,k1,’g1’);

zc=-1.413; pc=-14.13; kc=10;

importf(zc,pc,kc,’gc’);

2 - Conversion from ’gi’ to [num,den] or [z,p,k]:

>> [num,den,[str]]=exportf(’gi’,[1]) (enter) ,
>> [z,p,k,[str]]=exportf(’gi’,[1]) (enter) .

The transfer function gi(s) or gi(z) is read from file gi.mat and converted to one
of the Matlab forms (depending on the number of output arguments). Option [1]
makes it possible to get information on transfer function type (continuous or discrete
time) in string str , whose admissible types are ′s′ or ′z′.

In the Matlab 5 version of TFI the commands sys=^{exportf1}(’gi’,[1]) and
{importf1}(sys,’gi’,[1]) enable conversion from a transfer function gi to the
corresponding sys and vice versa. The output is obtained in factorized form or,
with option [1], in polynomial form.
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3 - Display of a transfer function:

>> tfg(’gi’) (enter) ,
>> tfm(num,den,’gi’,[1]) (enter) ,
>> tfm(z,p,k,’gi’,[1]) (enter) ,
>> tfm(z,p,k,’gi’,’1’,[1]) (enter) .

Function tfg displays in the Command Window the transfer function gi(s) or
gi(z) saved in file gi.mat , while tfm displays a transfer function from its Matlab
form (polynomial or factorized); in this case the string ’gi’ is simply the name to
denote the transfer function in display, while option [1] causes the use of symbol z
instead of s, and argument ’1’ produces display of the time-constant form instead
of the factorized form.

4 - Computations on transfer functions:

>> sumgm(’gi’,’gj’,’gk’,opt) (enter) ,
>> prodgm(’gi’,’gj’,’gk’,opt) (enter) ,
>> expgm(’gi’,’gj’,h) (enter) .

Computation on transfer functions already available as mat-files can be per-
formed, in the Matlab environment, by means of the above commands: sumgm
adds (opt = 0) or subtracts (opt = 1) transfer functions gi(s) and gj(s) or gi(z)
and gj(z) and saves the result in file gk.mat , prodgm multiplies (opt =0) or divides
(opt = 1) gi(s) and gj(s) or gi(z) and gj(z) and saves the result in gk.mat , while
expgm raises gi(s) or gi(z) to the h-th power, with h integer, and saves the result in
gj.mat .

Example: it is possible to compute g0(s) := g1(s) gc(s)/(1+g1(s) gc(s)), with g1(s)
and gc(s) defined as in the above example referring to importf , by using the following
m-file, that saves the result in g0.mat :

prodgm(’g1’,’gc’,’g0’,0);

importf(1,1,’gt’);

sumgm(’gt’,’g0’,’t1’,0);

prodgm(’g0’,’gt’,’g0’,1);

tfg(’g0’) % this line displays the result

In the above program transfer function gt(s) is used as temporary storage.
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From TFI it is possible to use the following commands (many of them are Matlab
commands):

> cd displays the name of the current directory
> cd path assumes the work directory specified in path
> clc clears the Command Window
> clear removes all the compiled functions from the TFI workspace
> degrid removes the grid from the current figure
> delete file.ext deletes file.ext from the work directory
> delete(n) deletes figure n
> delf deletes all the figures
> dir displays the file names of the work directory in Matlab format
> enl[arge] enlarges the current figure by 20%
> fign selects figure n, with n=1, 2, . . .
> grid adds a grid to the current figure
> help file displays help of file.m
> lar[ge] enlarges the current figure to full size
> last selects the figure with the highest number
> med[ium] sets the current figure to medium size
> new creates a new figure
> ordf arranges all the figures at small size
> path displays the current path
> print file [options] saves the current figure to file
> red[uce] reduces the current figure by 20%
> res[figlo] resets the figure locations to the default
> shg shows the current figure at full size
> sma[ll] reduces the current figure to small size
> tfi same as help tfi
> what lists all *.m and *.mat files present in the work directory
> whitebg changes the background color (black or white) of the figures
> zoom toggles the zoom status
> zoom [on],[off] switches the zoom facility on or off.

We also recall that the Command Window is recovered from any selected figure
by simply pressing the Esc key.
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The following CAD applications are available in the TFI environment. The part
of the command in square brackets may be omitted to speed up writing.

> con[vert],gi,gj converts gi from s to z and saves the result as gj
> defa[ctf],gi,gj defactors gi and saves the result as gj
> deft[f],gi defines gi with the mouse or as Bessel, Butterworth, Padé tf
> des[crf],gi analyzes a nonlinear system with the describing function
> fac[tf],gi,gj factors gi and saves as gj
> fre[sp],gi plots the frequency response of gi
> gpm[arg],gi displays the (generalized) gain and phase margin of gi
> inv[tr],gi displays the inverse Laplace (or Z-) transform of gi
> lag[c],gi,gj designs a lag compensator (with the Bode diagrams)
> lea[dc],gi,gj designs a lead compensator (with the Bode diagrams)
> mak[eleg] creates or cleans a legend in the last figure
> nls[im],gi,gj,gk,gw plots the time response of a nonlinear feedback system
> per[ftra],gi,gj,gk,gw designs a digital perfect tracking compensator
> pidc,gi,gj designs a PID regulator (with the Bode diagrams)
> pidd,gi,gj designs a discrete-time PID regulator (with the Bode diagrams)
> pidn[ich],gi,gj designs a PD, PI or PID regulator (with the Nichols diagram)
> regd[ph],gi,gj,gk,gw designs a regulator by pole assignment
> regn[ich],gi,gj designs a lead or lag compensator (with the Nichols diagram)
> regr[ootl],gi,gj designs a compensator or a regulator with the root locus
> rob[par],gi,gj,gk,gw analyzes robustness versus parameter variations
> roo[tl],gi plots the root locus of gi
> rou[th],gi displays the closed-loop stability intervals of gi
> sam[ptime],T defines the current sampling time for discrete-time systems
> sel[ect],gi,gj interactively selects factors from gi and saves as gj
> sta[rtint] defines some TFI environment settings
> tfe[val],gi evaluates gi at a particular value of s or z
> tre[sp],gi plots the impulse or step response of gi
> wpl[ane],gi,gj converts from z to w-plane or from w to z-plane
> zpp[lots],gi,gj,gk,gw plots the zero-pole maps of some transfer functions.

All the above applications are briefly presented in alphabetic order in the fol-
lowing pages of this manual. You can also use “help name” from the Command
Window to obtain concise information on their use and syntax.

NOTE: It is possible to quit most TFI applications by entering “0” from any menu.
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3.2 Convert

The command

> convert (enter)

converts the continuous-time transfer function gi(s) to the discrete-time transfer
function gj(z), that is displayed and saved in the current work directory.

3.2.1 Recall

It is possible to choose one of the following three modes of conversion, that are the
most important for discrete-time control system analysis and design.

Z-transform of the sampled inverse L-transform. The inverse L-transform of gi(s) is
first obtained through partial fraction expansion (see the Recall of invtr for details).
It is expressed by

gi(t) = K0 δ(t) +
h
∑

i=1

ri
∑

ℓ=1

Kiℓ

(ri−ℓ)!
tri−ℓ epit ,

where p1, . . . ph denote the distinct poles of gi(s) and r1, . . . , rh their multiplicities.
Constant K0 is zero in this case since gi(s) is assumed to be strictly proper. By
setting t = kT (k = 0, 1, . . . ) we obtain the sequence, whose Z-transform has to be
determined, as a linear combination of terms of the general type ki epkT or ki qk,
where q :=epT denotes the discrete-time pole corresponding to the continuous-time
pole p.

We take the Z-transform of this linear combination term by term by using the
following table:
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The elements of the i-th row (i≥2) of the matrix on the right are the products
of 1/(i−1)! by the coefficients, ordered by increasing powers of x, of the polynomial
x (x−1) . . . (x−i+1) , having the integers 0, 1, . . . , i−1 as roots. The matrix is lower
triangular with nonzero elements on the main diagonal, hence nonsingular and easily
invertible.

The above relation between terms of the types qiz/(z−q)i+1 and kiqk solves both
the problem in hand (deriving the Z-transform of the sampled inverse L-transform
of a given ratio of polynomials in s) and that of deriving the inverse Z-transform
of a ratio of polynomials in z. In fact, it is equivalent to the well-known binomial
coefficient form of z/(z−q)i+1 (see the Recall of invtr). However, it cannot be used
for the inverse Z-transform if q=0; in this case it must be replaced by

z−i
Z←−−→

Z−1

δ(k − i) .

Zero-order hold equivalence. indexzero-order hold The above mathematical back-
ground still applies. In fact, the result is obtained as the product of (z−1)/z with
the Z-transform of the sampled inverse L-transform of gi(s)/s. In this case, owing
to division by s, gi(s) is not required to be strictly proper.

First-order hold equivalence. The result is obtained as the product of (z−1)2/z2

with the Z-transform of the sampled inverse L-transform of [1/s + 1/(T s2)] gi(s);
gi(s) is not necessarily strictly proper.

A delay e−t0s applied to gi(s) can be easily taken into account during conversion.
Let us write

e−t0s = e−hT e−αT ,

where h≥1 denotes an integer (the maximum number of sampling periods contained
in t0) and α, 0 < α < 1, a real number (corresponding to a part of the sampling
period). An equivalent relation is

e−t0s = e−(h+1)T emT ,

with m :=1−α, 0<m<1. The time delay (h+1)T is taken into account by simply
dividing by zh+1 the discrete-time function gj(z) obtained from emT gi(s).
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Factor emT shifts the time function gi(t) in advance by mT , hence it can be taken
into account by changing the generic term ti ept of the expansion of gi(t) [derived
from the partial fraction expansion of gi(s)] into (t+mT )i ep(t+mT ), that is sampled
as

(k + m)i T i e−p(k+m)T (k = 0, 1, . . . ) ,

or, setting q :=epT as before,

qm T i (k + m)i qk (k = 0, 1, . . . ) ,

or also, by expanding the binomial (k+m)i,

qm T i
i
∑

ℓ=0

( i

ℓ

)

mi−ℓ kℓ qk (k = 0, 1, . . . ) .

Thus, a linear combination of terms of the general type kℓ qk, each easily trans-
formable with the previously reported table, has been obtained again.

3.2.2 Operation and Examples

Let us consider the function

gi(s) =
40

s (s + 1) (s + 10)
.

The first display after the command “convert,gi,gj” is:

1 - Z-transform of the sampled inverse L-transform

2 - zero-order hold equivalence

3 - first-order hold equivalence

your choice : 2

enter a possible delay - default is zero :

conversion from continuous-time to discrete-time;

the assumed sampling time is 0.2 sec

the assumed delay is 0
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The result is:

0.03279 (z + 0.1442) (z + 2.342)

gj = ---------------------------------

(z - 0.1353) (z - 0.8187) (z - 1)

If conversion is repeated for a discrete-time transfer function, e.g. by entering
“convert,gj,gk”, the following message appears:

**** warning: discrete-time system; conversion is not necessary

and function gj is displayed for a check.

If the function to be converted has negative relative degree, i.e., the degree of the
numerator greater than that of the denominator, conversion is not possible and the
program ends after the message:

**** error: m > n in gi

while, if it is not strictly proper with option 1, the program ends with:

**** error: m = n in gi with option 1

Note that after the mode of conversion has been chosen it is possible to introduce
a delay t0, i.e., a factor e−t0s applied to the continuous-time transfer function; for
instance, a delay of 0.5 sec in function gi(s) previously defined produces:

0.005149 (z + 0.02337) (z + 0.5893) (z + 13.97)

gj = -----------------------------------------------

z^3 (z - 0.1353) (z - 0.8187) (z - 1)

If the delay is negative, the following message appears:

**** error: negative delay is not allowed

and the request for delay is repeated.
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3.3 Defactf

The command

> defactf (enter)

displays and saves in the current work directory as gj(s) or gj(z) the polynomial
form of a given transfer function gi(s) or gi(z).

3.3.1 Recall

Let us consider the transfer function

gi(s) =
100

(s + 1) ((s− 5)2 + 32)2
;

by means of some simple polynomial manipulations (raising to a power and product),
it is easily put in the ratio-of-polynomials form

gj(s) =
100

s5 − 19 s4 + 148 s3 − 512 s2 + 476 s + 1156
.

3.3.2 Operation

In the above case the display appears as follows:

100

gi = --------------------------

(s + 1)(s^2 - 10*s + 34)^2

100

gj = -------------------------------------------------

(s^5 - 19*s^4 + 148*s^3 - 512*s^2 + 476*s + 1156)
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3.4 Deftf

The command

> deftf (enter)

defines and saves in the current work directory as gi(s) or gi(z) a transfer function
whose zeros and poles are located with the mouse, or a transfer function of the
standard types Bessel filter , Butterworth filter or Padé delay .

3.4.1 Recall

Zero and pole assignment with the mouse does not require any recall and will be
described in detail in the following Operation section.

The Bessel and Butterworth filters are used in the control systems analytical
design as standard references for the closed-loop transfer function to be realized.
The Padé delay functions are widely used as rational approximations of the finite
delay e−t0s, thus making handling closed-loop systems including delays possible with
the standard methods used for rational transfer functions.

Bessel filter . The Bessel filter can be viewed as an approximation of the unit delay
with a rational transfer functions having no zeros. From the Maclaurin expansions
of the hyperbolic cosine and sine:

coshs =
es + e−s

2
= 1 +

s2

2!
+

s4

4!
+ . . . ,

sinhs =
es − e−s

2
= s +

s3

3!
+

s5

5!
+ . . . ,

we derive

e−s =
1

es
=

1

coshs + sinhs
=

1/sinhs

coshs/sinhs + 1
,

and, by using again the above Maclaurin expansions, we obtain the continued
fraction

cotanhs =
coshs

sinhs
=

1

s
+

1

3

s
+

1

5

s
+

1

7

s
+ ...

.



3.4. Deftf 31

By breaking off this fraction after n terms we define a series of rational func-
tions Pn(s)/Qn(s) (n = 1, 2, . . . ) whose numerators and denominators, apart from
a constant bn,0 equal for both, tend to the expansions of coshs and sinhs, respec-
tively. By substituting Pn(s) and Qn(s) in the above expression of e−s we obtain
the approximation

e−s ≃ bn,0

Pn(s) + Qn(s)
=

bn,0

Bn(s)
,

where Bn(s) :=Pn(s)+Qn(s) is, by definition, the Bessel polynomial of order n and
bn,0 its constant term.

It is easily seen that B0(s) = 1, B1(s) = s+1 and that the subsequent Bessel
polynomials can be derived with the recursion formula

Bn(s) = (2n− 1)Bn−1(s) + s2 Bn−2(s) .

Approximations of the generic delay e−t0s are obtained by substituting t0s for s
in bn,0/Bn(s). However, the frequency response functions bn,0/Bn(jω) do not have
all the same cutoff or corner frequency (the angular frequency corresponding to
the intersection of the tangents at infinity to the Bode diagram of gain). A series
of filters with corner frequency equal to one is obtained with a suitable frequency
scaling; let us define the new coefficients αn,i (i=n, . . . , 0) by means of

αn,i =
bn,i

ωn−i
r

(i=0, . . . , n−1) , with ωr := n
√

bn,0 ;

these are the coefficients of the denominators of the Bessel filters of unit corner
frequency; the numerators are set equal to one. An arbitrary corner frequency ω0 is
obtained by substituting s/ω0 for s.

Butterworth filter . Let us consider the function

Fn(s) :=
1

s2n + (−1)n
,

with n positive integer, whose poles, expressed by

pk = ej 2k+n−1
n

π
2 (k=1, 2, . . . , 2n) ,

are located on the unit circle, uniformly distributed at angular distance π/n and
symmetric with respect to the real axis. Of course Fn(s) is unstable, but can be
factorized as Fn(s) = F−

n (s)F+
n (s) , where F+

n (s) has order n and all poles in the
right half-plane while F−

n (s), also of order n, has all poles in the left half-plane; this
latter is, by definition, the transfer function of the Butterworth filter of order n and
unit corner frequency.
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The Butterworth filter Gn(s) of order n and corner frequency ω0 is given by

Gn(s) := F−
n

( s

ω0

)

= ω n
0

n
∏

k=1

1

s− ω0 pk
.

Since the poles of F+(s) and F−(s) are symmetric with respect to the imaginary
axis we have

|F−
n (jω)| = |F+

n (jω)| =
√

F (jω) =
1√

1 + ω2n
;

hence Gn(jω0)=1/
√

2: thus at the corner frequency the gain is -3 db, independently
of the order n, so that corner frequency and conventional bandwith coincide in this
case.

Padé delay . A function P (s)/Q(s), where P (s) and Q(s) denote polynomials
with generic degrees p and q, respectively, is a Padé approximant of function f(s),
Maclaurin expandable, if the sequence of powers of s obtained by division of P (s)
by Q(s) (by using the standard polynomial division table, but with the polynomials
ordered by ascending powers of s) has the first p+q+1 terms equal to those of the
Maclaurin expansion of f(s).

Let

P (s) := bp sp + bp−1 sp−1 + . . . + b0 ,

Q(s) := aq sq + aq−1 sq−1 + . . . + a0 ;

the coefficients of the Padé approximants of the exponential function

f(s) = e−s = 1− s +
s2

2
− s3

3!
+ . . . ,

are given by

bk =
(p + q − k)! p!

(p + q)! k! (p− k)!
(−1)k (k = 0, . . . , p) ,

ak =
(p + q − k)! q!

(p + q)! k! (q − k)!
(k = 0, . . . , q) .

The approximants of e−t0s are obtained by substituting t0s for s in P (s) and
Q(s). It is customary to assume p = q since in this case the absolute value of
P (jω)/Q(jω) is identically equal to one like that of the finite delay and stability of
the approximant is guaranteed.
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Using the Bessel and Butterworth filters as reference models

The transfer functions of the Bessel and Butterworth filters are often used as refer-
ence models in the analytical design of regulators. A brief recall of the procedure
is in order. Let G(s) = P (s)/Q(s) be the transfer function of the plant, that is
assumed to be stable and minimum-phase: it is possible to design a regulator Gr

such that the closed-loop system transfer function

G0(s) =
Gr(s)G(s)

1 + Gr(s)G(s)

be any given function, such that

1. G0(s) has a relative degree not less than G(s).

2. If a pole of order h at the origin is requested in the regulator

to obtain asymptotically robust perfect tracking of the corresponding mode (for
instance a step, a ramp, etc.), the last h terms in the numerator of G0(s) must be
equal to the corresponding terms in the denominator.

From

G0(s) =
P0(s)

Q0(s)
=

Gr(s)G(s)

1 + Gr(s)G(s)

it immediately follows the well-known analytical design formula

Gr(s) =
G0(s)

1−G0(s)

1

G(s)
=

P0(s)

Q0(s)− P0(s)

Q(s)

P (s)
. (3.1)

Restriction 2 can be introduced when h = 2 (type 2 regulator), by adding a
suitable zero in the reference model transfer functions. Let

G1(s) =
1

ak sk + . . . + a1 s + 1

be the transfer function of a Bessel or Butterworth filter of order k satisfying
restriction 1. We define

G0(s) =
(a1 + α

ωn
) s + 1

(ak sk + . . . + a1 s + 1) (1 + α
ωn

s)
, (3.2)

thus clearly satitsfying restriction 2. Increasing parameter α produces reduction
of maximum overshoot to the detriment of settling time and can be interactively
chosen to obtain the best compromise.
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3.4.2 Operation

Let us first consider the definition of a transfer function by assigning its zero-pole
map with the mouse. The input menu, appearing after the command “deftf,gi”, is:

1) Define a zero-pole map with mouse

2) Bessel filter

3) Butterworth filter

4) Pade’ expansion of finite delay

enter your choice (press return to exit) : 1

Upon choice of the first item of the menu, the request:

discrete-time ? (1) :

appears, that makes definition of a discrete-time transfer function possible, with
the graphic environment accordingly modified. Suppose the return key is simply
pressed, thus assuming continuous time. A figure appears with the push-button
menu shown in Fig. 3.1 on the left and reference axes shown on the right. At the
top of the figure the following message is shown:

You can introduce any zero-pole map with mouse. The gain K is set to one.
Note that it is possible to set to one the dc gain Ks instead of K. (a)

The values of K (the gain constant referred to the zero-pole form, initially set
to one) and Ks (the gain constant referred to the time-constant form), and the
numbers nz and np of the selected zeros and poles are shown under the menu. In the
command bar at the top of the figure a Change axes menu is provided to adjust the
automatic scaling, with the selection items: x left, x right, y up and down (enlarge by
1 tick, enlarge by 2, reduce by 1 tick, reduce by 2), zoom in, zoom out, and a Grids

menu with Grid on/off, Constant damping loci on/off. In the case of Fig. 3.1 both
grid and constant damping loci were turned on. If a discrete-time transfer function
were selected, the constant damping loci would appear accordingly modified. Let us
briefly describe the push-button menu operation.

Add zeros. This choice enables selection of a point in the figure with the mouse
and causes replacement of the message (a) with:

Select a location for a new real zero or a new complex zero pair.
You can repeat selection with mouse. Press button 2 to accept. (b)
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Figure 3.1. The screen layout of deftf with option 1.

The color of this message and of the zero-pole map first selected is green. If several
zero-pole maps are considered, they will appear in different colors. Selection with
the mouse of a point above the real axis defines a complex zero pair, while selection
(slightly) below defines a real one. In both cases the selected zero locations are shown
in green with standard symbols in the figure, while their numerical value(s) are
displayed, also in green, at the left of the figure. Selection is performed and possibly
modified by clicking button 1 and eventually confirmed by button 2. Definition of
more zeros is obtained by repeating the whole procedure.

Remove zeros. This choice enables removal of a real zero or a complex zero pair
by selection with the mouse and clicking button 1.

Add poles. Same as above for zeros, with message and symbols accordingly
modified.

Remove poles. Same as above for zeros.

Set Ks to one. This option makes comparison of several time or frequency
responses easier, since it unifies the steady-state values. Of course, the value of
K is accordingly modified.
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Figure 3.2. The Step response option of deftf .

Figure 3.3. The Bode diagrams option of deftf .
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Reset this map. This option removes all the zeros and poles of the current map
(i.e., denoted with the same color).

Another z/p map. This choice enables introduction of another map, whose zero
and pole symbols are plotted in a different color. The previously defined maps are
preserved. This makes it possible to easily point out the connections between zero
and pole locations and time or frequency responses.

Reset all. Self-explaining.

Step response. The step responses of the zero-pole maps are each plotted in the
same color as the corresponding map, with automatic axes selection. An example
is shown in Fig. 3.2 (consistent with Fig. 3.1, that reports two maps, one with a
pair of real poles and a real zero, the other with a pair of complex poles, shown
in different colors – green and red). In the control bar at the top of the figure a
Time axis pop-up menu is provided to adjust the automatic one, with the selection
items zoom x 2, zoom x 5, zoom x 10, recover the initial axis, and a Grid on/off menu.
The pushbutton Menu at the bottom-left corner of the figure exit this window and
recovers that shown in Fig. 3.1.

Bode diagrams. The Bode diagrams of the zero-pole maps are each plotted in the
same color as the corresponding map, with automatic axes selection. An example is
shown in Fig. 3.3, also consistent with Fig. 3.1. In the control bar at the top of the
figure a Grid on/off pushbutton is added. In this case also an Menu pushbutton is
provided to exit the Bode diagrams and recover the zero-pole maps with the menu.

Exit. Up to seven zero-pole maps may be added in different colors and their dy-
namics compared by plotting the corresponding step responses and Bode diagrams.
The program is quitted with this pushbutton, that first produces the message:

PRESS RETURN TO EXIT

displayed in orange at the bottom-left corner of the figure. Pressing the return
key produces exit from deftf and going back to the Command Window. Note that
option 1 of the input menu (Define a pole-zero map with mouse) has been completely
managed with the mouse, including response checks, grids and changes of scales.
When the return key is pressed, we go back to keyboard management. If a single
zero-pole map is defined, it is saved as transfer function gi, and this is shown in the
Command Window.
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If, on the other hand, several zero-pole maps are defined and shown in the figure
in different colors, the request:

select function by entering color :

is put forward in the Command Window on exiting the program. When a letter
corresponding to an existing color is entered, the corresponding zero-pole map is
saved as transfer function gi, that is displayed in the Command Window.

We now consider the second and third item of the input menu (Bessel and
Butterworth filter), that are managed likewise. In particular, let us refer to the
case of a Bessel filter:

1) Define a zero-pole map with mouse

2) Bessel filter

3) Butterworth filter

4) Pade’ expansion of finite delay

enter your choice (press return to exit) : 2

order of denominator : 4

corner frequency : 2

These choices produce creation of a medium-size figure with the step response of
the filter shown in green and the message:

do you want a reference model for a type 2 system ? (1) :

Upon simple pressing of the return key the transfer function:

16

gi = --------------------------------------------

(s^4 + 6.248*s^3 + 17.57*s^2 + 25.61*s + 16)

is displayed and saved. On the other hand, replying 1 to the previous request
produces:

the order of both numerator and denominator is increased by 1

parameter alpha trades overshoot for settling time

enter the value of alpha (from 1 to 100) :

and, when an admissible α is entered, the step response of the transfer function with
a zero added according to (3.2) is shown in the same figure in a different color.
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Figure 3.4. The interactive choice of α.

Upon pressing the return key the request:

do you want to change the value of alpha ? (1) :

appears, to make a different choice of α possible. Choice of α can be repeated
until the step response shown is satisfactory. Fig. 3.4 reproduces the screen layout
when three choices (5,10,20) have been subsequently introduced for the value of α,
implying different overshoots and settling times, visible in the figure. In the case in
hand, by simply pressing the return key on the above request with α=20 as the last
introduced value, we obtain the final result:

18.56 (s + 0.0862)

gi = ---------------------------------------------------------

(s^5 + 6.348*s^4 + 18.19*s^3 + 27.37*s^2 + 18.56*s + 1.6)

It is easy to check that gi(s)/(1−gi(s)), the first factor on the right of (3.1), has
the double pole at the origin that characterizes a type 2 regulator.
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Figure 3.5. The step responses of some Bessel filters.

Figure 3.6. The step responses of some Butterworth filters.
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Interactive requests are slightly different for Padé delay: in this case the order
of the numerator is also requested, but, if not specified, it is set equal to that of
denominator by default. As an example, let us consider:

1) Define a zero-pole map with mouse

2) Bessel filter

3) Butterworth filter

4) Pade’ expansion of finite delay

enter your choice (press return to exit) : 4

order of denominator : 3

order of numerator (default: same as denominator) :

delay (sec) : 2

After this, the step response of the delay is shown in the medium-size figure, and
the corresponding transfer function saved and displayed as:

-1 (s^3 - 6*s^2 + 15*s - 15)

gi = ----------------------------

(s^3 + 6*s^2 + 15*s + 15)

3.4.3 Examples

Fig. 3.5 shows the step responses of the Bessel filters with orders from 1 to 6 and
unit corner frequency, plotted with tresp.

The step responses of the Butterworth filters of the same orders and unit corner
frequency are shown in Fig. 3.6; less damping with respect to Bessel filters clearly
appears.

Fig. 3.7 refers to the step response of the Padé approximants of the unit delay,
also with orders from 1 to 6 and numerators having the same orders as denominators,
while Fig. 3.8 reports the step responses of the same Padé approximants in cascade
with the transfer function g(s)=1/(1+0.5s); the filtering effect of g(s) improves the
overall system behavior within the delay time.
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Figure 3.7. The step responses of some Padé approximants.

Figure 3.8. The filtered step responses of some Padé approximants.
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3.5 Descrf

The command

> descrf[,gi] (enter)

if called without any argument, provides graphical and computational support to
derive the describing functions F (X) of some nonlinear elements, while, if called
with a transfer function name gi, it determines the intersections of the polar plot of
−1/F (X) with that of gi(jω) in order to detect amplitudes and angular frequencies
of possible self-oscillatory behaviors of the feedback connection of the nonlinear
element and the linear system.

3.5.1 Recall

Let us consider the feedback connection shown in Fig. 3.9, where a nonlinear alge-
braic element is connected with a linear system with transfer function G(s). The
input-output behavior of the nonlinear element is described by a given function
y = f(x), that in general is assumed to be one-valued and odd (the relay with hys-
teresis and backlash, described below, are exceptions). The describing function of

x(t) = X sin ωt

NL −G(jω)
y(t) = Y sin(ωt + ϕ)

Figure 3.9. The feedback connection considered.

the nonlinear element is defined as

F (X) :=
1

X
Y (X) ejϕ(X) ,

where Y and ϕ denote the amplitude and the phase shift of the first harmonic in
the Fourier series expansion of the output, that are functions of the amplitude of
the sine wave present at the input.
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Program descrf considers the following types of nonlinear elements:

1. saturation

2. dead zone

3. saturation with dead zone

4. any linearly interpolated nonlinearity

5. ideal relay

6. relay with dead zone

7. relay with hysteresis

8. backlash

Selection of the type and parameters are introduced interactively. It is well-
known that the describing functions of the elements from 1 to 6 can be expressed in
terms of those of unit saturation and relay with dead zone, whose input-to-output
functions are represented in Fig. 3.10,a and Fig. 3.10,b respectively. These are

1
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X1
x
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Figure 3.10. The saturation and the relay with dead zone.
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and

F (X) =

{

0 for X≤X1

Ψ(X, X1) for X≥X1
,

with

Ψ(X, X1) :=
4

πX

√

√

√

√1−
(X1

X

)2
. (3.4)

Unlike the previous ones, that are all real, the describing functions of elements 7
and 8, i.e., the relay with hysteresis and the backlash, are complex. The correspond-
ing input-output functions are shown in Fig. 3.11,a and Fig. 3.11,b, respectively.
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Figure 3.11. The relay with hysteresis and the backlash.

The describing function of the relay with hysteresis is

F (X) =
4

π X

(

√

1−
(X1

X

)2
− j

X1

X

)

= Ψ(X, X1) + j
4 X1

π X2
for X≥X1 ,

not defined for X <X1, while that of the backlash is

F (X) =







0 for X≤X1

1
2

(

1 + Φ
(

X
X − 2 X1

)

)

+ j
4 X1 (X1 −X)

π X2 for X≥X1
.

Note that they are expressed in terms of the basic functions Φ and Ψ defined
in (3.3) and (3.4), respectively. Program descrf provides the describing function
both as a graph and a finite-term mathematical expression. In the second case, the
expression of functions Φ and/or Ψ are recalled in display.
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Describing functions of nonlinear elements are used to detect possible limit cycles
(self-sustaining oscillations) of the nonlinear system shown in Fig. 3.9. To this end,
it is necessary to solve the equation

F (X)G(jω) = −1 ,

with respect to the unknown quantities X and ω. Solutions are usually derived
graphically, by intersecting the polar plot of −1/F (X) with the Nyquist diagram of
G(jω).

3.5.2 Operation and Examples

Let us first consider the call without any argument. Entering “descrf” causes the
following input menu to be displayed:

Choose the nonlinear element :

1 - saturation

2 - dead zone

3 - saturation with dead zone

4 - any linearly interpolated nonlinearity

5 - ideal relay

6 - relay with dead zone

7 - relay with hysteresis

8 - backlash

enter your choice (press return to exit) :

If, for instance, choice 4 is entered, the following interactive requests appear
(shown with possible answers):

enter the x break points [x1 x2 x3 ...] : [1 2 2 3 4]

enter the y break points [y1 y2 y3 ...] : [1 1 2 3 3]

**** press return to continue

and a medium-size figure with the input-output relation of the nonlinear element
appears in the screen, as shown in Fig. 3.12.
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Figure 3.12. Defining a general nonlinear element by points.

On pressing return, the figure with the describing function of the selected non-
linear element is shown as in Fig. 3.13, and, when the return key is pressed again,
the main menu appears as:

MENU :

1 - change the reference axes and plot again

2 - grid on

3 - compute the maximum of F(X)

4 - compute inverse values of F(X)

5 - recover the figure

6 - display the expression of F(X)

enter your choice (press return to exit) :

Options 1, 2 and 5 are the standard ones of all graphic programs in TFI (see, for
instance, fresp). The subsequent ones are briefly described in the following.
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Figure 3.13. The desctibing function of the nonlinear element in Fig. 3.12.

Compute the maximum of F (X). This option causes the figure with the describ-
ing function to be shown again, with the maximum of F (X) and the corresponding
value of X (if unique) pointed out with dotted red lines. On going back to the
Command Window with the return key, the corresponding values are displayed in
the form:

[F(x)]_max : 1

-1/[F(X)]_max : -1

Compute inverse values of F (X). This option produces the request:

enter the value of F(X) :

Suppose the value .85 is entered. The figure with the describing function is shown
again with the construction used to derive the corresponding inverse value(s) shown
in cyan dotted lines. On going back to the Command Window, by pressing return
the following appears:
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inverse value(s) of F(X) = 0.85 :

X1 : 1.346

X2 : 2.252

X3 : 3.912

enter any letter for another point, press return for the menu :

Display the expression of F (X). This produces:

DESCRIBING FUNCTION :

F(X) = +1 for 0<=X<1

1*Phi(X/1) for 1<=X<2

+1*Phi(X/1)-1*Phi(X/2)

+1+1*Psi(X,2) for 2<=X<3

+1*Phi(X/1)-1*Phi(X/2)

+1*Phi(X/3)+1*Psi(X,2) for 3<=X

with Phi(X/X1):=2/pi*[asin(X1/X)+X1/X*sqrt(1-(X1/X)^2)];

Psi(X,0):=4/(pi*X); Psi(X,X1):=4/(pi*X)*sqrt(1-(X1/X)^2).

Note that the describing function of the nonlinear element considered is expressed
in terms of functions Φ and Ψ defined by (3.3) and (3.4), respectively. This happens
as a rule when this is a linearly interpolated nonlinearity (option 4).

As previously recalled, application descrf , if called with an argument representing
a transfer function name, determines the amplitudes Xi and angular frequencies ωi

of all the possible limit cycles of the feedback system represented in Fig. 3.9.
Let us suppose the transfer function

gi(s) =
140

s (s + 1) (s + 10)

is present in the TFI work directory. The command “descrf,gi” causes the interactive
input menu to be displayed again in the Command Window as follows:
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Choose the nonlinear element :

1 - saturation

2 - dead zone

3 - saturation with dead zone

4 - any linearly interpolated nonlinearity

5 - ideal relay

6 - relay with dead zone

7 - relay with hysteresis

8 - backlash

enter your choice (press return to exit) :

Suppose that choice 4 is entered also in this case with the same parameters as
before, i.e., with the furter interactive communication:

enter the x break points [x1 x2 x3 ...] : [1 2 2 3 4]

enter the y break points [y1 y2 y3 ...] : [1 1 2 3 3]

**** press return to continue

A medium-size figure with the input-output relation of the nonlinear element
appears as in the call-without-argument case, as shown in Fig. 3.12.

On pressing return, a figure with the Nyquist diagram of gi(jω) and the polar
plot of −1/F (X) shown together is displayed. The latter is drawn in blue if
directed towards the origin for X increasing and in red in the opposite case, to make
superimposed branches distinguishable. In the example considered, this appears as
shown in Fig. 3.14, where the two plots intersect at three points. The intersections
correspond to limit cycles. When the return key is pressed again, the main menu
appears as:

MENU :

1 - change the reference axes and plot again

2 - grid on

3 - compute the possible limit cycles

4 - enter a finite delay

5 - recover the figure

6 - plot F(X) and display information about it

enter your choice (press return to exit) :
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Figure 3.14. Computation of limit cycles.

Options 1, 2, 4 and 5 are the standard ones of all graphic programs in TFI, while
option 3 produces:

INTERSECTIONS OF gi(j*omega) WITH THE NEGATIVE REAL AXIS:

intersection at Re(gi) = -1.273 (frequency: 3.162 rad/sec)

INTERSECTIONS OF gi(j*omega) WITH -1/F(X) (LIMIT CYCLES)

(only those in the plot - change the axes if necessary):

intersection for X = 1.489 (frequency: 3.162 rad/sec)

intersection for X = 2.109 (frequency: 3.162 rad/sec)

intersection for X = 4.37 (frequency: 3.162 rad/sec)

Option 6 simply causes switching to the previously described case when descrf is
called without any argument, i.e. drawing of the plot of the describing function of
the selected nonlinear element and access to the corresponding menu.
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3.6 Factf

The command

> factf,gi,gj (enter)

displays and saves in the current work directory as gj(s) or gj(z) the completely
factorized form (with a first degree factor for every real root and a second degree
factor for every complex conjugate pair) of a given transfer function gi(s) or gi(z),
in polynomial form or not completely factorized.

3.6.1 Recall

The factorized form of a monic polynomial P (s) is expressed by

P (s) =
n
∏

i=1

(s− ri) ,

where r1, . . . , rn denote the roots. The terms corresponding to a conjugate pair
of complex roots can be substituted with a single second-order term with real
coefficients. Hence the factorized form is obtained through computation of the
roots of the polynomials appearing at the numerator and denominator of gi(s) or
gi(z). However, multiple roots may not be recognized, due to scarce robustness of
computational routines in this case. For instance, factorization of

gi(s) =
1

s6 + 12 s5 + 60 s4 + 160 s3 + 240 s2 + 192 s + 64

with the denominator roots computed by means of Matlab’s roots routine, would
provide

gj(s) =
1

(s + 1.993) (s + 2.007) (s2 + 3.993 s + 3.987) (s2 + 4.007 s + 4.013)
,

instead of

gj(s) =
1

(s + 2)6
,

from which gi(s) was obtained with “defactf,gj,gi”. To avoid this, factf is provided
with the interactive possibility of recognizing multiple roots within a specified toler-
ance and substituting the error-affected values with their mean: in the case in hand,
a tolerance of .01 is sufficient to obtain the correct result.
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3.6.2 Operation

Let us suppose that transfer function gi specified in command “factf,gi,gj” is the
above one. First gi(s) is shown and the following request appears:

You can factorize:

1) numerator

2) denominator

3) numerator and denominator

enter your choice (return to skip) : 2

After selection, the computed poles are displayed and a tolerance for multiplicity
is requested. The poles are displayed again with the multiplicity corresponding to
the specified tolerance, and, if the result is accepted by the user, the final transfer
function gj(s) is displayed and saved. If not, a new tolerance can be specified. In
the Command Window this appears as:

>>> Poles <<<

1 | -2.0067e+000 +3.8588e-003 * j | 1

2 | -2.0067e+000 -3.8588e-003 * j | 1

3 | -2.0000e+000 +7.6954e-003 * j | 1

4 | -2.0000e+000 -7.6954e-003 * j | 1

5 | -1.9933e+000 +3.8366e-003 * j | 1

6 | -1.9933e+000 -3.8366e-003 * j | 1

specify the tolerance (default is 10^(-4)) : .01

>>> Poles with multiplicities detected <<<

1 | -2.0000e+000 | 6

do you want to change the tolerance (1/0) ?: 0

1

gi = --------------------------------------------------------

(s^6 + 12*s^5 + 60*s^4 + 160*s^3 + 240*s^2 + 192*s + 64)

1

gj = ---------

(s + 2)^6

Options 1 and 3 of the input menu produce similar interactive sessions.
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3.7 Fresp

The command

> fresp,gi (enter)

plots the frequency response of the continuous-time or discrete-time system with
transfer function gi(s) or gi(z). By using an interactive facility present in the
program it is possible to obtain in the same figure frequency response diagrams
corresponding to other transfer functions, plotted in different colors.

3.7.1 Recall

In the continuous-time case the frequency response function corresponding to gi(s)
is

F (ω) := gi(jω) , 0 ≤ ω <∞ ,

while in the discrete-time case, referring to gi(z), we have

F (ω) := gi(ejωT ) , 0 ≤ ω ≤ π

T
.

where T denotes the sampling period.

In both cases function F (ω) is a complex-valued function of the angular fre-
quency ω. In standard automatic control system design the following three types of
frequency response representation are used.

Bode diagrams, consisting of two plots, i.e., the Bode diagram of gain, represent-
ing the absolute value of F (ω) versus ω, and the Bode diagram of phase, representing
the argument of F (ω) versus ω. The standard Bode diagrams are semilogarithmic,
with logarithmic scale for abscissa ω and using db (decibels), i.e. 20 log10|F (ω)|, for
gain and degrees, i.e. 180/π argF (ω), for phase.

Nichols diagram, consisting of a single representation of the absolute value versus
the phase angle of F (ω), with the absolute value measured in db and the angle in
degrees; every point of the graph corresponds to a different value of ω.

Nyquist diagram, consisting of a single representation of the imaginary part versus
the real part of F (ω); every point of the graph corresponds to a different value of ω.

In all cases the plots are referred to suitable frequency intervals, depending on
the system dynamics.
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The Bode diagrams of gain and phase of continuous-time systems both admit
asymptotic approximation, i.e., can be approximated with piecewise linear func-
tions resulting from the sum of the asymptotic approximations of the elementary
diagrams of single zeros and poles. The asymptotic approximations can easily be
obtained from the transfer function in factorized form and clearly point out the loca-
tions of zeros and poles, thus characterizing the system dynamics. The elementary
asymptotic diagram of gain corresponding to a single real or complex zero zi or pole
pi consists of two half-lines: the first one horizontal at 0 db and the second one with
+20 db/decade slope in the case of a zero and −20 db/decade slope in the case of
a pole, joined at the “break point” ω = |zi| or ω = |pi|. The elementary asymptotic
diagram of phase corresponding to zi or pi consists of two horizontal half-lines at 0
and 90 degrees (if zi has negative real part or pi positive real part) or 0 and −90
degrees (if zi has positive real part or pi negative real part) connected by a sloping
segment with mid-point at ω = |zi| or ω = |pi| and break points at ω = |zi| /eπ/2,
ω = |zi| eπ/2 or ω = |pi| /eπ/2, ω = |pi| eπ/2. For a zero or a pole at the origin, the
elementary asymptotic diagram of gain is a straight line with +20 or −20 db/decade
slope passing through the point (1,0) of the semilogarithmic scale and that of phase
is the horizontal line corresponding to +90 or −90 degrees. The overall asymptotic
Bode diagram of gain is obtained by summing the elementary asymptotic diagrams
of all zeros and poles and is vertically shifted by the gain constant of the transfer
function, i.e., the value of the transfer function at s=0 computed neglecting all null
zeros or poles (in db).

In the case of Nichols and Nyquist plots, every point of the plane represents a
particular complex number c: it is possible to complete these plots with the constant
M loci , that are lines along which M = |c/(1+c)| is constant, and constant N loci ,
lines along which N =tanβ, with β =arg(c/(1+c)), is constant. They are useful to
derive some closed-loop frequency response parameters (typically resonance peak,
resonance frequency and bandwidth) from the open-loop frequency response diagram
and are labelled, respectively, with the values of M in db and of the main value of
arctanN in degrees, i.e., the value of arctanN in the left-open interval (−180, 180] ,
that gives the argument of c/(1+c) within ±180 ν degrees, when ν is an arbitrary
integer.
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3.7.2 Operation

The input menu that appears in the Command Window after entering “fresp,gi” is:

1 - Bode diagram of gain

2 - Bode diagram of phase

3 - Bode diagrams of gain and phase - a single figure

4 - Bode diagrams of gain and phase - two separate figures

5 - Nichols diagram

6 - Nyquist diagram

enter your choice (0 to exit) :

After the choice has been performed, you must select the color of the plot
according to the request:

choose color of plot: k=black, g=green,

b=blue, r=red, y=yellow, m=magenta, c=cyan, default is green :

When an admissible color is entered, the current graphic window is cleared, shown
at full-screen size, and, after some delay for computations, the selected type of
frequency response diagram is shown. Typical Bode diagrams of gain and phase in a
single figure (option 3) are shown in Fig. 3.15, while Bode diagrams in two separate
figures (option 4) are reported in Fig. 3.16, a Nichols diagram (option 5) is shown
in Fig. 3.17, Nyquist diagrams (option 6) in Figs. 3.18 and 3.19. However, these
figures refer to cases where some further elements were added to the first plot with
the main menu.

To go back to the Command Window and to see the main menu, press the return
key. The main menu partly depends on the first choice.



3.7. Fresp 57

With choices from 1 to 4 (Bode diagrams) we have:

MENU :

1 - change the reference axes and plot again

2 - grid on

3 - information on frequency response

4 - plot another function in different color

5 - recover the figure

6 - information on plot(s) with mouse

7 - plot the asymptotic approximation (for continuous-time only)

8 - introduce a finite delay

enter your choice (press return to exit) :

With choice 5 (Nichols diagram) we obtain:

MENU :

1 - change the reference axes and plot again

2 - grid on

3 - information on frequency response

4 - plot another function in different color

5 - recover the figure

6 - information on plot(s) with mouse

7 - plot with constant M and N loci

8 - graduate versus omega

9 - introduce a finite delay

enter your choice (press return to exit) :

while choice 6 (Nyquist diagram) has the same menu, but with option 7 replaced
by:

7 - zoom by steps
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We now provide a brief description of the items of the above menus.

Change the reference axes and plot again. This option allows selection of ranges
for both axes and of the number of divisions when the scale is linear. The default
value for range is the current one while the number of divisions, if not specified,
is automatically determined. A typical interactive selection of new reference axes,
referring to Bode diagrams of gain and phase in two separate figures (option 4 of
the input menu) is the following:

the frequency range is [0.1 100];

press return to maintain or type new values: [om1 om2] = [.01 1e3]

the magnitude range is [-100 50];

press return to maintain or type new values: [ym yM] = [-120 80]

number of divisions for magnitude axis: 3;

press return to plot again with automatic scaling

or type a new value: ndy = 5

the phase range is [-300 0];

press return to maintain or type new values: [ym yM] = [-270 90]

number of divisions for phase axis: 3;

press return to plot again with automatic scaling

or type a new value: ndy = 4

When new reference axes have been defined, the figure is drawn again. The above
change of axes refers to Fig. 3.16.

Grid on. Draws the figure again with a grid referred to the axes divisions. In
subsequent menus option 2 appears as:

2 - grid off

and enables the figure to be recovered without the grid. The two types of option 2
toggle. The Grid on/off command visible in the control bar at the top of the figure
provides the grid by using the mouse instead of the keyboard.

Information on frequency response. This option provides information on the most
important parameters of frequency responses that have been plotted; information
appears in the Command Window.
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Typical information, pertinent to frequency response of the transfer function (3.5)
defined in the next Examples section, appears as:

OPEN-LOOP FREQUENCY RESPONSE :

gain margin: 2.75 (8.787 db) at frequency: 3.162 rad/sec

phase margin: 17.7 degrees at frequency: 1.861 rad/sec

abscissa of the vertical asymptote to the polar plot: -4.4

CLOSED-LOOP FREQUENCY RESPONSE :

absolute gain peak: 3.297 (10.36 db) at frequency: 1.914 rad/sec

dc gain: 1 (0 db); relative gain peak: 3.297 (10.36 db)

bandwidth (-3db): 2.961 rad/sec

**** press any key to continue

The above information refers to a type one system, i.e., a system with a single pole
at the origin. If the system is not of type one, information on vertical asymptote is
not displayed. If several plots have been drawn in different colors in the same figure
(by using option 4 of the same menu in previous runs), before the information is
displayed we have the following request:

select function by entering color :

The names of the transfer functions and the corresponding colors are accessible
through the pop-up menu Recall present in the control bar at the top of the figure. By
selection with the mouse, a particular transfer function can be temporarily displayed
over the figure in the same color (click again on the figure to cancel it).

Plot another function in different color. This option makes possible to plot in the
same figure several graphs in different colors, referring to different transfer functions.
A typical use is comparing different solutions to synthesis problems in the frequency
domain. The corresponding interactive request appears as follows:

enter transfer function : g2

choose color of plot: k=black, g=green,

b=blue, r=red, y=yellow, m=magenta, c=cyan, default is green :

Choice of a color already present in the figure is rejected. The added plot is
referred to the previous axes, so that it is often necessary to use option 1 for the
best axes selection. Mixing frequency response plots of continuous-time and discrete-
time systems is allowed.
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Recover the figure. This option enables the current figure to be recovered from
the Command Window by using the keyboard instead of the mouse.

Information on plot(s) with mouse. This option first produces the message:

**** press return to enable selection

When the return key is pressed, the current figure is accessed from the Command
Window. In cases of options from 1 to 4 (Bode diagrams), the message:

Select a point with mouse (use button 1, button 2 to exit) (a)

is displayed in the top left corner of the figure. The aim of selection is to define
a value of the angular frequency. In fact, when a point is selected, a vertical bar
passing through it appears and the values of both gain and phase of every frequency
response plot in the figure corresponding to the intersections with the vertical bar are
displayed, each in the color of the plot, in the top right corner, as shown in Fig. 23.
The value of the angular frequency is also displayed, in orange. Selection with button
1 can be repeated, thus changing abscissa of the vertical bar and, consequently, the
displayed values. When button 2 is pressed, the message:

PRESS RETURN TO RECOVER THE MAIN MENU

is displayed in the bottom left corner. Pressing the return key causes return to the
Command Window with the main menu.

In cases of option 5 (Nichols diagram) and 6 (Nyquist diagram) operation is
different. Referring to the Nichols diagram, we first obtain the layout shown in
Fig. 3.21, with the message:

Choose a color or MENU to exit

in the top left corner, and a push-button menu that allows selection of a particular
plot by color or exiting the information-with-mouse session (thus recovering the
Command Window with the main menu). In the particular case of Fig. 3.21 there
are two frequency response plots, one green and the other red. When a color, for
instance red, is selected with the mouse on the push-button menu, message (a) is
replaced by:

Select a point with mouse (button 1) on the red plot (button 2 to change plot or exit)

(b)
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and, when selection is performed, a small arrow is drawn on the corresponding plot
in the same color in the direction of increasing frequency to point out location of the
point selected, as shown in Fig. 25, and information on frequency and gain/phase,
both open-loop and closed-loop, appears in the top right corner of the figure, while
the message:

Click again button 1 to delete the displayed data (c)

is shown in the top left side. When button 1 is clicked, message (b) is displayed:
thus, selection of a point on the red plot with button 1 or return to the push-button
menu with button 2 are enabled again.

Plot the asymptotic approximation (for continuous-time only). In the case of
Bode diagrams (choices 1–4 of the input menu) with this option it is possible to
add to any diagram in the figure its asymptotic approximation. If several plots have
been drawn in different colors, it is necessary to specify the desired one by answering
the request:

select function by entering color :

The asymptotic approximation is drawn in the same color as the corresponding
diagram. An example, referring to the asymptotic approximation of the Bode
diagrams of a lead compensator, is shown in Fig. 3.15.

Plot with constant M and N loci. This option is available in the main menu
only for the Nichols diagram and produces a plot with particular axes ranges (i.e.,
[−360, 0] and [−40, 40]) and with constant M and N loci, as shown in Fig. 3.17.
When the Command Window is recovered by pressing the return key, option 7 in
the menu is replaced by:

7 - delete constant M and N loci

Zoom by steps. This option is available only for the Nyquist diagram and produces
subsequent plots (typically three) with progressive enlargement, due to suitable
reductions of the axes ranges. It is particularly useful when the plotted transfer
function has a pole at the origin, so that the diagram asymptotically comes from
a point at infinity and automatic selection of axes includes a very large domain of
the complex plane to show the overall behavior of the plot. The last plot of the
sequence has axes ranges [−2, 2] and [−1.5, 1.5] in order to represent in detail the
system behavior in the neighborhood of the critical point −1.
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When the last plot of the sequence has been obtained, in the next menu option
7 appears as:

7 - plot with constant M and N loci

providing these loci, that appear as circles in the Nyquist diagram (see Fig. 3.19),
and toggles with:

7 - delete constant M and N loci

like in the Nichols diagram case.

Graduate versus omega. This option is available for the Nichols and Nyquist
plots. It produces graduation of the diagram versus the angular frequency ω: the
scale of graduation is marked with ticks, each corresponding to a displayed value of
ω. It produces the interactive requests:

enter the font size (from 6 to 14, default 8) :

enter the density factor (from 1 to 10, default 1) :

The default font size usually results in a good graduation appearance, while
choice of the density factor may require some trials (repeating graduation cancels
the previous one). Graduation in Fig. 3.18 was obtained with density factor 1,
while that in Fig. 3.23, which refers to a system with a finite delay, was obtained
with density factor 4, and that in Fig. 3.24, which refers to a system with multiple
resonances, with density factor 10. In any case, graduation versus angular frequency
is a natural complement of Nichols and Nyquist diagrams. If several plots are present
in the figure, it is first necessary to answer the request:

select function by entering color :

that allows graduation of one plot at a time.
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Introduce a finite delay. This option allows taking into account the multiplication
factor e−t0s in the continuous-time case, or z−k0 in the discrete-time case. In the
first case we obtain the request:

enter a finite delay (seconds) - default is zero :

and in the second case:

the current sampling time is 0.2 sec

enter a delay (number of samples) - default is zero :

As in the previous case, if several plots are present in the figure, it is first necessary
to answer the request:

select function by entering color :

The introduction of a finite delay can be repeated for the same function. In this
case the corresponding plot is drawn again.
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3.7.3 Examples

Let

gp(s) =
40

s (s + 1) (s + 10)
,

gc(s) =
10 (s + 1.413)

s + 14.13

be the transfer functions of a plant and a compensator, located in a unit-feedback
control loop. Denote by gt(s) = gc(s) gp(s) the corresponding loop transfer function.
Fig. 3.15 shows the Bode diagrams of gp(jω), gc(jω) and gt(jω) in a single figure
(option 3 of the input menu). Options 4, 1 and 6 in the main menu have been used
to draw the three plots in different colors, to change the reference axes with respect
to automatic scaling, and to draw the asymptotic approximation of gc(jω). Fig. 3.16
gives the same diagrams in two separate figures (option 4 of the input menu); options
4, 1 and 6 in the main menu have been used as before. Fig. 3.17 shows the Nichols
diagrams of gp(jω) and gt(jω) with the constant M and N loci added by means of
option 7 in the main menu. Figs. 3.18 and 3.19 refer to the Nyquist diagrams of
gp(jω), gc(jω) and gt(jω) (option 6 of the input menu): in Fig. 3.18 option 8 of the
main menu was used to graduate versus ω all the diagrams, while Fig. 3.19 shows
the constant M and N loci, obtained with multiple selection of option 7. The arrows
were added by using option 6. Figs. 3.20, 3.21 and 3.22 show some layouts referring
to option 6. Fig. 3.23 refers to gp(jω) with a 4 sec delay added with option 9 and
graduated with option 8.

In all cases option 3 in the main menu may provide information on open-loop
and closed-loop frequency response parameters corresponding to any one of the plots
(whose color is specified by the user in the interactive mode); for instance, in the
case in hand a phase margin increase from 17.7 degrees of gp(jω) to 55.89 degrees
of gt(jω), due to the phase lead action of the compensator, points out a remarkable
improvement in dynamic behavior, that is confirmed by the M constant loci test.

Finally, Fig. 3.24 shows the Nyquist diagram of the transfer function

(s+8.006) (s+19.67) (s2−28.21 s+216.2) (s2+2.333 s+2262) (s2+3.607 s+5284)

(s2+0.331 s+8.998) (s2+3.311 s+361) (s2+1.656 s+2704) (s2+4.139 s+10410)

that presents multiple resonances (thus requiring an efficient frequency-scale auto-
matic setting), also graduated with option 8.
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Figure 3.15. Bode diagrams in a single figure.

Figure 3.16. Bode diagrams in two separate figures.
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Figure 3.17. Nichols diagrams with M and N loci added.

Figure 3.18. Nyquist diagrams with frequency graduation.
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Figure 3.19. Nyquist diagrams with M and N loci added.

Figure 3.20. Information with mouse (option 6) in Bode diagrams.
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Figure 3.21. Information with mouse (option 6) in Nichols diagrams - step 1.

Figure 3.22. Information with mouse (option 6) in Nichols diagrams - step 2.
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Figure 3.23. The Nyquist diagram of a system with a finite delay.

Figure 3.24. The Nyquist diagram of a system with multiple resonances.
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3.8 Gpmarg

The command

> gpmarg,gi[,1] (enter)

displays the gain and phase margins of the continuous-time transfer function gi(s)
or the discrete-time transfer function gi(z). Option [1] provides the generalized
stability margins, with interactive request of the reference phase and gain values.

3.8.1 Recall

Let us consider the continuous-time transfer function

G(s) =
N(s)

D(s)
:=

bm sm + bm−1 sm−1 . . . + b2 s2 + b1 s + b0

sn + an−1 sn−1 + . . . + a2 s2 + a1 s + a0
,

and denote by RN (ω) and IN (ω) the real and imaginary part of N(jω), and by
RD(ω) and ID(ω) the real and imaginary part of D(jω). They are defined in terms
of the coefficients as

RN (ω) = b0 − b2 ω2 + b4 ω4 − b6 ω6 + . . . ,

IN (ω) = b1 ω − b3 ω3 + b5 ω5 − b7 ω7 + . . . ,

RD(ω) = a0 − a2 ω2 + a4 ω4 − a6 ω6 + . . . ,

ID(ω) = a1 ω − a3 ω3 + a5 ω5 − a7 ω7 + . . . .

Im G(jω)

ϕ0

ω0 1
MG

Re G(jω)

a)

Im G(jω)

ω0
MF

R0

Re G(jω)

b)

Figure 3.25. Derivation of the generalized gain and phase margins.
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Generalized gain margin

Let us refer to Fig. 3.25,a: given an angle ϕ0, we call the value MG :=1/G(jω0),
where ω0 is the smallest angular frequency such that arg G(jω0)=ϕ0, the generalized
gain margin of G(s). The standard gain margin usually referred to in the control
system design corresponds to ϕ0 =π.

The frequency ω0 can be determined as a root of a polynomial equation as follows.
Let us define

α(ω) := arg N(jω) , so that tanα(ω) =
IN (ω)

RN (ω)
,

β(ω) := arg D(jω) , so that tanβ(ω) =
ID(ω)

RD(ω)
.

By substitution, from

tan(arg G(jω)) = tan(α(ω)− β(ω)) =
tan α(ω) tanβ(ω)

1 + tanα(ω) tanβ(ω)
= tanϕ0

we derive the polynomial equation

sinϕ0 (RN (ω)RD(ω) + IN (ω) ID(ω))− cos ϕ0 (IN (ω)RD(ω)− ID(ω)RN (ω)) = 0 ,

whose roots include ω0. We select as ω0 the least real nonzero root. Then, the
generalized gain margin is derived as

MG =
∣

∣

∣

N(jω0)

D(jω0)

∣

∣

∣

−1
.

Generalized phase margin

Let us now refer to Fig. 3.25,b: given a real positive number R0, we call the
value MP := π+arg G(jω0), where ω0 is the smallest angular frequency such that
|G(jω0)|=R0, generalized phase margin of G(s). It is worth noting that arg G(jω)
is assumed to be a continuous function at π. The standard phase margin usually
referred to in the control system design corresponds to R0 =1.

The frequency ω0 can be determined as a root of a polynomial equation as follows.
From the identity

R2
0 =
|N(jω)|2
|D(jω)|2

we derive the polynomial equation

R2
N (ω) + I2

N (ω)−R2
0 (R2

D(ω) + I2
D(ω)) = 0 ,
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whose roots include ω0. We select as ω0 the smallest real nonzero root. Then, the
generalized phase margin is derived as

MP = π + arg
N(jω0)

D(jω0)
.

The above procedure to derive the generalized gain and phase margins can easily
be extended to the discrete-time case. Let us recall that the frequency response
corresponding to G(z) is defined as G(ejωT ), but it can be computed as Gw(jω),
where Gw(s) denotes the w-plane equivalent of G(z) (see the Recall section of
application wplane). Thus, the above method can be applied without any change if
the transfer function Gw(s) is considered in place of G(z). However, the frequencies
derived with the margins are points of the imaginary axis of the w-plane, while the
frequency response is usually defined in terms of phase ω T along the unit circle of
the z-plane. Let ω′

0 be the angular frequency determined in the w-plane. From

z = ejω0T =
1 +

jω′
0 T
2

1− jω′
0 T
2

the corresponding ω0 to be displayed is computed as

ω0 =
1

T
arg

(

1 +
jω′

0 T
2

1− jω′
0 T
2

)

.
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3.8.2 Operation and Examples

Let us consider the transfer function

gi(s) =
40

s (s + 1) (s + 10)
.

On entering “gpmarg,gi” the following appears:

gain margin of transfer function gi(s): 2.75 (8.787 db)

(phase = -180 degrees) at frequency: 3.162 rad/sec

phase margin of transfer function gi(s): 17.7 degrees

(gain = 1) at frequency: 1.861 rad/sec}

while, on entering “gpmarg,gi,1”, we obtain:

enter the reference phase for gain margin (default -180) : -150

enter the reference gain for phase margin (default 1) : 2

gain margin of transfer function gi(s): 0.5416 (-5.326 db)

(phase = -150 degrees) at frequency: 1.306 rad/sec

phase margin of transfer function gi(s): 31.71 degrees

(gain = 2) at frequency: 1.244 rad/sec

where the values −150 and 2 have been entered by the user with keyboard.

As another example, let us consider

gj(s) =
1

(s + 1) (s + 2)
.

Since the Nyquist diagram of gj(s) is completely contained in the unit circle and
does not intersect the negative real axis, using the standard call “gpmarg,gj” we
obtain:

gain margin non-computable

phase margin non-computable
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while, with “gpmarg,gj,1” the following appears:

enter the reference phase for gain margin (default -180) : -100

enter the reference gain for phase margin (default 1) : .2

gain margin of transfer function gj(s): 5.188 (14.3 db)

(phase = -100 degrees) at frequency: 1.703 rad/sec

phase margin of transfer function gj(s): 81.72 degrees

(gain = 0.2) at frequency: 1.649 rad/sec

with −100 and .2 typed by the user during the interactive session.

If function gj(s) is multiplied by 10, thus obtaining

gk(s) = 10 gj(s) =
10

(s + 1) (s + 2)
,

with the standard references we have:

gain margin non-computable

phase margin of transfer function gk(s): 55.86 degrees

(gain = 1) at frequency: 2.759 rad/sec

since the negative real axis is still not intersected, but the unit circle is.
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3.9 Invtr

The command

> invtr,gi (enter)

displays the expression in finite terms of the inverse L-transform (impulse response)
gi(t) of the continuous-time transfer function gi(s) or of the inverse Z-transform
(impulse response) gi(k) of the discrete-time transfer function gi(z).

3.9.1 Recall

In both cases the inverse transform is obtained through partial fraction expansion.
Referring first to the continuous-time case, let n be the degree of the denominator
and m≤n that of the numerator of gi(s). It is well-known that

gi(s) = K0 +
P (s)

Q(s)
= K0 +

P (s)

(s− p1)r1 (s− p2)r2 . . . (s− ph)rh

= K0 +
h
∑

i=1

ri
∑

ℓ=1

Kiℓ

(s− pi)ri−ℓ+1
,

where constant K0 is present only if m=n. In this case it is derived by first dividing
the numerator by the denominator, thus obtaining as P (s)/Q(s) a strictly proper
fraction. In the above expression p1, . . . ph denote the distinct roots of Q(s), i.e.,
the poles of gi(s), and r1, . . . , rh their multiplicities: clearly

∑h
i=1 ri =n. Constants

Kiℓ are defined by

Kiℓ =
1

(ℓ− 1)!

d ℓ−1

ds ℓ−1
(s− pi)

ri
P (s)

Q(s)

∣

∣

∣

∣

s=pi

(i = 1, . . . , h; ℓ = 1, . . . , ri) .

The inverse L-transform is obtained by inverting, term by term, the partial
fraction expansion. We obtain

gi(t) = K0 δ(t) +
h
∑

i=1

ri
∑

ℓ=1

Kiℓ

(ri−ℓ)!
tri−ℓ epit ,

where δ(t) denotes the Dirac impulse at t=0.
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When pi is complex, the conjugate complex p̄i is also present with the same
multiplicity ri and with conjugate complex coefficients K̄iℓ. Let pi =σi+jωi, so that
epit =eσit (cos ωit+j sinωit), and Kiℓ =uiℓ+j viℓ =Miℓ (cos ϕiℓ+j sin ϕiℓ); then

tri−ℓ (Kiℓ epit + K̄iℓ ep̄it)

(ri−ℓ)!
=

2 tri−ℓ eσit

(ri−ℓ)!
(uiℓ cos ωit− viℓ sinωit)

=
2 Miℓ tri−ℓ eσit

(ri−ℓ)!
(cos ωit + ϕiℓ)

=
2 Miℓ tri−ℓ eσit

(ri−ℓ)!
(sin ωit + ϕiℓ +

π

2
) .

The first of the above expressions is called Cartesian form, the second polar form
in terms of cosine and the third polar form in terms of sine. In the polar forms
it is customary to assume the phase angle added to cos ωit or sinωit in the default
interval [−π/2, π/2); this is obtained by shifting the angle by hπ, with h integer,
and multiplying the coefficient by (−1)|h|.

In the discrete-time case some different manipulations are necessary. In fact, a
possible pole at the origin with multiplicity r0 is considered apart from the other
ones in the partial fraction expansion, since the corresponding inverse Z-transform
cannot be expressed as a particular case of that of nonzero poles as in the continuous-
time case. In this case we adopt the following contrivance: function gi(z) is divided
by z before expansion and multiplied by z after expansion, thus obtaining factor z
in all terms, except, of course, those corresponding to the possible pole at the origin.
We obtain

gi(z) =
P (z)

Q(z)
=

P (z)

zr0 (z − p1)r1 (z − p2)r2 . . . (z − ph)rh

=
r0+1
∑

ℓ=1

K0ℓ

zr0−ℓ+1
+

h
∑

i=1

ri
∑

ℓ=1

Kiℓ z

(z − pi)ri−ℓ+1
,

where in this case h denotes the number of nonzero poles, so that r0+
∑h

i=1 ri =n,
and P (z)/Q(z) is no longer required to be strictly proper.
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The constants Kiℓ are defined by

Kiℓ =
1

(ℓ− 1)!

d ℓ−1

dz ℓ−1
(z − pi)

ri
P (z)

z Q(z)

∣

∣

∣

∣

z=pi

(i = 0, . . . , h; ℓ = 1, . . . , ρi) ,

with p0 = 0, ρ0 = r0 +1, ρi = ri (i = 1, . . . , h). Then, the inverse Z-transform is
obtained like the inverse L-transform in the continuous-time case, by inverting term
by term the partial fraction expansion. We get

gi(k) =
r0+1
∑

ℓ=1

K0ℓ δ(k−ℓ+1) +
h
∑

i=1

ri
∑

ℓ=1

Kiℓ

p r1−ℓ
i

( k

ri−ℓ

)

p k
i ,

where δ(k−i) denotes the unitary impulse at k = i and the binomial coefficient is
defined as

(k

n

)

:=







k(k−1) . . . (k−n+1)
n ! for n > 0 ,

1 for n = 0 .

Also in this case a complex conjugate pair of poles pi, p̄i have complex conjugate
coefficients Kiℓ, K̄iℓ in the expansion. Let Kiℓ = Miℓ ejϕiℓ =Miℓ (cos ϕiℓ+j sinϕiℓ) as
before, and pi = Ni e

jϑi = Ni (cos ϑi+j sinϑi). Define the new parameters K ′
iℓ, u′

iℓ,
v′iℓ, M ′

iℓ and ϕ′
iℓ through

K ′
iℓ = u′

iℓ + j v′iℓ = M ′
iℓ ejϕ′

iℓ =
Miℓ ejϕiℓ

N ri−ℓ
i ej(ri−ℓ)ϑi

=
Miℓ

N ri−ℓ
i

ej(ϕiℓ−(ri−ℓ)ϑi) ;

they enables every term of the inverse Z-transform to be expressed in the three
forms

( k

ri−ℓ

)

(K ′
iℓ p k

i + K̄ ′
iℓ p̄ k

i ) = 2
( k

ri−ℓ

)

N k
i (u′

iℓ cos kϑi − v′iℓ sin kϑi)

= 2
( k

ri−ℓ

)

M ′
iℓ N k

i (cos kϑi + ϕ′
iℓ)

= 2
( k

ri−ℓ

)

M ′
iℓ N k

i (sin kϑi + ϕ′
iℓ +

π

2
) ,

that are again called Cartesian form, polar form in terms of cosine and polar form
in terms of sine, respectively.
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3.9.2 Operation and Examples

We will show how the result is displayed by means of some examples. Consider the
transfer functions

gi(s) =
1350 (s + 4)

s (s + 2) (s + 3)3
,

gj(z) =
1.56 (z + 0.31) (z − 0.45) (z + 1.47)

(z − 1) (z − 0.67) (z − 0.55)3
,

gk(s) =
50 (s + 4)

(s + 2) (s2 + 0.2 s + 1)3
,

gw(z) =
1000 (z + 0.31) (z − 0.45) (z + 1.47)

(z − 0.67) (z2 + 1.92 z + 0.96)3
.

If the transfer function considered has all the poles real the result is directly
displayed in the Command Window. For gi(s) we have:

Inverse Laplace Transform of gi(s) :

------------------------------------

gi(t) = 100

- 1350*exp(-2 t)

+ (1250 + 1050 t + 225 t^2)*exp(-3 t)

while for gj(z) the result displayed is:

Inverse Z Transform of gj(z) :

------------------------------

gj(k) = (1789 + 323.3 k + 15.08 k^2)*(0.55)^k

- 1884*(0.67)^k

+ 92.32

+ 2.87*delta(k)
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If the transfer function considered has at least one pair of conjugate complex
poles the following menu is displayed in the Command Window:

1 - complex modes in Cartesian form

2 - complex modes in polar form - function sine

3 - complex modes in polar form - function cosine

your choice :

Referring to gk(s) the result for the three choices is displayed, respectively, as:

Inverse Laplace Transform of gk(s) :

------------------------------------

gk(t) = 1.027*exp(-2 t)

+ [41.63 sin(0.995 t) - 1.027 cos(0.995 t)

+ (- 5.134 sin(0.995 t) - 39.47 cos(0.995 t)) t

+ (- 11.59 sin(0.995 t) + 2.745 cos(0.995 t)) t^2]

*exp(-0.1 t)

Inverse Laplace Transform of gk(s) :

------------------------------------

gk(t) = 1.027*exp(-2 t)

+ [41.64 sin(0.995 t - 0.02467)

- 39.8 t sin(0.995 t + 1.441)

- 11.91 t^2 sin(0.995 t - 0.2326)]*exp(-0.1 t)

Inverse Laplace Transform of gk(s) :

------------------------------------

gk(t) = 1.027*exp(-2 t)

+ [- 41.64 cos(0.995 t + 1.546)

- 39.8 t cos(0.995 t - 0.1293)

+ 11.91 t\ee 2 cos(0.995 t + 1.338)]*exp(-0.1 t)

while for gw(z) the three choices of the menu give:

Inverse Z Transform of gw(z) :

------------------------------

gw(k) = 35.17*(0.67)^k

+ [3.786e+005 sin(2.94 k) - 381.1 cos(2.94 k)

+ (- 1.672e+004 sin(2.94 k) + 7.684e+004 cos(2.94 k)) k

+ (- 4488 sin(2.94 k) - 3481 cos(2.94 k)) k^2]*(0.979)^k

+ 345.9*delta(k)
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Inverse Z Transform of gw(z) :

------------------------------

gw(k) = 35.17*(0.67)^k

+ [3.786e+005 sin(2.94 k - 0.001007)

- 7.863e+004 k sin(2.94 k - 1.357)

- 5680 k^2 sin(2.94 k + 0.6597)]*(0.9798)^k

+ 345.9*delta(k)

Inverse Z Transform of gw(z) :

------------------------------

gw(k) = 35.17*(0.67)^k

+ [- 3.786e+005 cos(2.94 k + 1.57)

+ 7.863e+005 k cos(2.94 k + 0.2142)

- 5680 k^2 cos(2.94 k - 0.9111)]*(0.9798)^k

+ 345.9*delta(k)

The following further examples refer to multiple poles at the origin, both in the
continuous and in the discrete-time case. Let us consider the following transfer
functions

gc(s) =
(s + 1) (s + 10)

s8
,

gd(z) =
(z − 0.2) (z − 0.8)

z8
.

For gc(s) the corresponding information displayed is:

Inverse Laplace Transform of gc(s) :

------------------------------------

gc(t) = (0.008333 t^5 + 0.01528 t^6 + 0.001984 t^7)

while for gd(z) we obtain:

Inverse Z Transform of gd(z) :

------------------------------

gd(k) = + 1*delta(k-6) - 1*delta(k-7) + 0.16*delta(k-8)

thus pointing out that a multiple pole at the origin in discrete-time systems produces
a time delay.
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3.10 Lagc

The command

> lagc,gi,gj (enter)

provides trial-and-error design of a lag compensator gj(s) for the plant gi(s) by
using the Bode diagrams. See the application regnich for design with the Nichols
diagram.

3.10.1 Recall

The lag compensator improves the phase margin of a system by shifting the crossover
frequency of the Bode gain diagram towards the left by means of a suitable gain
reduction. Use of the lag compensator is restricted to type 0 or 1 systems, where
acceptable phase margins are obtainable with a gain reduction.

With respect to simple gain reduction, the lag compensator has the advantage of
preserving the dc gain, but, on the other hand, it also gives a certain small phase lag,
that reduces the phase margin. We recall that the corresponding transfer function
is

Gj(s) =
1 + α τ s

1 + τ s
,

with a significant phase lag in the angular frequency range 1/τ≤ω≤1/(ατ), where
the asymptotic Bode gain diagram has a −20 db/decade slope. The maximum phase
lag, given by

ϕ0 = −arcsin
1− α

1 + α
,

hence depending only on α, occurs at the mid-band frequency

ω0 =
1

τ
√

α
.

Since phase lag makes stability worse, in the design the crossover frequency
of the overall system must be located close to the right extreme of the above
frequency range, where it is small, and the corresponding phase margin reduction is
compensated by assuming a conservative value for α.

The program uses the following design procedure:

1. the phase margin ϕm and the corresponding angular frequency ωm of the
controlled system are computed and displayed;

2. the required phase margin ϕd is entered by the user, and the value of the gain
reduction α0 which gives this phase margin and the corresponding angular
frequency ω0 are computed and displayed;
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Figure 3.26. The Bode diagrams of some lag compensators.

3. the value α=α0/2 is chosen for the first-trial lag compensator;

4. τ is varied between the values 100/(ω0 α0) and 1/(10ω0 α0) by 400 uniformly
spaced steps and the value corresponding to the overall system phase margin
closest to ϕd is selected and displayed; the step responses of the overall system
and the compensator output are also plotted;

5. if these responses are unsatisfactory, the design procedure can be repeated
from step 3 on with a different value of α, interactively specified by the user
in the range from α0/10 (rounded to the lower bound of the corresponding
decade) to α0.

Let us point out that in the above-outlined synthesis procedure the value of the
phase margin that is entered at the beginning not only influences the value of α
automatically selected for the first trial, but is really imposed at step 4. It follows
that it is necessary to enter lagc again with a different phase margin if the result
remains unsatisfactory after several trials with different values of α, contrary to
leadc, where the result is independent of the phase margin initially entered, since
the maximum obtainable phase margin is selected at each trial.
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3.10.2 Operation and Examples

Let us consider the transfer function

gi(s) =
10000

(s + 1) (s + 2) (s + 10)
.

The command “lagc,gi,gj” first displays a medium-size figure with a block dia-
gram showing the connection referred to, and the message:

**** press return to continue

When the return key is pressed, we have the request:

information on design of lag compensator ? (1) :

Entering 1 provides a short description of the procedure used to derive the lag
compensator, that is not repeated here since it is contained in the previous Recall
section. This optional information also generates the full-size figure with the Bode
diagrams shown in Fig. 3.26.

If the request is skipped by simply pressing the return key, the Bode diagrams
of gi(s) are plotted with the reference lines pointing out the gain margin (blue)
and phase margin (red). The numerical values of gain and phase margins are also
displayed inside the diagram frame. On pressing the return key, the Command
Window is recovered and the following display appears:

phase margin without compensator: -56.04 degrees

at frequency: 20.78 rad/sec

enter the required phase margin : 60

Let us enter the phase margin 60 for the first set of trials. First, the following
lines appear in the display, then the previous Bode diagrams are shown again, with
a dotted cyan line added pointing out the gain reduction providing the desired phase
margin (Fig. 3.27). This serves to set the value of alpha for the first trial:

maximum alpha: 0.006485

minimum alpha: 0.0001

the selected alpha: 0.003242

**** press any key to continue
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On pressing a key, the step-by-step construction to derive the compensator begins.
First, the uncompensated system Bode plots are shown again in green. When
the return key is pressed, the gain diagrams referring to the compensator corner
frequencies search interval are shown in yellow, then, on pressing return again, the
plots of the derived compensator are shown in cyan and eventually, on pressing
return again, the plots of the corrected overall systems are shown in magenta, with
a vertical magenta dotted line pointing out the phase margin obtained. At this
point, the screen appears as in Fig. 3.28.

When the return key is pressed to exit from the Bode diagrams so obtained, the
corrected system step response is shown to evaluate the transient behavior with the
compensator derived. The output of the compensator is also plotted subsequently,
to show the transient behavior of the manipulated variable. When the return key is
pressed again, the following display appears on the Command Window:

reference color: g ; transfer function of the plant: gi

400 step search for tau in the selected interval:

required phase margin found at step: 218

phase margin without compensator: -56.05

phase margin with compensator : 59.88

the compensator derived:

alpha = 0.003242 , tau = 424.2 sec

you may change the values of alpha; tau will be

automatically set to obtain the required phase margin

enter alpha (min 0.0001, max 0.006485), return to exit :

We assume that the obtained step responses are not satisfactory and decide to
proceed with a second trial. Decreasing the value of alpha usually produces reduction
of the maximum overshoot but increase in the settling time. We enter .001 as
the new value of alpha. The construction is repeated and the corresponding Bode
diagrams shown. The step responses of the subsequent trials are all shown together
in different colors according to the sequence: g, r, c, y, m, b, w or k (the maximum
number of trials is seven), so that effects of the parameter changes are easily noted.
The step responses of the closed-loop system at the output of the plant and of the
compensator, corresponding to the two trials performed so far in the example on
hand, are shown in Figs. 3.29 and 3.30, with plots in green and red, respectively.
Note the pop-up menus Recall, Time axis and Grid on/off.
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Figure 3.27. The Bode diagrams of the controlled system.

Figure 3.28. The Bode diagrams the end of the design procedure.
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On pressing return, the result obtained is displayed in the Command Window as:

reference color: r ; transfer function of the plant: gi

400 step search for tau in the selected interval:

required phase margin found at step: 256

phase margin without compensator: -56.05

phase margin with compensator : 60.09

the compensator derived:

alpha = 0.001 , tau = 690 sec

you may change the values of alpha; tau will be

automatically set to obtain the required phase margin

enter alpha (min 0.0001, max 0.006485), return to exit :

Since the maximum overshoot of the step response is satisfactory in this case, we
decide to exit. The following appears:

select function by entering color :

On entering r (the color of the second-trial step response plots) the corresponding
transfer function gj(s) is saved in the hard disk and displayed as:

THE COMPENSATOR OBTAINED :

alpha = 0.001 , tau = 690 sec

0.001 (s + 1.449)

gj = -----------------

(s + 0.001449)

NOTES:

- As mentioned in the previous Recall section, during the trial-and-error design
procedure the phase margin originally introduced has not been changed. If the
results obtained after some trials are far from being satisfactory, it is necessary to
exit and enter the program again to introduce a new phase margin.

- If lagc is applied to a system of type 2 or more, the following message appears:

**** lag correction applies only to type 0 or 1 systems

and the program is quitted.
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Figure 3.29. The closed-loop step responses.

Figure 3.30. The compensator outputs.
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3.11 Leadc

The command

> leadc,gi,gj (enter)

provides trial-and-error design of a lead compensator gj(s) for the plant gi(s) by
using the Bode diagrams. See the application regnich for design with the Nichols
diagram.

3.11.1 Recall

The lead compensator directly improves the phase margin of a system, since its
frequency response provides a phase lead in a suitable frequency range. We recall
that the corresponding transfer function is

Gj(s) =
1 + τ s

1 + α τ s
.

The phase lead is significant in the angular frequency range 1/τ ≤ ω ≤ 1/(ατ),
where the asymptotic Bode gain diagram has a +20 db/decade slope. The maximum
phase lead, given by

ϕ0 = arcsin
1− α

1 + α
,

hence depending only on α, occurs at the mid-band frequency

ω0 =
1

τ
√

α
.

The value of ϕ0 is 90 degrees at the limit for α approaching zero. Since the
value of α must be finite, it is advisable to set a minimum value for it in the design
(.005, corresponding to about 82 degrees of maximum phase lead); in the interactive
synthesis procedure smaller values are rejected.

Let us note that a single lead compensator cannot stabilize, with a good phase
margin, a system having large negative phase margin, just because the obtainable
phase lead is less than 90 degrees. If the phase margin of the controlled system is
negative, a warning message is displayed, and the possibility of running the leadc
program two or more times in order to achieve a multiple lead compensator is pointed
out as a hint for the designer.
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The program uses the following design procedure:

1. the phase margin ϕm and the corresponding angular frequency ωm of the
controlled system are computed and displayed;

2. the required phase margin ϕd is entered by the user, and the value α0 corre-
sponding to mid-band phase lead equal to ϕd−ϕm is computed and displayed;

3. the value α=α0/2 is chosen for the first-trial lead compensator;

4. τ is varied between the values
√

α/ωm and 1/(ωm
√

α) by 100 uniformly
spaced steps and the value corresponding to the overall system maximum phase
margin is selected and displayed; the step responses of the overall system and
the compensator output are also plotted;

5. if these responses are unsatisfactory, the design procedure can be repeated
from step 3 on with a different value of α, interactively specified by the user
in the range from 0.005 to 2α0.

Let us point out that in the above-outlined synthesis procedure the value of
the phase margin that is entered at the beginning only influences the value of α
automatically selected for the first trial. It does not influence the final result if more
than one trial is done, since for each trial the phase margin is maximized. Then, if
the result remains unsatisfactory after several trials with different values of α, it is
not necessary to enter leadc again with a different phase margin, contrary to lagc
and pidc, where the results largely depend on the phase margin initially entered,
since this is strictly imposed and obtained at every trial.

3.11.2 Operation and Examples

Let us consider the transfer function

gi(s) =
40

s (s + 1) (s + 10)
.

The command “leadc,gi,gj” displays a medium-size figure with the system block
diagram informing about the connection referred to, and the message:

**** press return to continue

When the return key is pressed, we have the request:

information on design of lead compensator ? (1) :
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Entering 1 provides a short description of the procedure used to derive the lead
compensator, that is not repeated here since it is contained in the previous Recall
section. This optional information also generates the full-size figure with the Bode
diagrams shown in Fig. 3.31.

If the request is skipped by simply pressing the return key, the Bode diagrams
of gi(s) are displayed with the reference lines pointing out the gain margin (blue)
and phase margin (red). The numerical values of gain and phase margins are also
displayed inside the diagram frame. On pressing the return key again, the Command
Window is recovered and the following display appears:

phase margin without compensator: 17.7 degrees

at frequency: 1.862 rad/sec

enter the required phase margin :

Let us enter the phase margin 60. The following lines are added in the display:

necessary phase lead: 42.3 degrees

the selected alpha : 0.09772

**** press any key to continue

When a key is pressed, the step-by-step construction to derive the compensator
begins. First, the Bode plots of the uncompensated system are shown again in green.
When the return key is pressed, the gain diagrams referring to the compensator
corner frequencies search interval are shown in yellow, then, on pressing return again,
the plots of the derived compensator are shown in cyan and eventually, on pressing
return again, the plots of the corrected overall systems are shown in magenta,
with a vertical magenta dotted line pointing out the phase margin obtained. The
corresponding screen layout is shown in Fig. 3.32.

When the return key is pressed to exit from the Bode diagrams so obtained,
the step response of the corrected system is shown to evaluate the closed-loop
behavior with the compensator derived. The output of the compensator is also
plotted subsequently, to show the peak value of the manipulated variable due to the
derivative action.

When the return key is pressed again, the following display appears on the
Command Window:
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Figure 3.31. The Bode diagrams of some lead compensators.

Figure 3.32. The Bode diagrams the end of the design procedure.
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reference color: g ; transfer function of the plant : gi

100 step search for tau in the selected interval:

maximum phase margin found at step: 46

phase margin without compensator: 17.68

phase margin with compensator : 56.13

the compensator derived:

alpha = 0.09772 , tau = 0.69 sec

you may change the values of alpha; tau will be

automatically set to obtain the maximum phase margin

enter alpha (min .005, max 0.3909), return to exit :

We assume that the step responses obtained are not satisfactory and decide to
proceed with a second trial. Decreasing the value of alpha produces a higher phase
margin, hence a reduction of the maximum overshoot in the step response. We enter
.06 as the new value of alpha. The construction is repeated and the corresponding
Bode diagrams shown. The step responses of the subsequent trials are all shown
together in different colors according to the sequence: g, r, c, y, m, b, w or k (the
maximum number of trials is seven), so that the effects of the parameter changes are
easily noted. By pressing the return key, the Command Window is selected again
and the result obtained is displayed as:

reference color: r ; transfer function of the plant : gi

100 step search for tau in the selected interval:

maximum phase margin found at step: 44

phase margin without compensator: 17.68

phase margin with compensator : 60.31

the compensator derived:

alpha = 0.06 , tau = 0.7642 sec

you may change the values of alpha; tau will be

automatically set to obtain the maximum phase margin

enter alpha (min .005, max 0.3909), return to exit :
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The step responses of the closed-loop system at the output of the plant and of
the compensator, corresponding to the two trials performed so far in the example
on hand, are shown in Figs. 3.33 and 3.34. In the top control bar above these figures
the pop-up menus Recall, Time axis and Grid on/off make it possible to see the
parameters of the regulators derived, to change the time axis, and to see or remove
the grid.

Since the maximum overshoot and the phase margin are satisfactory in this case,
we decide to exit. The following appears:

select function by entering color :

On entering r (the color of the second trial step response plots), we obtain

THE COMPENSATOR OBTAINED :

alpha = 0.06 , tau = 0.7642 sec

16.67 (s + 1.308)

gj = -----------------

(s + 21.81)}

Of course, the transfer function gj(s) is also saved in the hard disk.

NOTE:

- As mentioned in the previous Recall section, a single lead compensator may not
be sufficient when the phase margin of the uncompensated system is far from the
desired value. If this is negative, the following warning message and related option
for possible exit are displayed before the reference phase margin for the design is
requested:

warning: negative phase margin - this case probably requires

a lag or two or more lead compensators; in the latter case

you may run this program two or more times

do you want to continue ? (1/0) : 1

enter the required phase margin :

and the above design procedure is enabled. If a negative phase margin is still
obtained at the end of the first trial, the corresponding step responses are not shown.
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Figure 3.33. The closed-loop step responses.

Figure 3.34. The compensator outputs.
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3.12 Makeleg

The command

> makeleg (enter)

creates a legend in the last figure generated by a TFI application. In Matlab 4,
where the legend may be covered by the grid or other spurious lines, particularly
after shifting with the mouse, command “makeleg” can also be used to clean a legend
already present in the figure.

3.12.1 Operation

When a legend in figures is not permanently set by using the corresponding option
provided by the “startint” command, it is possible to obtain it with “makeleg”,
that operates when the application is quitted and the figure generated is reduced to
small size and located in the upper-right corner of the screen. The figure is selected,
enlarged at full-screen size and the legend is created on it. The figure is reduced to
small again when the return key is pressed.

If the currently selected figure (e.g., figure no. 1) is not the last figure generated
(e.g., figure no. 3), the message:

**** error: you must select figure 3

is displayed and the legend is not created, while if the selected figure is the last
one generated, but by an application that does not support legend, the following
appears:

**** legend is not available in this case

The legend facility is available both in Matlab 4 and in Matlab 5, but has a
slightly different appearance and behavior.
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3.13 Nlsim

The command

> nlsim,gi,gj,gk,gw (enter)

performs the simulation of a loop where gi(s) is the transfer function of a linear block
between the summing junction and an algebraic nonlinear element NL, gj(s) that
of a linear block between NL and the output, gk(s) that of the feedback connection,
while gw(s) is the L-transform of the reference signal. Usually gi(s) is the transfer
function of the regulator and gj(s) that of the plant. Any positive real number
(typically 1) can be entered in place of gi(s) and/or gk(s).

3.13.1 Recall

The block diagram of the feedback system considered is shown in Fig. 3.35. The
exosystem is modelled by Gw(s), i.e., the reference ye is obtained as the Dirac impulse
response or the inverse L-transform of the ratio of polynomilas Gw(s), while Gi(s)
is the transfer function of the regulator , Gj(s) that of the plant , and Gk(s) that of
the feedback connection.

+ _

δ(t)

Gw(s)
ye ur

Gi(s)
x

NL

y
Gj(s)

yp

yf

Gk(s)

exosystem regulator nonlinear
element

plant

feedback
connection

Figure 3.35. The feedback system considered.

The nonlinear element NL can be interactively selected among the following
standard types:

1 - saturation
2 - dead zone
3 - saturation with dead zone
4 - any linearly interpolated nonlinearity
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5 - ideal relay
6 - relay with dead zone
7 - relay with hysteresis
8 - backlash

Every type, after selection, is defined by entering the values of some parameters,
that are requested in interactive mode. See the Recall section of application descrf
for more information on the above nonlinearities.

The overall system is shown in Fig. 38. Its linear part can be described with the
state-space model

η̇(t) = A η(t) + b y(t) , η(0) = η0 ,

x(t) = c η(t) ,
(3.5)

where η0 denotes the initial state (due to the Dirac impulse), x(t) and y(t) the input
and output of NL, that are an output and the input of the linear part.

A, b and c are built with the matrices corresponding to the state-space descrip-
tions of the four linear blocks in Fig. 3.35, that for the plant, the feedback connection,
the regulator and the exosystem are, respectively

ẋp(t) = Ap xp(t) + bp up(t) ,

yp(t) = cp xp(t) ;

ẋf (t) = Af xf (t) + bf uf (t) ,

yf (t) = cf xf (t) + df uf (t) ;

ẋr(t) = Ar xr(t) + br ur(t) ,

yr(t) = cr xr(t) + dr ur(t) ;

ẋe(t) = Ae xe(t) + be ue(t) ,

ye(t) = ce xe(t) ;

with, clearly, up(t)= y(t). The connection equation corresponding to the summing
junction is

ur(t) = ye(t)− yf (t)

= ce xe(t)− cf xf (t)− df uf (t) = ce xe(t)− cf xf (t)− df cp xp(t) ,

so that, by substitution, the output x(t)=yr(t) is obtained as

x(t) = cr xr(t) + dr ur(t) = cr xr(t)− dr ce xe(t)− dr cf xf (t)− dr df cp xp(t) . (3.6)
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Taking into account other straightforward connection equations, we obtain the
set of differential equations

ẋp(t) = Ap xp(t) + bp y(t) ,

ẋf (t) = Af xf (t) + bf cp xp(t) ,

ẋr(t) = Ar xr(t) + br ce xe(t)− br cf xf (t)− br df cp xp(t) ,

ẋe(t) = Ae xe(t) + be δ(t) ,

that, together with (3.6), completely describe the linear part of the system. It follows
that the matrices appearing in (3.5) are defined in terms of those of the connected
linear subsystems as

η =









xp

xf

xr

xe









, A =









Ap O O O
bf cp Af O O
−br df cp −br cf Ar br ce

O O O Ae









, b =









bp

o
o
o









, η0 =









o
o
o
be









,

c = [−dr df cp −dr cf cr dr ce ] .

Assuming that NL is described by a generic algebraic function y(t) = f(x(t)),
the solution of the overall system can be obtained by step-by-step solution of the
corresponding discrete-time system

η(k + 1) = Ad η(k) + bd y(k) , η(0) = η0 ,

x(k) = c η(k) ,

y(k) = f(x(k)) .

Let ∆t be the assumed time discretization step. Matrix Ad and row vector bd are
derived from

eÂ ∆t =

[

Ad bd

o 1

]

, with Â :=

[

A b
o 0

]

.

The other signals appearing in the plots, i.e., the reference (the output of the
exosystem) and the output of the plant, can be derived as linear functions of the
state variables of the above nonlinear discrete-time system as

ye(k) = [ o o o ce ] η(k) ,

yp(k) = [ cp o o o ] η(k) .
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3.13.2 Operation and Examples

Let

gi(s) =
10 (s + 1.413)

s + 14.13
, gj(s) =

40

s (s + 1) (s + 10)

be the transfer functions of the regulator and the plant shown in Fig. 3.35, and

step(s) =
5

s

the L-transform of the reference, i.e. the transfer function of the exosystem. The
command “nlsim,gi,gj,1,step” displays a medium-size figure with a block diagram
giving information on the connection referred to, and the message:

**** press return to continue

to be displayed in the Command Window. When the return key is pressed, the
following appears:

Choose the nonlinear element :

1 - saturation

2 - dead zone

3 - saturation with dead zone

4 - any linearly interpolated nonlinearity

5 - ideal relay

6 - relay with dead zone

7 - relay with hysteresis

8 - backlash

enter your choice (press return to exit) :

If, for instance, option 5 (ideal relay) is entered, the corresponding parameters
are requested and communicated as follows:

enter the x-axis discontinuity point (default 0) :

enter the saturation levels [Y1 Y2] : [-1 1]

At this point a medium-size figure with the input-output characteristic of the
nonlinear element is shown, while the message:

**** press return to continue}

is displayed again in the Command Window.
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When the return key is pressed, we obtain for a while the message:

**** computing ... please wait

and the simulation result is shown in the current graphic window. It appears as a
time response plot with the reference input to the summing junction, the output
of the plant, the input of the nonlinear element and the output of the nonlinear
element (see Fig. 3.36).

On pressing the return key again, the following menu appears:

MENU :

1 - change the reference axes and plot again

2 - grid on

3 - plot reference input and output of the plant

4 - plot input and output of the nonlinear element

5 - plot everything

6 - plot again with no changes

7 - change colors

Besides standard change of axes and grid, this menu enables restriction of the
number of plotted functions and change of colors.

Fig. 3.37 refers to another example, where the regulator and the plant are the
same as before, while the reference signal is the sine function with L-transform

sine(s) =
0.5

(s2 + 0.01)
,

and the option 6 is entered for the nonlinear element (relay with dead zone). In this
case, the corresponding interactive request is:

enter the x discontinuity points [X1 X2] : [-.1 .1]

enter the three output levels [Y1 Y2 Y3] : [-1 0 1]

**** press return to continue

while the subsequent part of the operation is the same as in the previous case.
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Figure 3.36. The step response of a system with an ideal relay.

Figure 3.37. The sine response in the case of a relay with dead zone.
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3.14 Perftra

The command

> perftra,gi,gj,gk,gw (enter)

provides a complete design procedure, based on preview and preaction, for a perfect
tracking feedforward compensating device for digital feedback control systems; gi(z)
is the transfer function of the regulator (given), gj(z) that of the plant (given), while
gk(z) and gw(z) denote those of the two units that form the compensator (to be
determined). The first of these units is a pure delay, representing the necessary
preview time of the reference to be tracked, while the second one is a feedforward
unit to the input of the plant.

3.14.1 Recall

Fig. 3.38 represents the compensator structure considered. The purpose of perftra
is to derive the delay Gk(z) and the feedforward compensator Gw(z) that realize
almost perfect tracking at the output y of a delayed reference r by feeding a suitable
preaction signal uc at the input of the plant.

x

Gw(z)

Gk(z)
r e

Gi(z)

ue

u
Gj(z)

y

compensator

delay regulator plant

Figure 3.38. The connection of the feedforward compensating device.

Let the transfer function of the plant be

Gj(z) =
P (z)

zk Q(z)
,

where P (z) is assumed to have the same degree as Q(z). This is obtained by adding
a suitable number of zeros and poles at the origin and including the added poles in
the factor zk. The value of k is called the plant relative degree.
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Should the plant be invertible, i.e., having all the zeros with absolute value strictly
less than one, perfect tracking could be obtained by simply assuming, in the block
diagram in Fig. 3.38,

Gk(z) =
1

zk
, Gw(z) =

Q(z)

P (z)
.

Hence, in this particular case, the preview and preaction times are of as many
samples as the plant relative degree is, while the compensator transfer function
simply concides with the inverse of the zero-relative-degree factor P (z)/Q(z) of the
plant transfer function.

Unfortunately, in most cases the plant is not invertible. Unstable zeros are very
likely to appear in the discrete-time transfer function of the plant, due to the sam-
pling process with zero or first order hold equivalence, even if the corresponding
continuous-time model is minimum-phase. The design steps of the delay and com-
pensator when the plant has some zeros with absolute value greater than one can
be better understood by making reference to the block diagram in Fig. 3.39. The
only basic assumption introduced is that the plant has no zeros with absolute value
strictly equal to one.

x

Gc(z)
u2

Gs(z)

Dp(z) Dr(z)
r e

Gi(z)

uc

u

y

pre-compensator

preaction

delay
relative

degree delay
regulator

compensator

Figure 3.39. A more detailed block diagram of the compensator.

Let P (z) be monic (this assumption does not affect generality, but simply implies
that Q(z) generally is not), so that P (z) can be univocally factorized as P (z) =
P+(z)P−(z), with P−(z) and P+(z) having all the roots with absolute value less
and greater than one, respectively.
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Consider the decomposition

Q(z)

P (z)
=

A(z)

P−(z)
+

B(z)

P+(z)
, (3.7)

that can be obtained by applying the partial fraction expansion to the strictly proper
ratio of polynomial Q(z)/(z P (z)), then by multiplying both members of the equality
so obtained by z, and by suitably partitioning the terms on the right. Note that
B(z) always has a zero root, i.e. a polynomial B1(z) exists such that B(z)=z B1(z),
because the factor z introduced at the second step of the above construction cannot
cancel with a corresponding factor in the denominator (all the zero roots of P (z)
join to P−(z) by assumption).

Referring to Fig. 3.39, the relative-degree delay and the compensator are defined
as

Dr(z) =
1

zk
, Gs(z) =

A(z)

P−(z)
, (3.8)

while the action of the second term on the right of (3.7) is substituted by an
equivalent action obtained with the preaction delay and the pre-compensator.

A

B

C
−kp

Figure 3.40. How the preaction signal is obtained.

In fact, the inverse Z-transform of B(z)/P+(z), being strictly unstable, appears
as shown in Fig. 3.40, diagram A. It is the signal that, together with the inverse
Z-transform of A(z)/P−(z), should be applied at the input of the plant in advance
by the plant relative degree to obtain perfect tracking of a unit impulse at k=0. Of
course, this is not possible because of saturation.
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Note that, since
B(z)

P+(z)

P (z)

zk Q(z)
=

z B1(z)P−(z)

zk Q(z)
, (3.9)

lack of application of this signal is equivalent to imposing an initial state on the
plant, given by the opposite of the term on the right of (3.9). In fact, this is a linear
combination of the modes of the plant. Imagine extending backwards in time the
signal A, thus obtaining that denoted by B in Fig. 3.40, that begins at a negative
instant of time −kp. Note that A is the sum of B and C, that is defined as the
opposite of B for negative time. Lack of application of B is also equivalent to
imposing an initial state on the plant, but very small if kp is large enough, hence
resulting in a negligible transient in the overall feedback system, that is stable by
assumption.

Hence, signal C is the preaction to be applied for almost perfect tracking of a
unit impulse. Of course, the preaction for a generic input signal is its convolution
with C. When a suitable value of kp has been selected, the preaction delay and the
pre-compensator are defined as

Dp(z) =
1

zkp
, Gu(z) :=

g(kp) zkp−1 + . . . + g(2) z + g(1)

zkp−1
, (3.10)

where g(k) is the inverse Z-transform of the polynomial ratio obtained by replacing
z with z−1 in B(z)/P+(z), that concides with signal C in Fig. 3.40, considered in the
reverse time direction. Relations (3.8) and (3.10) define all the transfer functions of
the feedforward units shown in Fig. 3.39. The transfer functions Gd(z) and Gc(z) of
the equivalent blocks in Fig. 3.38 are provided by the straightforward manipulations

Gk(z) = Dp(z)Dr(z) ,

Gw(z) = Gu(z) + Dp(z)Gs(z) .

An estimate of the error reduction provided by preaction can be obtained as
follows. Let ρ be the absolute value of the root of P+(z) closest to the unit circle.
The error reduction factor is approximately given by the relation

m(kp) = ρ−kp , (3.11)

that can be used in design to select a first-trial value of kp.
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How to preserve robustness of asymptotic tracking

It is well-known that tracking a step or a ramp is asymptotically perfect if the
transfer function of the feedback loop has a pole equal to one or a double pole
equal to one, and that asymptotic perfect tracking is maintained under parameter
variations provided stability is preserved.

In some cases, particularly in motion control, one of the poles equal to one that
ensure asymptotically robust tracking belongs to the transfer function of the plant,
and steps or ramps are asymptotically tracked if the regulator is type 0 or type 1,
respectively. To preserve this property, it is necessary for the correcting signal uc

generated by the compensators to tend to zero when the reference input is a step,
or to a constant when it is a ramp. This can be obtained with a simple contrivance:
feeding the feedforward compensator and pre-compensator with the first difference
of the reference input, whose Z-transform is

∆R(z) =
z − 1

z
R(z) ,

and, at the same time, multiplying both members of (3.7) by z/(z− 1) in the
compensator design, so that the unit root of Q(z) is cancelled. Of course, this
method can be extended, and differences of order greater than one can be used for
correction if the unit pole of the plant is multiple.

Using a single feedforward unit

Let us assume that the transfer function Gi(z) of the regulator is minimum-
phase and consider the block diagram in Fig. 3.41. The transfer function Gf (z) is
computed as

Gf (z) = Gk(z) + Gw(z)G−1
i (z) . (3.12)

Should the relative degree of the transfer function obtained be negative, some
poles at the origin could be added. This simply increases the preaction time.

x
Gf (z)

r e
Gi(z)

u
Gj(z)

y

Figure 3.41. A single feedforward unit.
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3.14.2 Operation and Examples

Let us consider the nonminimum-phase continuous-time system

g(s) =
−3 (s− 2) (s + 4)

(s + 1) (s + 2) (s + 8)
,

whose zero-order hold equivalent with sampling time T =0.2 sec is

gj(z) =
−.2452 (z − .454) (z − 1.534)

(z − .2019) (z − .6703) (z − .8187)
,

and the type 2 regulator

gi(z) =
(z−.9)2 + .052

(z − 1)2
.

The command “perftra,gi,gj,gk,gw” displays a medium-size figure with a block
diagram showing the connection referred to, and the message:

**** press return to continue

When the return key is pressed, we have the request:

information on design of perfect tracking compensators ? (1) :

Entering 1 provides a short description of the procedure used to derive the preaction
feedforward compensator, that is not repeated here since it is reported in the previous
Recall section. If the request is skipped by simply pressing the return key, the
transfer functions of the plant and regulator are displayed in the Command Window,
followed by information on the possibility of using a single feedforward unit and on
the order of the difference used at the compensator input to avoid steady state error.
Pressing the return key again produces the screen layout shown in Fig. 3.42, with a
medium-size figure showing a logarithmic diagram corresponding to relation (3.11),
i.e., giving an estimate of error reduction versus preaction time.
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Figure 3.42. The interaction for the choice of the preaction time.

Figure 3.43. The screen layout with the final result.
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In the meanwhile the interactive request:

enter the preaction interval: kp =

is displayed in the Command Window. Let us enter the value 10, corresponding
to an error reduction of about two decades. The transfer functions Dr(z), Dp(z),
Gs(z) and Gu(z) of the blocks shown in Fig. 3.39 are immediately computed and
displayed. On pressing the return key, the transfer functions Gk(z) and Gw(z) of
the block diagram in Fig. 3.38 are computed, displayed in the Command Window as
shown in Fig. 3.43, and saved in the hard disk with the names gk and gw specified
in the call list.

Since in this case the transfer function of the regulator is invertible, we obtain
the request:

do you want to use a single feedforward unit ? (1) :

and, on entering 1, we have:

enter a name for the feedforward transfer function :

Let us enter the name gf. The transfer function is computed according to (3.12),
displayed in the Command Window and saved in the hard disk.

The efficiency of the feedforward perfect tracking compensation can be checked
with the system response to a standard input function. In fact, we have the request:

do you want to see the system behavior ? (1) :

and, on entering 1, a profile is shown, and on pressing the return key, we obtain the
further request:

do you want to change the parameter of the profile ? (1) :

making it possible to enable an optional interactive session to adapt the profile to
the case in hand. After this, the menu shown on the next page is displayed. By
entering 1 and 10 we obtain the plots shown in Fig. 3.44 (reference input and output
of the plant without any correction), by entering 11 and 7 those in Fig. 3.45 (output
of the plant with the correction and the feedforward signal injected at the input of
the plant), while entering 12 and 13 produces the plots in Fig. 3.46 (tracking error
without and with correction). The tracking error is reduced by the ratio 50:1.
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Figure 3.44. Checking the system behavior without and with the compensator.

The final menu for plots appears as:

THE AVAILABLE PLOTS :

1 - reference input (delayed by the plant relative degree)

2 - preaction for an impulse of the selected difference

3 - postaction for an impulse of the selected difference

4 - correction for an impulse of the selected difference

5 - preaction for the whole reference

6 - postaction for the whole reference

7 - correction for the whole reference

8 - input of the plant without correction

9 - input of the plant with correction

10 - output of the plant without correction

11 - output of the plant with correction

12 - tracking error without correction

13 - tracking error with correction

14 - define a new graphic window

enter your choice (press return to exit) :
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Figure 3.45. Checking the system behavior without and with the compensator.

Figure 3.46. Checking the system behavior without and with the compensator.
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3.15 Pidc

The command

> pidc,gi,gj (enter)

provides trial-and-error design of a PID (proportional-integral-derivative) regulator
gj(s) for the plant gi(s) by using the Bode diagrams. See the application pidnich
for design with the Nichols diagram.

3.15.1 Recall

The transfer function of a standard PID regulator is

Gj(s) = Kc

(

1 + Td s +
1

Ti s

)

= Kc
Ti Td s2 + Ti s + 1

Ti s
,

where Kc is the gain or proportional sensitivity , Td the time constant of the deriv-
ative action and Ti the time constant of the integral action. Significant parameters
for the design are

ω0 =
1√

Ti Td
and ρ =

Ti

Td
,

that are called the mid-band frequency and the time constant ratio.
Very often the derivative action is implemented in the feedback path only, to

avoid peaks in the closed-loop step response. This is equivalent to splitting the
regulator into two units, i.e., a PI feedforward unit with transfer function

Gjd(s) = Kc

(

1 +
1

Ti s

)

= Kc
Ti s + 1

Ti s
,

and a feedback unit with transfer function

Gjf (s) =
Ti Td s2 + Ti s + 1

Ti s + 1
,

whose product gives the original PID transfer function.

In general, A PID regulator is not advisable if the control system is type 1,
thus having a built-in integral action. In this case, after an interactive ok from the
user, the design is automatically referred to a PD regulator and the above transfer
functions are replaced by

Gj(s) = Kc (1 + Td s) , Gjd(s) = Kc , Gjf (s) = 1 + Td s .
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The program pidc can also be used for the design of PI regulators. In fact,
dividing by s the plant transfer function gi(s) before entering produces the design
of a PD regulator with transfer function Kc (1+Td s). It is easily seen that this is
equivalent to a PI regulator for the original plant gi(s) defined by K ′

c = Kc Td and
T ′

i =Td.

The program uses the following design procedure:

1. the phase margin ϕm and the corresponding angular frequency ωm of the
controlled system are computed and displayed;

2. the required phase margin ϕd is entered by the user, and the maximum angular
frequency corresponding to phase −180+ϕd degrees in the frequency response
of the controlled system is derived;

3. this is assumed as the mid-band frequency of the regulator, while in the first
trial the value of ρ=Ti/Td is set to 4, hence both Td and Ti are determined,
and the regulator transfer function determined apart from Kc (also in case of
a PD regulator);

4. the desired phase margin ϕd for the overall system is obtained with a suitable
choice of Kc; the step responses of the overall system and the regulator output
are also plotted;

5. if these responses are unsatisfactory, the design procedure can be repeated
from step 3 with different values of Ti and Td (only Td if the controlled system
is type 1), interactively specified by the user.

Let us point out that in the above-outlined synthesis procedure the value of the
phase margin that is entered at the beginning not only influences the values of Td

and Ti automatically selected for the first trial, but is really imposed at step 4. It
follows that it is necessary to enter pidc again with a different phase margin if the
result remains unsatisfactory after several trials with different values of these time
constants, unlike leadc, where the result is independent of the phase margin initially
entered, since the maximum obtainable phase margin is selected at each trial.

Use of the program pidc is restricted to type 0 or 1 systems, since systems of
type 2 or more are uncommon in industrial applications of adjustable-parameters
regulators. If this restriction is not taken into account we obtain the message:

**** program pidc applies only to type 0 or 1 systems

and the program is quitted.
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Figure 3.47. The Bode diagrams of some PID regulators.

Figure 3.48. The Bode diagrams at the end of the design procedure.
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3.15.2 Operation and Examples

Let us consider the transfer function

gi(s) =
10000

(s + 1) (s + 2) (s + 10)
.

The command “pidc,gi,gj” displays a medium-size block diagram giving informa-
tion about the connection referred to, and the message:

**** press return to continue

When the return key is pressed, we have the request:

information on design of PID regulators ? (1) :

Entering 1 provides a short description of the procedure used for the PID regula-
tor design, that is not reported here since it is contained in the above Recall section.
This optional information also generates the full-size figure with the Bode diagrams
shown in Fig. 3.47.

If the request is skipped by simply pressing the return key, the Bode diagrams
of gi(s) are shown with the reference lines pointing out the gain margin (blue)
and phase margin (red). The numerical values of gain and phase margins are also
displayed inside the diagram frame. On pressing return the Command Window is
recovered and the following display appears:

phase margin without regulator : -56.04 degrees

at frequency : 20.78 rad/sec

enter the required phase margin :

Let us enter the value 55 for the first set of trials. First, the Bode plots of the
uncompensated system are shown again in green. When the return key is pressed,
the Bode plots of the regulator derived are shown in cyan and eventually, on pressing
return again, the plots of the corrected overall systems are shown in magenta, with a
vertical magenta dotted line, pointing out the phase margin obtained. At this point
the screen appears as in Fig. 3.48. When the return key is pressed to exit the Bode
diagrams so obtained, the corrected system step response is shown to evaluate the
transient behavior with the regulator derived. The output of the regulator is also
plotted subsequently to show the transient behavior of the manipulated variable.
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Figure 3.49. The closed-loop step responses.

Figure 3.50. The regulator outputs.
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When the return key is pressed again, we obtain, in the Command Window:

reference color: g ; transfer function of the plant: gi

the regulator derived:

Kc = 0.01519

Ti = 0.9909

Td = 0.2477

do you want to change the regulator ? (1/0) :

We assume that the step responses obtained are not satisfactory and decide to
proceed with a second trial, by entering 1. As a result of this choice we obtain:

you may change the values of Ti and/or Td

Kc will be automatically set to obtain the required phase margin

enter a new Ti or press return to confirm

Ti = 1

enter a new Td or press return to confirm

Td = .2

The construction is repeated and the corresponding Bode diagrams shown. The
step responses of the subsequent trials are all shown together in different colors
according to the sequence: g, r, c, y, m, b, w or k (the maximum number of trials
is seven), so that the effects of the parameter changes are easily noted. The step
responses for the two trials performed so far are shown in Figs. 3.49 and 3.50. When
the Command Window is recovered again with the return key, we obtain:

reference color: r ; transfer function of the plant: gi

the regulator derived:

Kc = 0.005797

Ti = 1

Td = 0.2

do you want to change the regulator ? (1/0) :

Since the maximum overshoot of the step response is satisfactory in this case, we
decide to exit. On entering 0, we obtain:

select function by entering color :
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On entering r (the color of the second trial step response plots), we obtain:

THE REGULATOR OBTAINED :

Kc = 0.005797 , Ti = 1 , Td = 0.2

0.001159 (s^2 + 5*s + 5)

gj = ------------------------

s

feedback-only derivative action ? (1) :

The above request allows factorization of the regulator transfer function into a
feedforward part without the derivative action and a feedback part in order to avoid
peaks due to abrupt changes of the reference input. On entering 1, the following
appears:

enter a name for the feedforward transfer function : gf

enter a name for the feedback transfer function : gb

Then, a block diagram with the regulator split is shown in medium size and the
following final result is displayed:

0.005797 (s + 1)

gf = ----------------

s

0.2 (s + 1.382) (s + 3.618)

gb = ---------------------------

(s + 1)

NOTES:

- As mentioned in the previous Recall section, during the trial-and-error design
procedure the phase margin originally introduced has not been changed. If the
results obtained with this phase margin are far from being satisfactory, the overall
procedure must be repeated with a different value of the phase margin.

- If pidc is applied to a system of type 1, the following message appears:

NOTE: the plant is type 1; a PD regulator will be derived

do you want a PID regulator anyway ? (1) :
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3.16 Pidd

The command

> pidd,gi,gj (enter)

provides trial-and-error design of a digital PID (proportional-integral-derivative)
regulator gj(z) for the plant gi(z) by using the Bode diagrams.

3.16.1 Recall

The transfer function of a standard digital PID regulator is

Gj(z) = Kc

(

1 +
1

Ti

T z

z−1
+ Td

z−1

T z

)

= Kc
Ti Td (z−1)2 + T z [Ti (z−1) + T z]

Ti T z (z − 1)
,

where Kc is the gain or proportional sensitivity , Td the time constant of the
derivative action and Ti the time constant of the integral action, while T denotes
the sampling time.

Very often the derivative action is implemented in the feedback path only, to
avoid peaks in the closed-loop step response. This is equivalent to splitting the
regulator into two units, i.e., a PI feedforward unit with transfer function

Gjd(z) = Kc

(

1 +
1

Ti

T z

z−1

)

= Kc
Ti (z−1) + T z

Ti (z−1)
,

and a feedback unit with transfer function

Gjf (z) =
Ti Td (z−1)2 + T z [Ti (z−1) + T z]

T z [Ti (z−1) + T z]
,

whose product gives the original PID transfer function.

In general, A PID regulator is not advisable if the control system is type 1,
thus having a built-in integral action. In this case, after an interactive ok from the
user, the design is automatically referred to a PD regulator and the above transfer
functions are replaced by

Gj(s) = Kc

(

1 + Td
z−1

T z

)

, Gjd(s) = Kc , Gjf (s) = 1 + Td
z−1

T z
.
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The program pidd can also be used for the design of PI regulators. In fact,
multiplying the plant transfer function gi(z) by Tz/(z−1) before entering produces
the design of a PD regulator with transfer function Kc [1+Td (z−1)/(Tz)]. It is easily
seen that this is equivalent to a PI regulator for the original plant gi(z) defined by
K ′

c =Kc Td and T ′
i =Td.

The design procedure is exactly the same as that in the program pidc (see
the corresponding Recall section) with both the plant and regulator transformed
according the the w-plane equivalence (see the Recall section of application wplane).
The w-plane transfer function of the regulator is easily derived. In fact, from

z =
2 + wT

2− wT

it follows that
T z

z − 1
=

2 + wT

2 w
,

hence, in the general PID case,

Gj(w) = Kc

(

1 +
1

Ti

2 + wT

2 w
+ Td

2 w

2 + wT

)

= Kc
(4Ti Td+2Ti T + T 2)w2 + 4 (Ti + T )w + 4

2 Ti w (wT + 2)
,

while, in the PD case,

Gj(w) = Kc

(

1 + Td
2 w

2 + wT

)

= Kc
(2Td+T )w + 2

T w + 2
.

In the same way as pidc, the program pidd is restricted to type 0 or 1 systems,
since systems of type 2 or more are uncommon in industrial applications of adjustable
parameters regulators. When this restriction is not taken into account, the following
message appears:

**** program pidd applies only to type 0 or 1 systems

and the program is quitted.
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3.16.2 Operation and Examples

Let us consider the discrete-time transfer function

gi(z) =
7.37 (z + 0.1313) (z + 2.099)

(z − 0.1353) (z − 0.6703) (z − 0.8187)
,

that corresponds to the continuous-time transfer function gi(s) used in the Operation
and Examples section of the program pidc according to the zero-hold equivalence
and sampling time T = .2 sec. The command “pidd,gi,gj” displays a medium-size
block diagram giving information about the connection referred to, and the message:

**** press return to continue

When the return key is pressed, we have the request:

information on design of digital PID regulators ? (1) :

Entering 1 provides a short description of the procedure used for the digital PID
regulator design, that is not reported here since it is contained in the above Recall
section.

If the request is skipped by simply pressing the return key, a Bode diagram of
gi(z) is displayed with the reference lines pointing out the gain margin (blue) and
phase margin (red). The numerical values of the gain and phase margins are also
displayed inside the diagram frame. On pressing return the Command Window is
recovered and the following display appears:

phase margin without regulator : NaN degrees

at frequency : NaN rad/sec

enter the required phase margin :

The phase margin is non-computable in this case, since the Bode diagram of gain
does not intersect the 0 db line. Nevertheless, let us enter the value 60 for the phase
margin of the first set of trials.
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Figure 3.51. The Bode diagrams at the end of the design procedure.

First, the Bode plots of the uncompensated system are shown again in green.
When the return key is pressed, the Bode plots of the regulator derived are shown
in cyan and eventually, on pressing return again, the plots of the corrected overall
systems are shown in magenta, with a vertical magenta dotted line, pointing out the
phase margin obtained. At this point the screen appears as in Fig. 3.51.

When the return key is pressed to exit the Bode diagrams so obtained, the
corrected system step response is shown to evaluate the transient behavior with
the regulator derived.

The output of the regulator is also plotted subsequently to show the transient
behavior of the manipulated variable.
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When the return key is pressed again, the following display appears on the
Command Window:

reference color: g ; transfer function of the plant: gi

the regulator derived:

Kc = 0.00436

Ti = 1.205

Td = 0.3013

do you want to change the regulator ? (1/0) :

We assume that the step responses obtained are not satisfactory and decide to
proceed with a second trial, by entering 1. As a result of this choice we obtain:

you may change the values of Ti and/or Td

Kc will be automatically set to obtain the required phase margin

enter a new Ti or press return to confirm

Ti = 1

enter a new Td or press return to confirm

Td = .2

The construction is repeated and the corresponding Bode diagrams shown. The
step responses of the subsequent trials are all shown together in different colors
according to the sequence: g, r, c, y, m, b, w or k (the maximum number of trials
is seven), so that the effects of the parameter changes are easily noted. The step
responses for the two trials performed so far are shown in Figs. 3.52 and 3.53. When
the Command Window is recovered again with the return key, we obtain:

reference color: r ; transfer function of the plant: gi

the regulator derived:

Kc = 0.002575

Ti = 1

Td = 0.2

do you want to change the regulator ? (1/0) :

Since the maximum overshoot of the step response is satisfactory in this case, we
decide to exit. The following appears:

select function by entering color :
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Figure 3.52. The closed-loop step responses.

Figure 3.53. The regulator outputs.
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On entering r (the color of the second trial step response plots), we obtain:

THE REGULATOR OBTAINED :

Kc = 0.002275 , Ti = 1 , Td = 0.2

0.005004 (z - 0.5802) (z - 0.7805)

gj = ----------------------------------

z (z - 1)

feedback-only derivative action ? (1) :

The above request allows factorization of the regulator transfer function into a
feedforward part without the derivative action and a feedback part in order to avoid
peaks due to abrupt changes of the reference input. On entering 1, the following
appears:

enter a name for the feedforward transfer function : gf

enter a name for the feedback transfer function : gb

Then, a block diagram with the regulator split is shown in medium size and the
following final result is displayed:

0.00273 (z - 0.8333)

gf = --------------------

(z - 1)

1.8333 (z - 0.5802) (z - 0.7835)

gb = --------------------------------

z (z - 0.8333)

NOTES:

- During the trial-and-error design procedure the phase margin originally introduced
has not been changed. If the results obtained with this phase margin are far from
being satisfactory, the overall procedure must be repeated with a different value of
the phase margin.

- If pidd is applied to a system of type 1, the following message appears:

NOTE: the plant is type 1; a PD regulator will be derived

do you want a PID regulator anyway ? (1) :
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3.17 Pidnich

The command

> pidnich,gi,gj (enter)

provides a complete design environment based on the Nichols diagram for PD, PI
or PID regulators; gi(s) is the transfer function of the plant (given), and gj(s) that
of the regulator (to be determined). See the applications pidc and pidd for design
with the Bode diagrams.

3.17.1 Recall

Let Gi(s) be the transfer function of the plant and Gj(s) that of a regulator to be
designed. This can be one of the standard types

Gj,1(s) = Kc (1 + Td s) , Gj,2(s) = Kc

(

1 +
1

Ti s

)

, Gj,3 = Kc

(

1 +
1

Ti s
+ Td s

)

,

that are called PD , PI and PID respectively.
The design is performed on the Nichols plot of the frequency response function

Gi(jω) of the plant. The influence of one of the above regulators on the Nichols
diagram is outlined in Fig. 3.54, where n1 denotes the plot without the regulator
and n2 the plot with the regulator.

The effect of a PD regulator is represented in Fig. 3.54,a. Selection of both a
point A (point FROM) on n1 and a point B (point TO) on the right with respect
to A defines a regulator such that n2 passes through B, and A and B correspond
to the same angular frequency on n1 and n2 respectively. The vector from A to
B is constrained to belong to a suitable domain D, shown in dashed lines in the
figure, that is simply a vertical strip having a width of π/2 radians. Clearly, the
figure refers to the domain where the selection of A is possible, provided B has been
selected first. A dashed line divides D into two parts, the upper one corresponding
to values of Kc less than 1, and the lower one to values greater than 1.

The selection layout for the PI case is shown in Fig. 3.54,b: however, in this case
B is on the left with respect to A; the domain D is again a π/2 radians wide vertical
strip, but located at the right of the point B, that is usually selected first.

The PID case is shown in Fig. 3.54,c: the strip is π radians wide, with the first-
selected point B located on the vertical line on the middle.

To show how the choice of A and B traduces in the regulator parameters, and
where the restriction on the corresponding vector has its origin, the inversion for-
mulae of the PD, PI and PID regulators are briefly presented.
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Figure 3.54. The Nichols diagrams for PD, PI, and PID regulators.

Let us define ∆y :=yB−yA, ∆x :=xB−xA and derive M and ϕ as

M = 10∆y/20 , ϕ = ∆x .

The inversion formulae for the PD regulator are obtained from the equality

M ejϕ = M(cos ϕ + j sin ϕ) = Kc(1 + jωTd) ,

as
Kc = Mcosϕ , ωTd = tanϕ : (3.13)
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Td is simply obtained by dividing ωTd, provided by second relation in (3.13), by
the angular frequency ω0 corresponding to A on n1.

Likewise, in the PI regulator case, from

M ejϕ = Kc

(

1 +
1

jωTi

)

= Kc
1 + jωTi

jωTi

we derive the inversion formulae as

Kc = M cos ϕ , ωTi = − 1

tanϕ
: (3.14)

Ti is derived from the second relation in (3.14) as in the previous case.
In the PID regulator case we have

M ejϕ = Kc
−TiTd ω2 + jωTi + 1

jωTi
= Kc

(

1− j

Td
Ti

(Tiω)2 − 1

ωTi

)

, (3.15)

from which we derive

Kc = M cos ϕ (3.16)

ωTi =
1

2

Ti

Td

(

tan ϕ +

√

(tanϕ)2 + 4
Td

Ti

)

. (3.17)

Relation (3.17) follows as the positive solution of the second order equation

−Td

Ti
(Tiω)2 − tan ϕ (Tiω) + 1 = 0 ,

that is easily derived from (3.15). The inversion formulae are (3.17) and (3.17).
However, in this case it is also necessary to assign the ratio ρ :=Ti/Td, thus having
a further degree of freedom in the design. The standard value is ρ = 4 (resulting
in real coincident zeros), but different values, approximately in the range from 1 to
100, may be used to correct the frequency and/or time response.
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3.17.2 Operation and Examples

Let us consider the transfer function

gi(s) =
10000

(s + 1) (s + 2) (s + 10) (s + 30)
. (3.18)

After the command “pidnich,gi,gj”, first a medium-size block diagram is shown
to inform about the connection referred to and the message:

**** press return to continue

is displayed. When the return key is pressed, we have the request:

information on the design method ? (1) :

Entering 1 produces a short description of the procedure used to derive a regulator
with the inversion formulae, that is not reported here since it is contained in the
above Recall section.

If the request is skipped by simply pressing the return key, the Nichols diagram
of gi(jω) is plotted with graduation versus ω. The reference lines for the gain and
phase margins are also shown, while the values of these margins are displayed at
the bottom left, as shown in Fig. 3.55. In the figure, the inscription Regulator No.

1 appears in green. In fact, the program makes it possible to design up to six
different regulators, each with plots and messages in a different color, according to
the standard sequence: green, red, cyan, yellow, magenta, and blue. The Nichols
plot and the messages referring to the plant are shown in black when the figure
background is white or in white when it is black.

In the command bar of the figure a Change axes menu is provided to adjust the
automatic selection, with the items: y top, y bottom (plus 20 db, minus 20 db),
x left, x right (plus 30 degrees, minus 30 degrees), standard (setting the axes as
[−360, 0,−40, 40]), M and N loci on/off. The Grid on/off command is also provided.
The standard option has been used in Fig. 3.55.

At the top left of the figure a pushbutton menu shows the three options for the
design, PD, PI and PID, and, initially disabled, the items Continue, Another regulator,
Step response, Bode diagrams. A further pushbutton Exit is provided, at the bottom
left corner of the figure, to quit the program.

The small rectangular frames under the Nichols plot are used to see the step
responses, both at the output of the plant and regulator, for the two last choices of
the point FROM.
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Figure 3.55. The initial figure with the Nichols diagram.

Figure 3.56. The diagram after selection of the point TO.
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Figure 3.57. The diagram during selection of the point FROM.

Let us decide to design a PI regulator. When clicking the mouse on PI, the above
menu disappears and the following message appears at the top of the figure:

PI : select the point TO with the mouse (button 1)
You can repeat selection (press button 2 to accept) (a)

At every selection of the point TO with button 1 the corresponding coordinates
are displayed at the top left of the figure and the domain D where it is possible to
choose the point FROM is shown. When, possibly after some trials, the point TO
is accepted by pressing button 2 of the mouse, message (a) is replaced with:

Select the point FROM with the mouse on the Nichols diagram
You can repeat selection (press button 2 to accept) (b)

At this point the screen appears as shown in Fig. 3.56. The emergency pushbutton
Back on the left enables the current design to be interrupted and the initial setting
to be recovered, thus making it possible to choose a different type of regulator.

At every selection of the point FROM with button 1, the screen appears as shown
in Fig. 3.57.
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At the top left, the coordinates of the point selected and the corresponding value
of the angular frequency, as well as the parameters of the corresponding regulator,
are shown under the message referring to the point TO already present. If the point
FROM does not belong to the domain D, the message:

SELECTION NOT ACCEPTABLE

appears in red. It can be cancelled by clicking the mouse on the figure.
The Nichols diagram of the system with the regulator appears with complete

graduation versus ω. Note that it passes through the point TO as desired. The
point FROM is pointed out with a small circle on the original Nichols diagram.
The new values of the gain and phase margins are also shown at the bottom left
of the figure under those of the uncorrected system. The settling time, computed
as 3/σm, where σm is the minimum absolute value of the real parts of the closed-
loop poles, is also shown. It is possible to repeat the selection of the point FROM
in the zone allowed, in order to search for the most convenient one. For instance,
if the point TO has been selected to impose the phase margin (as in the example
in hand), a convenient value for the gain margin or for the settling time may be
sought. For the designer’s convenience, the step responses referring to the last two
choices are shown in the small rectangular frames under the Nichols diagram: the
corresponding points FROM and responses are contemporarily shown on the Nichols
plot (with small circles) and in rectangular frames, in orange (the previous one) and
in the color corresponding to the current regulator (the last one).

If the diagram and the corresponding margins are satisfactory, on pressing button
2 all the messages disappear and the pushbutton menu is shown again with the
choices Continue, Another regulator, Step response, Bode diagrams enabled. The
pushbutton Exit is also restored.

We provide here a brief description of the options.

Continue. This option makes it possible to continue the design of a regulator by
selecting different points FROM, after checking response(s).

Another regulator. With this option, it is possible to repeat the synthesis proce-
dure from the beginning without entering pidnich again, thus enabling comparison
of different solutions in terms of the step and/or frequency responses. As previously
recalled, the subsequent regulators designed are distinguished by color.
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Step response. This option makes it possible to check the effectiveness of the
regulator(s) by means of the step response of the overall closed-loop system. When
it is entered, the menu is disabled and two new pushbuttons appear with the further
choices Plant output and Regulator output. The first provides the step response
of the overall system, while the second makes it possible to see the output of the
regulator, that coincides with the input of the plant, in order to check the amount
of the transient and orient the design towards avoiding input saturation if necessary.
Figs.3.58 and 3.59 show the screen layouts in the two cases, with both a PI and a PID
regulator designed for the plant defined by (3.18). The changes in the interactive
session for the PID regulator are briefly described below. In the PD and PID cases
the response when the derivative action is feedback-only is also shown with a dotted
plot in the first figure and as the regular one in the second one: in fact, derivative
action in the feedforward path would cause a meaningless Dirac impulse at the
output of the regulator in these cases. See the Recall section of application pidc for
more information on feedback-only derivative action. If several regulators have been
derived, the corresponding plots are all shown together in different colors.

In the command bar of the figure, the facilities Recall, Time axis and Grid on/off

provide information on all the regulators designed, change of time axis, if necessary,
and grid. The figure is created with a new number. The pushbutton Menu provides
recovering the previous figure with the Nichols diagrams and the main pushbutton
menu.

Bode diagrams. This option allows the Bode diagrams of the control loop to be
checked. When it is entered, the menu is disabled and two new pushbuttons appear
with the further choices Open-loop, Closed-loop and Sensitivity fnct. If more than
one regulator have been derived, all the Bode diagrams are shown in different colors
as in the step response case. In the command bar of the figure, the facilities Recall

and Grid on/off provide information and grid. This figure is also created with a new
number. The pushbutton Menu is used as before. Fig. 3.60 shows the open-loop
Bode diagrams corresponding to the PI and PID considered in the step response
case.

Exit. This pushbutton provides exit from pidnich. When clicked on, the message:

PRESS RETURN TO EXIT

appears in orange at the bottom left of the screen.
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Figure 3.58. The closed-loop step responses.

Figure 3.59. The regulator outputs.
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On pressing the return key, the Command Window is shown again. If only one
regulator has been derived, we obtain the display:

THE REGULATOR OBTAINED :

Type PI : Kc = 0.07085, Ti = 1.165 sec

0.07085 (s + 0.8584)

gj = --------------------

s

and the transfer function gj is saved in the hard disk.
If during the pidnich session several regulators have been derived and compared,

the standard choice by color is requested on exiting the program. To make this
choice easier, the figures with the step and frequency responses are preserved and
may be easily recalled with the mouse.

In the PD and PID case the request:

feedback-only derivative action ? (1) :

appears in the Command Window, making it possible to split the regulator into a
feedforward and a feedback section, whose transfer function names are interactively
defined like in application pidc.

What is different in the PID case

When a PID regulator is being designed, in place of message (b), the following
appears:

You can select the Td/Ti ratio - default is 4

and a small window with a pop-up menu is temporarily available in the figure for
the selection (the possible values are 1, 2, 4, 10, 20, 40, 100). The choice is disabled
when selection is done, and the selected value is permanently shown in the same
location. Then, the procedure of the previously described PI case applies without
any change, starting from message (b). Fig. 64 shows the screen layout after the
first choice of the point FROM during the design session of a PID regulator for the
plant defined in (3.18). Note that the step responses for the feedback-only derivative
action case are also shown, with dotted lines, in the small rectangular frames.
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Figure 3.60. The Bode diagrams.

Figure 3.61. Selection of the point FROM in the PID case.
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3.18 Regdph

The command

> regdph,gi,gj[,gk,gw] (enter)

provides a regulator by complete closed-loop pole assignment using the Diophantine
equation. The meaning of the call list is the following: gi(s) or gi(z) is the transfer
function of the plant, gj(s) or gj(z) that of the assigned part of the regulator, gk(s)
or gk(z) a transfer function with the poles to be assigned (zeros are uninfluential),
and gw(s) or gw(z) (output) the transfer function of the regulator derived. It
is necessary to assign a sufficient number of poles to guarantee causality of the
regulator: the two-argument call provides this number. See the application regrootl
for trial-and-error mouse-oriented design also with the Diophantine equation.

3.18.1 Recall

The Diophantine equation is a convenient means for assignment of the closed-loop
poles of a SISO feedback system. It also makes it possible to insert in the regulator
any open-loop zero-pole map, typically a simple or multiple pole at the origin or
cancellations with the plant.

The direct solution of the Diophantine equation

Let A(s), B(s) and C(s) be any triple of polynomials. The equation

A(s)X(s) + B(s)Y (s) = C(s) (3.19)

is a Diophantine equation in the unknown polynomials X(s) and Y (s). It is well
known that:

1. equation (3.19), if solvable, admits an infinite number of solutions;

2. equation (3.19) is solvable if and only if the greatest common divisor of A(s)
and B(s) is a divisor of C(s). Hence, assuming that A(s) and B(s) are coprime
does not affect generality.

A particular solution of the Diophantine equation, here called the direct solution,
is derived through an equivalent set of algebraic linear equations. Let n, m and ℓ be
the degrees of A(s), B(s) and C(s) respectively, and suppose that A(s) and B(s) are
coprime. The degrees k and h of the unknown polynomials X(s) and Y (s) provided
by the direct solution satisfy the relation

k

{

= ℓ− n if ℓ ≥ m + n
≤ m− 1 if ℓ < m + n

, h ≤ n− 1 . (3.20)
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The direct solution of equation (3.19) is derived as follows. Let (an, . . . , a0),
(bm, . . . , b0) and (cℓ, . . . , c0) be the coefficients of the given polynomials, and
(xk, . . . , x0), (yh, . . . , y0) those of the unknown ones. To simplify notation, we refer
to the particular case n=3, m=2 and ℓ=8 and derive a pair of unknown polynomi-
als with k=5, h=2, according to (3.20). In this case the equivalent set of algebraic
linear equations that provides the unknowns through simple matrix inversion, is
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If ℓ≥m+n, as in this case, the square matrix on the left is (ℓ+1)×(ℓ+1), with
the coefficients of A(s) repeated in the first k+1 columns and progressively shifted
downward to form a band submatrix as shown, and the remaining h+1 columns
with those of B(s) as a down-justified band submatrix. The column vector on the
right simply reports the coefficients of C(s).

If ℓ<m+n, the coefficient matrix on the left is (m+n)×(m+n), built in the same
way as before, while the column vector on the right, whose length is also m+n, has
some leading zeros if the degree of C(s) is less than m+n−1.

In any case the coefficient matrix is a Sylvester matrix , nonsingular if and only if
A(s) and B(s) are coprime. It clearly follows from (3.21) that the degrees k and h
specified in (3.20) with ≤ are equalities when C(s) is generic. Let us also note that
in the case ℓ≥m+n an increase in ℓ produces a corresponding increase in k only, so
that exchanging A(s) with B(s) produces two different solutions.

A very compact Matlab routine for solving the Diophantine equation is diopha.m,
available in the TFI environment.
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The closed-loop pole assignment with the Diophantine equation

Let us consider the feedback system shown in Fig. 3.62, where the transfer
function of the plant (given) and that of the regulator (to be determined) are
specified as

Gi(s) =
Pi(s)

Qi(s)
, Gr(s) =

Pr(s)

Qr(s)
=

P ′
r(s)Pj(s)

Q′
r(s)Qj(s)

. (3.22)

We shall denote by mi and ni the degrees of Pi(s) and Qi(s), that are assumed
to be coprime, mr and nr those of Pr(s) and Qr(s). For the sake of generality, the
transfer function of the regulator is factorized as shown in (refff43), where P ′

r(s) and
Q′

r(s) are the unknowns, while Pj(s) and Qj(s), with degrees mj and nj respectively,
are given factors to be included in the regulator transfer function. A typical use of
this possibility is the imposition of a simple or multiple pole at the origin to null the
asymptotic tracking error of a step, a ramp or a parabola according to the internal
model principle, or of some zeros in the regulator equal to poles of the plant in order
to obtain a pole-zero cancellation. We assume mi <ni.

+ _

r e
G′

r(s) Gj(s) Gi(s)
y

Gr(s)

Figure 3.62. The feedback system considered.

Let us first consider the case in which the pairs Pi(s), Qj(s) and Qi(s), Pj(s)
are coprime. It will be shown below that this assumption can easily be removed if
the common roots are stable, and reduction of the minimum number of assignable
poles is also obtained. Given any monic polynomial Qℓ(s) with degree ℓ ≥ ℓ0 :=
2ni+mj+nj−1, a regulator Pr(s)/Qr(s) with mr≤nr exists such that the poles of
the feedback system coincide with the roots of Qℓ(s).



140 Chapter 3. TFI and Its Applications

In fact, let us consider the Diophantine equation

Q′
r(s) (Qj(s)Qi(s)) + P ′

r(s) (Pj(s)Pi(s)) = Qℓ(s) , (3.23)

where Q′
r(s), P ′

r(s), with degrees k and h respectively, are the unknown polynomials.
The expression on the left is the characteristic polynomial of the feedback system.
Equation (3.23) is solvable, since the given polynomials Qj(s)Qi(s) and Pj(s)Pi(s) ,
with degrees ni+nj and mi+mj respectively, are coprime by assumption. If ℓ=ℓ0,
from (3.20) it follows that k is univocally determined; in fact, the first case in (3.20)
holds, since the assumption mi <ni implies ℓ0 =2ni+mj +nj−1≥mi+mj +ni+nj .
The causality relation mr≤nr, with nr = k+nj and mr =h+mj , is satisfied, since
k=ℓ0−ni−nj , h≤ni+nj−1, hence nr =ℓ0−ni =ni+mj+nj−1, mr≤ni+mj+nj−1.

On the other hand, if ℓ > ℓ0, the equality nr = ℓ −ni still being valid, nr is
increased by ℓ−ℓ0, while mr still satisfies the inequality mr≤ni+mj +nj−1. This
ensures causality to an even greater extent.

When the pairs Pi(s), Qj(s) and Qi(s), Pj(s) have common roots, these, if stable,
can be cancelled before solving (3.23). It is well known that regulator and plant
cannot have unstable cancellable factors since these would imply unstable poles of
the overall feedback system. Since the cancellations of the poles and zeros of the
plant reduce the number of the closed-loop poles to be assigned, it may be convenient
to delete some or all of the strictly stable poles and zeros of the plant before solving
(3.23), and then to insert them as zeros and poles of the obtained regulator: let
nc and mc be the numbers of the deleted poles and zeros of the plant: it is easily
shown that the minimum number of assignable poles compatible with the regulator
causality condition is, in this case, ℓ′0 =ℓ0−nc−mc.

In fact, removal of a pole of the plant produces a reduction by 2 of ℓ0, but the
number of the assignable poles is reduced only by 1, since the relative degree of the
regulator obtained is one instead of zero, thus making it possible to insert a zero
after solution.

On the other hand, removal of a zero of the plant does not affect ℓ0, but the
number of the assignable poles can be reduced by 1, since a regulator with relative
degree −1 is permitted by the insertion of a pole after the design.

The program regdph automatically provides cancellations and recovering of the
common roots of Pi(s), Qj(s) and Qi(s), Pj(s).
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3.18.2 Operation and Examples

Let

gi(s) =
−20 (s + 5)

(s + 1) (s− 2) (s + 8)
, gj(s) =

1

s2
,

be the transfer functions of the plant and of the given part of the regulator, respec-
tively. The two-argument call “regdph,gi,gj” simply produces the message:

the minimum number of poles to assign for a causal regulator is 7

In fact, ℓ0 =2 · 3+2−1=7 in this case. Assume

gk(s) =
1

(s + 4) (s + 6) (s + 10) ((s + 2)2 + 22) ((s + 4)2 + 32)
.

After the command “regdph,gi,gj,gk,gw”, a medium-size block diagram is shown to
inform about the connection referred to, and:

**** press return to continue

is displayed. When the return key is pressed, the computed regulator transfer
function

gw(s) =
−8.215 (s + 1.855) (s + 8.099) (s2 + 1.844 s + 3.888)

(s4 + 25 s3 + 99.69 s2)

is displayed and saved in file gw.mat . With:

> gw= enter

the factorized form of the same transfer function is displayed as

gw(s) =
−8.215 (s + 1.855) (s + 8.099) [(s + 0.9219) s2 + 1.7432]

s2 (s + 4.979) (s + 20.02)
.
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Referring to the same plant, let us insert as zeros and poles in the fixed part
of the regulator all the stable poles and zeros of the plant in order to obtain the
maximum number of cancellations, i.e., define

gi(s) =
−20 (s + 5)

(s + 1) (s− 2) (s + 8)
, gj(s) =

(s + 1) (s + 8)

s2 (s + 5)
.

According to these cancellations, the minimum number of assignable poles for the
regulator to be causal is ℓ′0 =ℓ0−nc−mc =7−2−1=4, so that we can assume

gk(s) =
1

(s + 4) (s + 6) ((s + 2)2 + 22)
.

In this case the following additional message is displayed: v2

1 (s + 1) (s + 8)

regulator factors cancellable with plant = -----------------

(s + 5)

**** press any key to continue

and the regulator

gw(s) =
−5.2 (s + 1) (s + 8) (s2 + 1.692 s + 1.846)

s2 (s + 5) (s + 16)

is obtained by means of the above-described automatic zero-pole cancellation and
recovering before and after design.

Let us briefly recall the messages displayed in some particular cases. Referring
to the previous example, let us add a closed-loop pole, by assuming

gk(s) =
1

(s + 4) (s + 6) (s + 10) ((s + 2)2 + 22)
.
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In this case, the message:

strictly proper regulator: the assigned poles may be reduced by 1

is displayed. Nevertheless, a feasible regulator is computed as

gw(s) =
−71.2 (s + 1) (s + 8) (s2 + 1.371 s + 1.348)

s2 (s + 5) (s2 + 26 s + 264)
.

If, on the other hand, we remove a pole and define

gk(s) =
1

(s + 4) ((s + 2)2 + 22)
,

we obtain the message:

**** warning: non-proper regulator

and the computed regulator is

gw(s) =
−0.5 (s + 1) (s + 8) (s2 + 2.4 s + 3.2)

s2 (s + 5)
.

If a further pole is removed, as in

gk(s) =
1

(s + 4) (s + 6)
,

the denominator computed with the Diophantine equation is zero, hence not admis-
sible, and the following messages appear:

**** warning: non-proper regulator

**** solution impossible: the computed denominator is zero !

On the other hand, if the number of the assigned poles is not less than ℓ0 (or
ℓ′0 when cancellations are suitably introduced), the regulator design is performed
without any problem.
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3.19 Regnich

The command

> regnich,gi,gj (enter)

provides a complete design environment based on the Nichols diagram for regulators
whose transfer function consists of a gain coefficient and one or several zero-pole pairs
of the lead or lag type; gi(s) or gi(z) is the transfer function of the plant (given),
and gj(s) or gj(z) that of the regulator (to be determined). See the applications
lagc and leadc for design with the Bode diagrams.

3.19.1 Recall

Let Gi(s) be the transfer function of the given plant and Gj(s) that of the feedback
regulator to be derived. This is obtained by using one or more of the elementary
factors

Gj,1(s) = Kc , Gj,2(s) =
1 + τ s

1 + α τ s
, Gj,3(s) =

1 + α τ s

1 + τ s
, (3.24)

that will be referred to as gain, lead compensator , and lag compensator . The final
regulator may consist of a gain factor and one or several lead and lag compensator
sections.

The design is performed on the Nichols plot of the frequency response function
Gi(jω) of the plant (or of the partially corrected plant if some elementary factors
have already been determined). The influence of the above elementary factors on
the Nichols diagram is outlined in Fig. 3.63, where n1 and n2 denote the plot before
and after the correction, respectively.

The effect of a gain section, shown in Fig. 3.63,a, is simply a vertical shift, so
that, if both a point A (point FROM) on n1 and a point B (point TO) on the
vertical straight line through A are selected, the corresponding value of Kc in db is
represented by the vector from A to B. In fact, this vector represents a real number,
positive or negative according to whether A is below or above B.

The lead compensator case is shown in Fig. 3.63,b: selection of both a point A
(point FROM) on n1 and a point B (point TO) above and to the right of A defines
a compensator such that n2 passes through B, and A, B correspond to the same
angular frequency on n1 and n2 respectively. In this case the vector from A to
B is constrained to belong to a suitable domain D, shown in dashed lines in the
figure. Clearly, if B is selected first, the choice of A is constrained to belong to the
symmetric domain D1, also shown in the figure.
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The lag compensator case, shown in Fig. 3.63,c, is similar, but B (point TO)
must be below and to the left of A (point FROM). In this case the choice of the
vector from A to B is also constrained to belong to a domain D, and, if B is the
first point selected, the symmetric domain D1 must be considered when selecting A.

|G(jω)|
(db) A

Bn1

n2

arg G(jω)
a)

|G(jω)|
(db)

A

B

n1
n2

D

D1

arg G(jω)
b)

|G(jω)|
(db) A

B
n1

n2

D

D1

arg G(jω)
c)

Figure 3.63. The Nichols diagrams for gain, lead and lag compensators.

The point B is usually selected on the zero db line in order to impose the phase
margin. Nevertheless, different choices are possible, according to the designer’s
experience.

To show how the choice of A and B traduces in a factor of the lead or lag
compensator type and where the restriction on the corresponding vector has its
origin, the inversion formulae of the lead/lag compensators are presented here.
These formulae make it possible to avoid and possibly forget the customary trial-
and-error design methods.
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Let us consider the function F : (α, (ωτ))→ (M, ϕ) defined by

M ejϕ =
1 + j (ωτ)

1 + j α (ωτ)
, (3.25)

whose domain is α∈ [0, 1), (ωτ)∈(0,∞), while the corresponding co-domain will be
shown to be M ∈ (1,∞), ϕ∈ (0, arccos(1/M)]. Its inverse function F−1 : (M, ϕ) →
(α, (ωτ)) is expressed by

α =
M cos ϕ− 1

M (M − cos ϕ)
, ωτ =

√

M2 − 1

1−M2α2
=

M − cos ϕ

sinϕ
. (3.26)

Relations (3.26) are called the inversion formulae of the lead compensator . Note
that the expression on the right of (3.25) is the frequency response of Gj,2(s) in (45).
Referring to Fig. 66,b, let us denote by xA, yA and xB, yB the coordinates (in db
and radians) of A and B respectively, and define ∆y := yB−yA, ∆x := xB−xA, so
that M and ϕ are expressed by

M = 10∆y/20 , ϕ = ∆x . (3.27)

Let ω0 be the angular frequency corresponding to A on n1. Relations (3.26)
directly define the parameters α and τ := (ωτ)/ω0 of the lead compensator that
transforms the Nichols plot n1 into a Nichols plot n2 passing through B at fre-
quency ω0. The domain D is simply the co-domain previously defined referred to a
coordinate system with origin in A, while D1 is the symmetric domain, referred to
a coordinate system with origin in B.

Since Gj,3(s) is the reciprocal of Gj,2(s), the inversion formulae of the lag com-
pensator can be derived by simply replacing M with 1/M and ϕ with −ϕ in (3.26).
However, it is not necessary to introduce new formulae for the lag compensator, since
the same effect can be obtained by simply changing the signs of ∆x and ∆y. Hence,
referring to Fig. 66,c, the lag compensator is derived by defining ∆y := yA−yB,
∆x := xA−xB, and using (3.27) and (3.26) to derive α and ωτ . Of course, also in
this case τ is obtained by division of ωτ by ω0, the angular frequency corresponding
to A on n1.
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The proof of the inversion formulae

α=0

y

ρ = 1−α
2 α

P

M

ω

ρ

C

ϕ

0 1 1−α
2 α

x 1
α

Q

Figure 3.64. Derivation of the inversion formulae of the lead compensator.

Referring to (3.25), let us denote by x=M cos ϕ and y=M sin ϕ the real and the
imaginary part of M ejϕ. It is easily shown that they describe the semi-circumference
shown in Fig. 67 as ω varies from 0 to∞. In fact, by shifting the origin of coordinates
to C we obtain

1 + jωτ

1 + jαωτ
− 1 + α

2α
=

2α (1 + jωτ)− (1+α) (1 + jαωτ)

2α (1 + jαωτ)
=

α− 1

2α

1− jαωτ

1 + jαωτ
:

since α is less than one, the last term on the right is a vector with constant absolute
value ρ=(1−α)/(2α) and phase angle ranging from 0 to π as ω varies from 0 to ∞,
that clearly describes a semi-circumference. Referring to the right-angled triangle
CPQ , we have

(

x− 1 + α

2α

)2
+ y2 =

(1− α

2α

)2
, hence (2αx−1−α)2 + 4α2y2 = (1−α)2 ,

that, by expansion and division by 4α, yields αx2+αy2−αx=x−1. This provides
the first inversion formula by simple substitution of x and y in terms of M and ϕ:

α =
x− 1

x2 + y2 − x
=

M cos ϕ− 1

M (M − cos ϕ)
. (3.28)
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By squaring the absolute values of both members of (3.25) we obtain

M2 (1 + α2 (ωτ)2) = 1 + (ωτ)2 , hence ωτ =

√

M2 − 1

1−M2α2
, (3.29)

that is the first expression of the second inversion formula. On the other hand, from
(3.28) we have

1−M2α2 = 1− (M cos ϕ− 1)2

(M − cos ϕ)2

=
M2 − 2M cos ϕ + cos2 ϕ−M2 cos2 ϕ− 1 + 2M cos ϕ

(M − cos ϕ)2

=
(M2 − 1) (1− cos2 ϕ)

(M − cos ϕ)2
=

(M2 − 1) sin2 ϕ

(M − cos ϕ)2
,

that, substituted in (3.29), yields the second expression, i.e.

ωτ =
M − cos ϕ

sinϕ
.

Let us now derive an expression for the domain D to which the point TO is
constrained to belong. Still referring to Fig. 67, note that the point P must belong
to the infinite right-angled domain bounded below by the x-axis and on the left by
the vertical line with unit abscissa. The maximum phase angle ϕM obtainable for a
given M is such that M cos ϕM =1, hence ϕM =arccos(1/M). Note that ϕM is only
obtainable with α=0, a limit case often excluded in standard compensator design.

If α is allowed to be zero, the domain D shown in Fig. 3.63,b is closed on the
right. By taking into account relations (3.27), it can be expressed by

D = {(∆x, ∆y) : ∆y ∈ [0,∞), ∆x ∈ (0, arccos 10−∆y/20] } ,

while its symmetric domain is

D1 = {(∆x, ∆y) : ∆y ∈ (−∞, 0], ∆x ∈ [− arccos 10∆y/20, 0) } .

These domains are simply exchanged with each other in the lag compensator case
shown in Fig. 3.63,c.
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3.19.2 Operation

Let us consider the transfer function

gi(s) =
10000

(s + 1) (s + 2) (s + 10) (s + 30)
, (3.30)

that will also be considered in the next Examples section. After the command
“regnich,gi,gj”, first a medium-size block diagram is shown to inform about the
connection referred to and:

**** press return to continue

is displayed. When the return key is pressed, we obtain the request:

information on the design method ? (1) :

Entering 1 produces a short description of the procedure used to derive a compen-
sator with the inversion formulae, already presented in the previous Recall section.
This optional information also generates the full-size figure with the Nichols dia-
grams of some lead compensators shown in Fig. 3.65.

If the request is skipped by simply pressing the return key, the Nichols diagram
of gi(s) is plotted with a complete angular frequency graduation. This is shown in
Fig. 3.66: the reference lines for the gain and phase margins are also plotted, and
the values of these margins are displayed at the bottom left of the figure. In the
figure, the inscription Regulator No. 1 appears in green. In fact, the program makes
it possible to design up to six different regulators, each with plots and messages
in a different color, according to the standard sequence green, red, cyan, yellow,
magenta, and blue. The Nichols plot and the messages referring to the plant are
shown in black when the background is white or in white when it is black.

In the command bar of the figure a Change axes menu is provided to adjust the
automatic selection, with the items: y top, y bottom (plus 20 db, minus 20 db), x

left, x right (plus 30 degrees, minus 30 degrees), standard, M and N loci on/off. The
Grid on/off command is also provided. The axes in Fig. 3.66 have been adjusted by
using the standard and y top options.

At the top left of the figure a pushbutton menu shows the three options for
the design, Lead, Lag and Gain, and, initially disabled, the items Continue, Another

section, Another regulator, Step response, Bode diagrams. A further pushbutton Exit

is provided, at the bottom left corner of the figure, to quit the program.
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Figure 3.65. A family of Nichols diagrams of the lead compensator.

Figure 3.66. The initial figure with the Nichols diagram.
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Figure 3.67. The figure layout at the end of a design session.

The small rectangles under the Nichols plot are used to see the step responses,
both at the output of the plant and regulator, for the last two selections during a
design session.

Clicking with the mouse on one of the three enabled pushbuttons starts a design
session for one of the compensators with the transfer functions (3.24). The design
procedure is not considered now, since it will be fully described in the next Examples
section. When the design of a single compensator section is complete, the main
pushbutton menu is recovered, with only the options Continue, Another section,
Another regulator, Step response, and Bode diagrams enabled. The corresponding
screen layout is shown in Fig. 3.67.

Let us provide here a brief description of these options:

Continue. This option makes it possible to continue the design of a regulator
by selecting different points TO in the Gain case, FROM in the other cases, after
checking response(s).
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Another section. This option makes it possible to add another elementary factor
to the regulator being designed. The consequent layout of the screen appears as at
the beginning, but with the Nichols diagram modified to include the sections of the
regulator already designed.

Another regulator. With this option, it is possible to repeat the synthesis proce-
dure from the beginning without entering regnich again, thus enabling comparison
of different solutions in terms of step and/or frequency responses. As previously
recalled, the subsequent regulators designed are distinguished by color.

Step response. This option enables to check effectiveness of the regulator by
means of the step response of the overall closed-loop system, both at the output of
the plant and regulator. The operation and features of this command are the same
as in application pidnich, and are not repeated here.

Bode diagrams. This option produces a display with the Bode diagrams of the
overall system, open-loop or closed-loop. Since it is the same as in application
pidnich, it is not described here.

Exit. This pushbutton provides exit from regnich. When clicked on, the message:

PRESS RETURN TO EXIT

appears in orange at the bottom left corner of the screen. On pressing return, the
Command Window is recovered and the transfer function gj(s) or gj(z) displayed
and saved in the hard disk. If more than one regulator have been derived, the
standard selection by color is requested in interactive mode.

NOTE:

- It is clear from the above operation notes that application regnich also works in the
discrete-time case. If the transfer function of the plant is discrete-time, i.e., a gi(z)
instead of a gi(s) is specified on entering, the design with the Nichols diagram is
automatically referred to its w-plane equivalent, and every regulator section derived
is converted back from w to z. The step responses and Bode diagrams are accordingly
modified.
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Figure 3.68. Selection of the gain.

3.19.3 Examples

Let us refer again to the transfer function (3.30). We start our design with the
screen appearing as in Fig. 3.66. The system is (slightly) unstable, so that, if its
dc gain is acceptable in connection with possible specifications on static behavior,
it may be compensated with one or two sections of the lead type. If not, increase
of gain and a lag compensator should be used. We decide to proceed in this latter
way, and to adjust the gain first, to improve the steady-state error. When clicking
with the mouse on Gain, the above menu disappears, the following message appears
at the top of the figure:

GAIN: select the point TO with the mouse (button 1)
You can repeat selection (press button 2 to accept) (a)

and a white cross is displayed to enable selection. Fig. 3.68 shows the screen layout
after the first selection, the aim of which was to impose 1000 (60 db) as the open-
loop dc gain. A vertical green dotted line (that in this case is on the right of the
figure) points out the FROM and TO point locations.
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Figure 3.69. Design of a lag compensator: choice of the point TO.

The point FROM is denoted by a small circle, and some information about the
imposed change of gain, the new stability margins and settling time is displayed.
The step responses at the output of the plant and regulator are also shown in the
small rectangles, clearly pointing out that the overall system is unstable after the
first choice, and that the regulator requires a stabilizing section.

When button 2 of the mouse is pressed, the main pushbutton menu is recovered,
with the options Continue, Another section, Another regulator, Step response, and
Bode diagrams enabled. On clicking on Another section, we obtain again the screen
layout shown in Fig. 69, but with the Nichols diagram shifted upwards according to
the change of gain previously introduced and the information about the gain and
phase margin accordingly modified. If we choose Lag for the regulator next section,
the main menu disappears again and message (a) is replaced by:

LAG: select the point TO with the mouse (button 1)
You can repeat selection (press button 2 to accept) (b)

After one or more choices of the point TO, the screen appears as in Fig. 3.69.
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Figure 3.70. Design of a lag compensator: choice of the point FROM.

The pushbutton Back produces recovery of the previous layout with the three
choices enabled, thus making it possible to reset the current design session. When
button 2 of the mouse is pressed, selection of the point FROM is requested. This
selection can also be repeated, possibly taking into account the displayed values of
the stability margins, settling time and the regulator parameters. The step responses
corresponding to the last two choices are shown in the two small rectangular windows
under the Nichols diagram. At this point the screen appears as in Fig. 3.70. On
pressing button 2 to confirm the last selection we obtain the layout in Fig. 3.67,
from which it is possible to exit the program by clicking on Exit.

This disables the pushbutton menu and produces, at the bottom left of the screen,
the request to press the return key to exit. When return is pressed, the Command
Window appears with the derived transfer function, displayed as:

THE REGULATOR OBTAINED :

0.07208 (s + 0.8601)

gj = --------------------

(s + 0.001002)
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3.20 Regrootl

The command

> regrootl,gi,gj (enter)

provides a design environment for regulators based on the root locus, both by open-
loop pole-zero-gain assignment or closed-loop pole assignment with the Diophantine
equation. In the above call string, gi(s) or gi(z) is the transfer function of the plant
(given) and gj(s) or gj(z) that of the regulator (to be determined).

3.20.1 Recall

There are, in the TFI environment, six applications for regulator and compensator
synthesis using the frequency domain approach, where the performance of the closed-
loop system is mainly measured in terms of gain and phase margin, resonance peak
and resonance frequency. They are lagc, leadc, pidc, pidd , pidnich, and regnich, all
providing high-speed interactive operation (four of them with the keyboard and two
with the mouse), hence particularly suited for trial-and-error design.

However, when the controlled system is unstable or nonminimum-phase, the
standard frequency domain design methods are no longer applicable, and a better
insight on the features of the feedback loop and possibility of intervention on its
dynamic performance is obtained by considering the closed-loop zero-pole map.

It is well known that design through zero-pole allocation is based on the root
locus rules, that enable relating the effect of adding and locating open-loop zeros
and poles (in the regulator) to the overall closed-loop system performance. Besides
addition of zeros and poles, program regrootl makes it possible to immediately draw
the root locus for every change in the zero-pole map, and to select on it the most
convenient value of the gain, to change the zero-pole map if it appears susceptible of
improvement, and to check the step and frequency responses. Thus, it is a powerful
tool for very fast on-line adjustment of the regulator parameters.

A further feature of regrootl is the optional use of the Diophantine equation for
complete closed-loop pole assignment. In this case, after a sufficient number of
closed-loop poles has been introduced with the mouse, the regulator is computed by
the program. Nevertheless, it may also be adjusted as before by modifying its zero-
pole map and/or gain if necessary. See the Recall section of application regdph for
information on the use of the Diophantine equation for closed-loop pole allocation.
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Figure 3.71. The initial layout with the poles and zeros of the plant.

3.20.2 Operation and Examples

Let us consider the plant transfer function

gi(s) =
40

s (s + 1) (s + 10)
. (3.31)

After the command “regrootl,gi,gj”, first a medium-size block diagram is shown to
inform about the connection referred to, and:

**** press return to continue

is displayed. When the return key is pressed, we obtain the screen layout shown in
Fig. 3.71, with the zero-pole map of transfer function (3.31) shown in black when
the background is white or in white when it is black. In the figure, the inscription
Regulator No. 1 appears in green. In fact, the program makes it possible to design
up to six different regulators, each with plots and messages in a different color,
according to the standard sequence green, red, cyan, yellow, magenta, and blue.
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The data K = 40, Kc = 1, and nz = 0, np = 0, appearing under the above
inscription, are the loop gain (referred to the zero-pole-gain form of the overall
transfer function), the regulator gain, and the number of zeros and poles of the
regulator. They are continuously updated in the course of the design procedure.

In the command bar at the top of the figure a Change axes menu is provided to
adjust the automatic axes selection, with the items: x left, x right, y up and down

(enlarge by 1 tick, enlarge by 2, reduce by 1 tick, reduce by 2), zoom in, zoom out,
and a Grids menu with Grid on/off, Constant damping loci (on/off). The axes in
Fig. 3.71 have been adjusted by using the x left option of the respective menu and
the constant damping loci have been inserted with the Grids facility.

At the top left of the figure a pushbutton menu shows the options for the design,
Add zeros, Remove zeros, Add poles, Remove poles, Regulator reset, Root locus,
Another regulator, Diophantine eq., Step response, and Bode diagrams. A further
pushbutton, Exit, is provided at the bottom left corner to quit the program. Since
the regulator is initially lacking in zeros and poles, in Fig. 3.71 the Remove zeros

and Remove poles options appear disabled.
The following message is displayed at the top of the figure:

You can introduce the regulator zero-pole map with the mouse.
You can assign the gain by selecting a point on the root locus. (a)

Let us briefly describe the pushbutton menu operation.

Add zeros. This choice enables selection with the mouse of a point in the figure
and produces replacement of message (a) with:

Select a location for a new real zero or a new complex zero pair.
You can repeat selection with the mouse. Press button 2 to accept. (b)

Selection with the mouse of a point above the real axis defines a complex zero pair,
while selection (slightly) below defines a real one. In both cases the selected zero
locations are shown in green (the color of Regulator No. 1) with standard symbols
in the figure, while their numerical value(s) are displayed, also in green, at the
left of the figure. Selection is performed and possibly modified by clicking button
1 and eventually confirmed by button 2. Introduction of more zeros is obtained
by repeating the whole procedure. A pushbutton Back, located at the bottom left
corner of the figure, makes it possible to null the Add zeros session.

Remove zeros. This choice enables removal of a real zero or a complex zero pair
by selection with the mouse and clicking button 1.
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Figure 3.72. The figure layout during the design of a lead compensator.

Add poles. Same as above for zeros, with message and symbols accordingly
modified.

Remove poles. Same as above for zeros.

Regulator reset. All the zeros and poles of the current regulator are deleted and
its gain is set equal to one, to start its design again from the beginning.

Root locus. This pushbutton enables the main and most sophisticated feature of
program regrootl . When clicked on, the menu is disabled and two new pushbuttons
appear on the screen, with the options Positive and Negative. The first enables the
root locus to be drawn for the current values of the zero-pole maps and gains of the
plant and regulator, while the second changes the sign of the regulator gain before
drawing and may be used in particular cases. Before the root locus plot is drawn, a
small window with a pop-up menu is available in the figure for selection of the step
size (the possible values are .01, .02, .05, .1, .2, .5, 1). This option is quite useful to
impose the speed of drawing, thus making it possible to glance at the appearance of
all the locus branches as the loop gain increases.
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Figure 3.73. The figure after pole and zero selection.

Figure 3.74. Selection of gain on the root locus.
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For instance, when the Diophantine equation is used for closed-loop pole assign-
ment, if the root locus passes very slowly through the dominant poles, we may
conclude that the regulator being designed is quite robust, at least versus gain
changes.

It is possible to null the Root locus session by clicking on the Back pushbutton
available in the figure: this is particularly useful to change the sign of the regulator
gain or when some adjustment of the zero-pole map is advisable.

The menu options considered so far are used in design by zero-pole-gain assign-
ment. Referring to the plant (3.31), let us briefly present an illustrative example,
concerning a lead regulator. Suppose we introduce a zero and a pole with values
−1.5 and −20 respectively. When the pole is being located and possibly adjusted
with the mouse, the screen appears as in Fig. 3.72. On exiting the pole assignment
session by clicking button 2, the standard layout with all the options enabled, shown
in Fig. 3.73, is obtained.

The next step is selection of the gain on the root locus, that is provided by
clicking on the corresponding menu option. The typical screen layout with a root
locus plotted is shown in Fig. 3.74, with the following message displayed at the top
of the figure:

Select a point on the root locus to define the regulator gain.
You can repeat selection with the mouse. Press button 2 to accept. (c)

Fig. 3.74 shows the screen layout during the choice of the gain, possibly repeated,
with button 1 of the mouse. The selected root locations are pointed out with small
circles on the locus, and the corresponding values of the natural frequency, damping
factor and settling time are displayed at the bottom left of the figure. Settling
time is defined as 3/σm, where σm is the minimum absolute value of the real parts
of the closed-loop poles or of their transforms according to s = (1/T ) ln z in the
discrete-time case. Clicking button 2 provides exiting the gain assignment session,
thus re-obtaining the screen layout in Fig. 3.73, with the displayed values of the
overall and regulator gain updated.

Let us now continue the description of the pushbutton menu.

Another regulator. This option enables another regulator complete synthesis
procedure from the beginning without entering regrootl again. The subsequent
regulators designed are distinguished by color, in order to easily compare their time
and frequency responses.
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Figure 3.75. The figure before a Diophantine equation design session.

Figure 3.76. Checking the root locus after a pole assignment session.



3.20. Regrootl 163

Diophantine eq. This option can be used both at the beginning or when some
regulator zeros and/or poles have already been introduced with the mouse. It enables
continuation of a design session by direct computation of the regulator with complete
closed-loop pole assignment.

Let us describe its operation with an example. Still referring to the plant (3.31),
we continue our design session, after the lead compensator has been derived, by
clicking on Another regulator. The choice Diophantine eq. produces the typical
screen layout shown in Fig. 3.75, with the message:

Add the closed-loop poles to assign with the Diophantine equation
The minimum number of poles to assign is 5 (to obtain causality) (d)

at the top of the figure, and with only the options Add poles and Regulator reset

enabled in the main menu. Of course, the minimum number of poles specified in the
message depends on the particular case in hand. Note that the option Diophantine eq.

has been replaced with Compute, initially disabled. This is enabled when some poles
have been introduced and produces the regulator computation. Causality is not
strictly required for computation. We introduce the poles −2±j2, −6, −14 and
−20, that are marked with small crosses in the current regulator color (red in this
case), while their number N is displayed as npa = N under the other messages in
the figure. Finally, we enable the computation by clicking on the corresponding
pushbutton. If the number of poles introduced is not sufficient for the Diophantine
equation to have a nontrivial solution, we obtain meanwhile the message:

SOLUTION IMPOSSIBLE: ADD OTHER POLES

in red, in the figure. It is deleted by clicking the mouse. When the regulator has
been computed with the Diophantine equation, its zeros and poles are displayed and
the option Add poles is disabled, while Root locus is enabled again, to check if the
locus passes through the assigned poles. If it is chosen, the screen appears as in
Fig. 79, with only the pushbutton Back enabled. This makes it possible to recover
the main menu with all the options available.

Step response. This option makes it possible to check the effectiveness of the
regulator(s) by means of the step response of the overall closed-loop system, both at
the output of the plant and regulator. The operation and features of this command
are the same as in application pidnich and are not repeated here. Its use in the case
of our example, after the second regulator has been derived with the Diophantine
equation, produces the step response plots (output of the plant) shown in Fig. 3.77.
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Figure 3.77. Checking the step response of the regulators obtained.

Bode diagrams. This option produces a figure with the Bode diagrams, open-loop
or closed-loop, of all the previously computed regulators. Since it is the same as in
application pidnich, it is not described here.

Exit. This pushbutton provides exit from regrootl . When clicked on, the message

PRESS RETURN TO EXIT

appears in orange at the bottom left of the screen. On pressing return, the Command
Window is recovered and the transfer function gj(s) or gj(z) displayed and saved in
the hard disk. If more than one regulator have been derived, the standard selection
by color is requested in interactive mode.

NOTE:

- The application regrootl also works in the discrete-time case. If the transfer function
of the plant is discrete-time, i.e., a gi(z) instead of a gi(s) is specified on entering,
the design environment is accordingly modified. For instance, the constant damping
grid is different.
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3.21 Robpar

The command

> robpar,gj (enter)

defines the parametric form gj p(s) of the transfer function gj(s). This parametric
form is permanently saved in the file gj p.mat .

> robpar,gi,gj_p,h,gw (enter)

performs a robustness analysis of the control loop with regulator gi(s) (possibly a real
constant), plant gj p(s) (in parametric form), feedback connection h(s) (possibly
a real constant). The analysis concerns the closed-loop pole locations versus the
parametric changes. The output gw(s) (optional) is the transfer function of the
worst-case plant.

3.21.1 Recall

Let us consider the feedback system shown in Fig. 3.78. The symbol p denotes
a finite set of parameters, each subject to vary at random in a given uncertainty
interval.

r

Gi(s) Gj,p(s, p)
y

H(s)

Figure 3.78. The parameter-dependent feedback system considered.

The transfer functions in parametric form considered in robpar are introduced by
referring to any previously defined “reference” transfer function and substituting the
numerical values of its coefficients with Matlab-interpretable expressions of a certain
number of parameters (up to seven), each characterized by a nominal value and the
extreme values of a uncertainty interval, and possibly repeated in the expressions.
Let us consider the following simple example. For instance the transfer function

Gj(s) =
40

s (s + 1) (s + 10)
(3.32)
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can be used as a reference to define the corresponding parametric transfer function
as

Gj,p(s, p) =
40 + 20 sinα

s (s + β) (s + γ)
, (3.33)

whose parameters have the nominal values and ranges of uncertainty specified as

α : nominal value π, range [0, 2π] , (3.34)

β : nominal value 1, range [0.1, 2] , (3.35)

γ : nominal value 10, range [8, 16] . (3.36)

Program robpar provides the following graphic information.

1. the closed-loop pole layout corresponding to the extreme values of each para-
meter in its own variation interval, in all the possible combinations, that are
2n for n parameters;

2. the closed-loop pole scattering due to random, independent changes of all the
parameters in their variation intervals;

3. the root contours of the closed-loop poles corresponding to the variation of a
single parameter in its interval and passing through a point of the previous
contour, selected with the mouse.

On exiting, some information on the worst-case plant is provided. The worst-
case plant is defined as the plant whose closed-loop dominant (least-damped) poles
have the minimum damping coefficient. The value δ̄ of this coefficient and the
corresponding values p̄ of the parameters are displayed. In the four-argument-call
case the worst-case transfer function Gw(s)=G(s, p̄) is also displayed and saved in
the hard disk.

NOTES:

- Although the worst case plant usually corresponds to extreme values of the pa-
rameters, this is not the rule, since the plant transfer function coefficients can be
arbitrary nonlinear functions of the parameters. This happens, in particular, in
transfer function (3.33), where the gain assumes the same value at the extremes of
the variation interval of α.

- Entering robpar with gi=1 provides the worst-case plant in feedback connection
without any compensator. This plant may be the first reference for trial-and-error
robust compensator design.
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3.21.2 Operation and Examples

One-argument call

Let us first consider the call with only one argument, with the aim at defining a
parametric transfer function. We refer to the transfer function defined in (3.33)
and (3.36), and assume that the reference transfer function gj(s) defined in (3.32)
has already been saved in the hard disk. Entering “robpar,gj” produces, in the
Command Window, the display:

40

gj = ------------------

s (s + 1) (s + 10)

do you want to define the parametric tf gj\so p ? (1/0) :

Entering 1 starts the following interactive section:

LIST OF ALL THE PARAMETERS :

parameter (return to end the list) : alpha

nominal value : pi

range of variation [min max] : [0 2*pi]

parameter (return to end the list) : beta

nominal value : 1

range of variation [min max] : [.1 2]

parameter (return to end the list) : gamma

nominal value : 10

range of variation [min max] : [8 16]

parameter (return to end the list) :

On pressing return to end the introduction of parameters, the interactive session
continues as follows:
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NUMERATOR :

gain = 40

parametric expression : 40+20*sin(alpha)

DENOMINATOR :

coefficient: 1

parametric expression : beta

coefficient: 10

parametric expression : gamma

At this point the parametric transfer function has been completely defined. It is
saved in file gj p.mat and displayed as:

NOMINAL NUMERIC FORM :

40

gj = ------------------

s (s + 1) (s + 10)

PARAMETRIC FORM :

40+20*sin(alpha)

gj_p = ------------------------

s (s + beta) (s + gamma)

alpha: nominal value 3.142, range [0, 6.283]

beta: nominal value 1 , range [0.1, 2]

gamma: nominal value 10 , range [8, 16]

The same display appears when the parametric transfer function is recalled from
TFI by entering:

> gj_p (enter)

If the parametric transfer function gj p has already been defined, entering “rob-
par,gj p” produces the above display, followed by the request:

1 - define a new parametric form of gj_p

2 - change the parametric expessions of the coefficients

3 - change the parameter ranges

input your choice (return to exit) :

that enables its change, both complete or partial, in interactive mode.
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Figure 3.79. The initial layout of the graphic window.

Three-argument or four-argument call

Let us now consider the call with three arguments (to get only graphic output)
or with four arguments (to get the worst-case transfer function of the plant also
displayed and saved).

Let

gi(s) =
10 (s + 1.413)

s + 14.13

be the transfer function of a regulator for the nominal plant (3.32). Our aim is
to check whether this regulator behaves satisfactorily also in the presence of any
parameter variation in its uncertainty interval.

Entering “robpar,gi,gj p,1,gw” produces a medium-size block diagram to be
shown for information about the connection referred to, and the display of:

**** press return to continue

On pressing the return key, the nominal numeric form and the parametric form of
gj p(s) are shown in the Command Window, followed by:

**** press any key continue
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Figure 3.80. The “pole scattering” session.

On pressing a key, the screen layout in Fig. 3.79, showing the pole locations
corresponding to the nominal (in green) and the extreme (in red) values of the
parameters, is obtained, while in the small rectangular frames the nominal and
worst-case step responses, both at the output of the plant and of the regulator, are
shown in the same colors. The corresponding values of the damping coefficient and
settling time are displayed on the left, while the worst-case constant damping loci
(two half-lines through the origin) are also shown in orange.

In the command bar at the top of the figure a Change axes menu is provided to
adjust the automatic selection, with the items: x left, x right, y up and down (enlarge
by 1 tick, enlarge by 2, reduce by 1 tick, reduce by 2), zoom in, zoom out, and a
Grids menu with Grid on/off, Constant damping loci on/off.

The pushbutton menu on the left of the figure enables two different refinements
of the search for the worst-case parameter configuration, Pole scattering and Root

contours. The End pushbutton, that provides exit from the program, is also visible
at the bottom left corner of the figure. Let us briefly describe these options.
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Figure 3.81. The beginning of the “root contours” session.

Pole scattering. With this option, the pole scattering due to 100 random para-
meter variations, where every parameter varies at random in its uncertainty interval,
is computed and shown. The minimum damping coefficient case is selected and the
corresponding values of the damping coefficient and settling time are displayed on
the left of the figure. The correponding half-lines through the origin and the step
responses are accordingly modified. A new pushbutton menu is visible, with the
choices Continue, that provides addition of 100 more random coefficient variations,
and Back, that enables exit to the previous menu. Fig. 3.80 shows the screen layout
in the case of the example on hand, after 1,200 random parameter variations. Note
that the damping coefficient is reduced with respect to that shown in Fig. 3.79, since
the worst case does not correspond to extreme parameter values in this case.

Root contours. This option provides the screen layout of Fig. 3.81 with a push-
button menu with all the parameter names (alpha, beta and gamma in this case) and
Back. The message:

Choose a parameter or ”Back” to exit (a)
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Figure 3.82. Continuing the “root contours” session.

is displayed at the top of the figure, while the nominal values of the parameters
are displayed on the left. They are each distinguished with a color of the standard
sequence: green, red, cyan, yellow, magenta, blue, and black when the background
is white or white when it is black. Suppose we click on alpha: the root contour
corresponding to 100 equally-spaced variations of the selected parameter in its
uncertainty range is drawn in the figure, the pushbutton menu is shown again with
alpha disabled, and the message:

Choose another parameter or ”Back” to exit (b)

shown in place of (a). The worst-case step responses, the displayed values of the
damping coefficient and settling time, and the corresponding constant damping loci
are modified if the value of δ̄ is less than the previous one. When another parameter,
for instance gamma, is selected, message (b) is replaced with:

Select a point on the green plot (button 2 to recover the previous menu) (c)

Selection of a point on the green plot defines a new value of the parameter alpha,
immediately visible on the left of the figure.
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Then, the root contour of gamma, passing through this point, is drawn in cyan.
It is possible to repeat the selection, thus defining new values of alpha and adding
new root contours. When button 2 is clicked, the previous menu is recovered, but
with pushbutton gamma disabled and the previous contours cancelled, except for
the last one, and with message (b) shown again. At this point the screen appears as
shown in Fig. 3.82. Selection of a new parameter produces a new value of gamma
to be defined and a new contour to be drawn, relative to the selected parameter
and in the corresponding color. This procedure can be repeated. Selection of Exit

provides recovering of the original layout of Fig. 3.79, but with the worst-case step
responses, the displayed values of the damping coefficient and settling time, and the
constant damping loci through the origin modified if a smaller value of δ̄ has been
found during the root contours session.

End. This pushbutton provides exit from robpar . When clicked on, the message:

PRESS RETURN TO EXIT

appears in orange at the bottom left corner of the screen. On pressing return, the
Command Window is recovered with the display:

THE LEAST-DAMPED CASE :

(delta = 0.2843)

alpha = 1.587

beta = 0.1

gamma = 8

and in the four-argument call case the worst-case plant transfer function is also
displayed as:

60

gw = -------------------

s (s + 0.1) (s + 8)

and saved in the hard disk.
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3.22 Rootl

The command

> rootl,gj (enter)

plots the root locus of 1+K gi(s)=0 or 1+K gi(z)=0 for K∈ [0,∞].

3.22.1 Recall

Refer first to the continuous-time system gi(s) = P (s)/Q(s). Let m and n be the
degrees of P (s) and Q(s) respectively and assume m≤n. The roots of the polynomial
equation Q(s) + K P (s) = 0 as long as K varies from 0 to ∞ describe a set of n
lines, called the branches of the root locus. Every branch starts from a pole pi [a
root of Q(s)] and ends into a zero zi [a root of P (s)] or goes to infinity, so that
the root locus has n−m branches going to infinity; their tangents at infinity, called
asymptotes, all come from a single point of the real axis having abscissa

σa =
1

n−m

( n
∑

i=1

pi −
m
∑

i=1

zi

)

,

and, if gi(0+)>0 and the number of zeros and poles with strictly positive real parts
is even, form with the real axis the angles

ϑa,ν =
(2 ν + 1)π

n−m
(ν = 0, 1, . . . , n−m−1) ,

while, if gi(0+) > 0 and the number of zeros and poles with strictly positive real
parts is odd, the angles are

ϑa,ν =
2 ν π

n−m
(ν = 0, 1, . . . , n−m−1) .

These two sets of angles commute each other in case of positive feedback, i.e., if
gi(0+)<0.

Note that the asymptotes divide the complex plane into equal sectors.
Program rootl applies also when n < m. This may happen when K denotes a

parameter different from the loop gain. In this case the locus of 1/gi(s) versus 1/K
is automatically considered, so the plot appears to be drawn counterwise.
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A branching point is a point of the locus corresponding to a multiple root of the
above equation, characterized by ingoing branches (in number equal to multiplicity)
and an equal number of interposed outgoing branches. The branching points are
obtained by solving the polynomial equation

P (s)Q′(s)−Q(s)P ′(s) = 0 ,

where P ′(s) and Q′(s) denote the derivatives of P (s) and Q(s) respectively. The
corresponding values of K (both negative and positive) are obtained by substitution
in the root locus equation.

The root locus of a discrete-time system gi(z)=P (z)/Q(z) is likewise defined, and
the rules for plotting and properties are the same. Nevertheless it has a different
shape, due to the presence of a greater number of zeros, which causes a greater
number of branches to remain in a finite zone of the complex plane.

Constant damping loci . It is convenient to plot constant damping lines with the
root locus. Let us recall that the damping factor of a pair of complex conjugate
poles σ±jω is

δ :=
−σ√

σ2+ω2
= sinβ ,

where β denotes the angle between the imaginary axis and the segment from the
origin to σ+jω, positive counterclockwise. In the continuous-time case the constant
damping locus corresponding to a given value of δ is the pair of rays from the origin
defined by

s = −|ω| tanβ ± jω = −|ω| δ√
1− δ2

± jω , −∞ < ω <∞ ,

while in the discrete-time case it is obtained by transforming the previous one
in the correspondence z = eTs and with ω restricted to the primary strip, i.e.,
−Ω/2 ≤ ω ≤ Ω/2, where Ω denotes the sampling angular frequency. We obtain
the pair of arcs of logarithmic spiral defined by

z = eTs = e(−|ω| tanβ+jω)T = e−
2π|ω|

Ω
tanβ ej 2πω

Ω , −Ω/2 ≤ ω ≤ Ω/2 ,

or
z = e−|ϕ| tanβ ejϕ , −π ≤ ϕ ≤ π .
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3.22.2 Operation

On entering the command “rootl,gi”, first a block diagram is shown to clarify the
meaning of symbols and, when the return key is pressed, the following is displayed
in the Command Window:

ROOT LOCUS :

x open loop poles (that are closed-loop poles for K=0)

o open loop zeros (that are closed-loop poles for K=Inf)

+ closed loop poles for K=1

the locus is drawn by steps for increasing values of K

or for decreasing values of K if the system is not causal

choose color of plot: k=black, g=green,

b=blue, r=red, y=yellow, m=magenta, c=cyan, default is green :

and when an admissible color has been selected, the current graphic window is
cleared, shown at full size, and, after some delay for computations, the root locus
diagram is shown while being plotted, thus giving insight on its behavior versus K.
If the transfer function introduced is non-causal, the following message appears:

**** warning: gi is non-causal

the root locus will be drawn in the reverse direction

When the locus has been drawn in the current graphic window, on pressing the
return key the main menu appears in the Command Window as:

MENU :

1 - change the reference axes and plot the last function again

2 - grid on

3 - information on branching points and asymptotes

4 - plot another function in different color

5 - recover the figure

6 - information on a point of the locus with mouse

7 - grid with constant damping loci (on/off)

8 - show asymptotes in the plot

9 - display the pole layout for a particular value of K

10 - change the step size and plot the last function again

enter your choice (press return to exit) :
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We now provide a brief description of the items of the above menu.

Change the reference axes and plot the last function again. This option allows
selection of ranges and number of divisions for both axes. The default value for range
is the previous one while the number of divisions, if not specified, is automatically
determined. A typical interactive selection of new reference axes in the continuous-
time case is the following:

the x-axis interval is [-5 4];

press return to maintain or enter new values: [xm xM] = [-2 2]

number of divisions for x-axis: 9;

press return to plot again with the previous scale

or type a new value: ndx =

the y-axis interval is [-3 3];

press return to maintain or enter new values: [ym yM] = [-1.5 1.5]

number of divisions for y-axis: 6;

press return to plot again with automatic scaling

or type a new value: ndy =

When the new reference axes have been defined, the figure is drawn again with
the root locus of the last function.

Grid on. Draws the figure again with a grid referred to the axes divisions. In
subsequent menus option 2 appears as:

2 - grid off

and allows recovering of figure without grid. The two types of option 2 toggle.

Information on branching points and asymptotes. This option provides infor-
mation on the most important parameters characterizing the root locus, which are
displayed as:

BRANCHING POINTS :

value: -0.4869 +0*j ; gain: 0.05942

ASYMPTOTES :

center: -3.667; angles: 60

180

300

**** press any key to continue

and, when any key is pressed, the main menu is shown again.
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Figure 3.83. A root locus with graduation and asymptotes added.

Plot another function in different color. This option makes it possible to plot
several graphs, referring to different transfer functions, in the same figure in different
colors. The corresponding interactive request is:

enter transfer function : g2

choose color of plot: k=black, g=green,

b=blue, r=red, y=yellow, m=magenta, c=cyan, default is green : r

Continuous and discrete-time root loci cannot be plotted in the same figure, since
the corresponding complex planes are different. This is avoided by a check in the
program that produces the message:

**** error: continuous & discrete time in the same plot

pressing the return key after this message recovers the main menu.

Recover the figure. This option produces recovering of the current figure from
the Command Window by using the keyboard instead of the mouse.
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Figure 3.84. Root loci with constant damping loci added.

Information on a point of the locus with mouse. This option first produces in
the Command Window the following request:

**** press return to enable selection

When the return key is pressed, the current figure is accessed from the Command
Window and the mouse is activated for selection of a particular point of the graph.
If more than one loci have been drawn, the figure appears as shown in Fig. 3.85,
with the message:

Choose a color or MENU to exit (a)

in the top left corner, and a push-button menu that allows selection of a particular
plot by color or exiting the information-with-mouse session (thus recovering the
Command Window with the main menu), while, if only a root locus is present in
the figure, the message (a) is replaced by:

Choose the color or MENU to exit (b)
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Figure 3.85. Root loci during the “information with mouse” session.

In the particular case in Fig. 3.85 there are two root loci, one green and the other
red. When a color, for instance red, is selected with the mouse on the push-button
menu, message (a) is replaced by:

Select a point with mouse (button 1) on the red plot (button 2 to change plot or exit)

(c)

and, after selection has been performed, a small arrow is drawn on the corresponding
plot in the same color in the direction of increasing gain to point out location of the
point selected, as shown in Fig. 89. Furthermore, information on the coordinates
of the selected point, the corresponding value of gain, and natural frequency and
damping factor appears in the top right corner of the figure, while the message:

Click again button 1 to delete the displayed data (d)

is shown in the top left corner. When button 1 is clicked, message (c) is displayed:
thus, selection of a point on the red plot with button 1 or return to the push-button
menu with button 2 are enabled again.
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Figure 3.86. Root loci during the “information with mouse” session.

When MENU is selected to exit, the message:

PRESS RETURN TO RECOVER THE MAIN MENU

is displayed in the bottom left corner. Pressing the return key causes return to the
Command Window with the request

maintain the arrows ? (1) :

that is useful when the figure has to be printed, since arrows provide information on
the root locus behavior, thus completing the figure. Then, the main menu is shown
again.

Grid with constant damping loci (on/off). When this option is selected, the
root locus is shown again with some constant damping factor lines. These turn out
to be very useful to approximately evaluate (referring only to the dominant poles)
how the value of K affects the maximum overshoot in the step response and the
resonance peak in the frequency response of the closed loop system. The values
of the damping factor range from 0 to 0.9 with step 0.1, both for continuous and
discrete-time systems. Some constant natural frequency loci are also plotted.
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Show asymptotes in the plot. With this option the locus is shown again with the
asymptotes added in the same color. If more than one loci are plotted in the same
figure, selection by color is requested with

select function by entering color :

Display the pole layout for a particular value of K. If more than one loci are
present, this option first produces the above request of selection by color, then:

type a K for closed loop poles (return to skip) : 5

When a value for K is entered, the following display appears:

POLES ABS. VALUE DELTA

-11.62 +11.62 +1

+0.3103 +4.137*j +4.149 -0.07479

+0.3103 -4.137*j +4.149 -0.07479

the poles locations will be pointed out with ticks

do you also want the value of K to be shown ? (1) :

If the return key is pressed, the figure is drawn again with the poles locations
shown with ticks on the selected locus, while if 1 is entered, the value of K is also
displayed as shown in Fig. 3.83. In the latter case the font size is also interactively
requested. On going back to the Command Window by the return key, the request
for a value of K, referring to the particular plot already selected by color, is repeated,
and pressing the return key again without any new value typed causes the main menu
to be recovered.

Change the step size and plot again the last function. Selection of the step size is
automatically performed in the program for the best compromise between accuracy
and computational time. However, in some cases the shape of the plot may be
irregular. In these cases by using this option the last locus in the figure can be
drawn again with smaller step size. A smaller step size can also be used to obtain
slow drawing, thus achieving insight on the proceeding of the locus as K increases.
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It produces the following interactive request:

the actual step size is: 1

press return to replot with the same step

or enter a new value : .4

and the last locus is plotted again in the already selected color more slowly and with
a more regular shape.

3.22.3 Examples

Fig. 3.83 shows the root locus of the transfer function

gi(s) =
40

s (s + 1) (s + 10)
,

with the asymptotes added (option 8 of the main menu) and with some points
graduated versus K (option 9). The imaginary axis, that represents the boundary
of stability domain, is also shown with a dotted line, that is plotted when the locus
is complete. Suppose that system gi(s) is cascaded with the lead compensator

gc(s) =
10 (s + 1.413)

s + 14.13
,

and denote by gh(s) := gc(s) gi(s) the overall transfer function. In Fig. 3.84 the
root loci of gi(s) and gh(s) are plotted together (option 4) with constant damping
loci (option 7) and the action of the compensator on the dominant pole locations
is clarified. Fig. 3.85 has been obtained from Fig. 3.84 by deleting the constant
damping loci (option 7) and enabling selection of points by mouse (option 6), while
Fig. 3.86 shows the screen layout during selection.

As an example for the discrete-time case, we consider the transfer function

gj(z) =
0.03279 (z + 0.1442) (z + 2.342)

(z − 0.1352) (z − 0.8187) (z − 1)
,

obtained from gi(s) by conversion from continuous to discrete according to the zero-
hold equivalence and sampling time T = 0.2 sec. Fig. 3.87 shows the corresponding
root locus. The unit circle is shown instead of the imaginary axis when the plot
(that is also drawn by steps) is complete. Fig. 3.88 shows again the root locus of
gj(s) with different axes (option 1) and the constant damping factor lines added
(option 7).
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Figure 3.87. A root locus in the discrete-time case.

Figure 3.88. A discrete-time root locus with constant damping loci added.
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3.23 Routh

The command

> routh,gi (enter)

computes and displays the stability intervals of system gi(s) or gi(z) in unit feedback
connection in terms of the loop gain K.

3.23.1 Recall

Let us consider a linear dynamic system with the characteristic equation

an sn + an−1 sn−1 + . . . + a0 = 0 . (3.37)

It is well known that in order that the system be strictly stable the real parts of
all the roots of the above equation must be strictly negative. The Routh criterion
gives information about stability through a straightforward test on the coefficients
of the characteristic equation, thus bypassing its complete solution. Although this
use may be considered out-of-date by now, due to availability and wide circulation of
computational routines that provide easy and fast solution of polynomial equations,
the Routh criterion is still adopted in control theory to determine the stability
intervals as functions of parameters on which the coefficients of the characteristic
equation depend.

For the sake of simplicity we shall first consider the case where the coefficients
are constant. Furthermore we shall assume that an is positive and a0 is nonzero
without any influence on generality, since the member on the left of (3.37) may
be multiplied by −1 without affecting the roots and divided by a power of s, thus
directly eliminating one or more roots equal to zero.

Let us build the Routh table:

n

n−1

n−2

. . .

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

an an−2 an−4 . . .
↓ ր ↓ ր ↓

an−1 an−3 an−5 . . .

γn−2 γn−4 . . .

. . . . . .

The first two rows of the table report the polynomial coefficients arranged as
shown, beginning from the highest power.
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The elements of the third row are defined by

γn−2 =
an−1 an−2 − an an−3

an−1
, γn−4 =

an−1 an−4 − an an−5

an−1
, . . . , (3.38)

while those of the subsequent rows are likewise defined as functions of the two pre-
ceding rows. The rows of the table are non-increasing in length from top downwards
and are marked on the left with the numbers n, n−1, . . . : the last row, marked
with 0, contains a single element.

The Routh criterion is stated in the following terms: to every sign change of the
elements in the first column of the table corresponds a root with positive real part,
while to every sign permanency corresponds a root with negative real part.

It is not strictly necessary to perform the divisions shown in (3.38) while building
a new row, provided the signs of all the elements of the row are changed if the first
element of the upper row is negative. When one or more elements at the beginning
of a row are zero or a row is completely zero it is not possible to continue the table
according to the above rule. However, it is possible to derive complete information
on the signs of the real parts of all the roots by the following methods.

1. When the first h elements of a row are zero, sum to it the same row shifted by
h positions on the left and multiplied by −1h, then continue the table.

2. When a row is completely zero, it is always marked on the left with an odd
number, for instance 2m + 1. In this case, build the auxiliary equation

γ2m s2m + γ2m−2 s2m−2 + . . . + γ0 = 0 ,

whose roots are those of the original equation not yet considered in the Routh
table, derive the polynomial on the left of the auxiliary equation with respect
to s, insert the coefficients of the obtained polynomial in place of the zero
row considered, and continue the table. However, after these operations the
interpretation of the Routh array is different: to every sign change in the first
column of the table corresponds a root with positive real part and to every
sign permanency corresponds a root with negative or zero real part. Since the
auxiliary equation is lacking in odd powers of s (so that its roots are symmetric
with respect to the origin by pairs), information on the sign of the real parts
of all the roots of the original equation is still complete.
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The above holds for polynomials whose coefficient values are all known real
numbers. However, using the Routh criterion to know only whether a completely
given system is stable or not is rather obsolete since there are a lot of computer
programs that efficiently calculate all the roots of high-order polynomials in the
complex field. For instance, in the Matlab environment the command roots(p)
displays the roots of the polynomial whose coefficients, real or complex, are given in
vector p, while in the TFI environment gi = produces display of transfer function
gi(s) or gi(z) in a factorized form where the real and imaginary parts of all zeros
and poles explicitly appear. On the other hand, the program routh computes the
stability intervals of a polynomial whose coefficients linearly depend on a parameter
K. Consider the polynomial equation 1+K gi(s)=0, that can be written in expanded
form as

an sn + an−1 sn−1 + . . . + a0 + K (bm sm + bm−1 sm−1 + . . . + b0) = 0 , (3.39)

where the first and the second polynomial on the left are the denominator and the
numerator of gi(s), respectively. Clearly a certain number of the coefficients of the
polynomial equation are linear functions of K of the type αK+β. The computation
of the stability intervals in K is performed as follows:

1. the complete Routh table is obtained by using (3.38) without dividing by an−1

on the right, thus obtaining an array of polynomials in K;

2. the roots of all the polynomials in the first column of the table are determined,
and all the real ones are ordered by increasing values;

3. the bounds of every stability interval belong to this set since the sign of a
polynomial in the first column is changing; hence, computing the roots in
(3.39) for an intermediate value of K of the sequence determined at step 2
reveals whether the corresponding interval is stable or not;

4. contiguous stability intervals are grouped together, and form the stability
intervals displayed.

The values of m and n in (3.39) are not restricted by the causality assumption
(m≤n). When the system under consideration is discrete-time, the transfer function
gi(z) is converted to its w-plane equivalent before applying the Routh criterion (see
the Recall section of application wplane).
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3.23.2 Operation and Examples

Let us consider the transfer function

gi(s) =
40

s (s + 1) (s + 10)
.

Entering “routh,gi” first produces a medium-size figure with the block diagram
of the closed loop system considered, and in the Command Window the display:

**** press return to continue

Upon pressing the return key, the stability interval in K appears as follows:

characteristic equation: 1 + K gi(s) = 0 ;

stable for K in the range: 0 to 2.75

As an example for the discrete-time case, let us refer to

gj(z) =
0.3279 (z + 0.1442) (z + 2.342)

(z − 0.1353) (z − 0.8187) (z − 1)
.

The stability interval in K is displayed as:

characteristic equation: 1 + K gj(z) = 0 ;

stable for K in the range: 0 to 1.34

When the stability intervals are more than one, they are all listed in the display.
For instance, for the transfer function

gw(s) =
40 (s + 40) (s + 50)

s (s + 1) (s + 10)

we obtain the following result:

characteristic equation: 1 + K gw(s) = 0 ;

stable for K in the range: 0 to 0.002778

stable for K in the range: 0.275 to infinity
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3.24 Samptime

The command

> samptime[,T] (enter)

defines or changes the current value of the sampling time used in conversions from
continuous to discrete time and in the w-plane equivalences.

> samptime,gi (enter)

displays the sampling time of the discrete-time transfer function gi(z).

3.24.1 Recall

Let us recall that the TFI environment always has a current sampling time, that
must be defined when it is entered from Matlab the first time and permanently saved
in file time#.mat , located in the TFI work directory.

The sampling time is used in applications convert and wplane. It is also stored
with any discrete-time transfer function when it is saved in the hard disk. When a
transfer function with a sampling time different from that of the TFI environment is
called in an application, a warning message is displayed. If, for instance, the current
sampling time is 0.2 sec and the transfer function gi(z) was saved under a sampling
time of 0.1 sec, the message:

**** warning: the sampling time of gi(z) is 0.1 sec

**** press any key to continue

appears in the Command Window. Nevertheless, gi(z) can be used in the current en-
vironment. In applications fresp and tresp (with continuous time axis) the frequency
and step responses of discrete-time transfer functions with different sampling times
can be consistently plotted together. To convert a discrete-time transfer function
gi(z) having a different sampling time to the current sampling time it is sufficient
to enter:

> gi=gi (enter)
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3.24.2 Operation

If samptime is called without any argument, we obtain the following display:

the current sampling time is 0.2 sec

enter a new value (default is "no change") : .1

the current sampling time is 0.1 sec

while, if a numeric argument is specified, for instance as:

> samptime,.1 (enter)

the display appears as follows:

the current sampling time is 0.1 sec

The application samptime can also be used to display the sampling time of a
discrete-time transfer function. In fact, entering:

> samptime,gi (enter)

produces:

the sampling time of gi(z) is 0.1 sec

while, if the transfer function is continuous-time, the message:

transfer function gi(s) is continuous-time

is obtained.



3.25. Select 191

3.25 Select

The command

> select,gi,gj (enter)

builds a new transfer function gj(s) or gj(z) by interactive selection of factors from
gi(s) or gi(z).

3.25.1 Recall

Let us consider the transfer function in factorized form

gi(s) =
400 (s + 1.453)

s (s + 1)2(s + 10) (s + 14.53)
.

Program select makes it possible to select any factor from the numerator and
denominator of gi(s) and to set arbitrarily the dc gain. The result is saved as the
new transfer function gj(s). The selection is interactively performed by entering
the numbers, in progressive order, of the factors to be included in the output. If a
factor is raised to a power, it is counted as many times as the power is. It is possible
to maintain the dc gain of the original transfer function, to maintain that of the
selection made or to interactively specify a new dc gain for the selection. The dc
gain is herein defined as the value of the transfer function g(s) for s=0 (leaving out
of consideration the possible poles at s=0) or the value of the transfer function g(z)
for z=1 (leaving out of consideration the possible poles at z=1).

Usefulness of select is related to computations where it is necessary to have perfect
cancellation of factors, like in some analytical design methods. For instance, selection
of factors 2 from numerator and 1,4 from denominator of the above gi(s), while
preserving the dc gain of selection, results in

gj(s) =
(s + 1.453)

s (s + 10)
.

Since the coefficients are generally rounded while displayed, in the quotient
gi(s)/gj(s) the selected factors certainly cancel, since they are equal to all the stored
digits. On the contrary, if a transfer function having some factor apparently equal
to those of gi(s) is entered with the keyboard, cancellation may not occur.
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3.25.2 Operation and Examples

In the above case, entering “select gi,gj” produces:

400 (s + 1.453)

gi = --------------------------------

s (s + 1)^2 (s + 10) (s + 14.53)

numerator:

select factors 1,2,..; * for all; return to skip : 2

denominator:

select factors 1,2,..; * for all; return to skip : 1,4

the dc gain of the original transfer function (gi) is: 4

the dc gain of the selected transfer function (gj) is: 0.1453

1 - maintain the dc gain of the original transfer function

2 - maintain the dc gain of the selected transfer function

3 - specify a new dc gain

your choice : 2

1 (s + 1.453)

gj = -------------

s (s + 10)

Let us check out cancellation of factors. Entering:

> gi/gj (enter)

produces:

ans=gi/gj

.........

____________________

....................

400

ans = ---------------------

(s + 1)^2 (s + 14.53)
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Let gk(s) be a transfer function entered with the keyboard, by typing:

> gk=(s+1.453)/(s*(s+10)) (enter)

gk=(s+1.453)/(s*(s+10))

.......................

____________________

....................

1 (s + 1.453)

gk = -------------

s (s + 10)

We can check that in this case cancellation is not obtained, since the coefficient
1.453 is not the real stored value, but its rounding. In fact, introduction of:

> gi/gk (enter)

yields:

ans=gi/gk

.........

____________________

....................

400 (s + 1.453)

ans = ---------------------------------

(s + 1)^2 (s + 1.453) (s + 14.53)

Program select can also be profitably used to set the dc gain of a transfer function
gi(s) or gi(z) to any desired value. To obtain this result, simply type

> select,gi,gi (enter)

then, select all the factors of the numerator and denominator by entering * , and use
option 3 for the gain.
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3.26 Startint

The command

> startint (enter)

makes it possible to change some TFI environment settings.

3.26.1 Recall

The TFI environment settings accessible through startint are:

1 - the work directory in the TFI environment;
2 - possible reduction of the matlabpath in the TFI environment;
3 - selection of black or white background in figures;
4 - selection of permanent storing of figure locations;
5 - activation of legend in figures.

Change of settings may be advisable for the following reasons.

1 - The work directory of TFI is the directory where all the transfer function files
are saved. In the first run of TFI it is assumed by default to be the same as the
Matlab work directory, but it can easily be changed to avoid unnecessary mixing of
different environments. Of course, the new directory must exist (if not, a message is
displayed and the work directory is not changed). For instance, it is possible to use
c:\matlab\work for Matlab (specified as a property of the Matlab icon in Windows)
and c:\matlab\workint for TFI. The Matlab work directory is restored when TFI is
quitted.

2 - At present it is not necessary to reduce the matlabpath when entering the TFI
environment. This option may be used if future toolboxes contain some files with the
same names as those of the intp directory. In this case path reduction and location
of intp after other directories in the matlabpath eliminate conflict. The names of the
toolboxes strictly necessary in the TFI environment, specified in the file startint.m,
are the standard ones plus intp, i.e., for the Matlab 4 version, \local, \general, \ops,
\lang, \elmat, \elfun, \specfun, \matfun, \datafun, \polyfun, \sparfun, \plotxy,
\plotxyz, \graphics, \strfun, \intp, and, for the Matlab 5 version, \general, \ops,
\lang, \elmat, \elfun, \specfun, \matfun, \datafun, \polyfun, \sparfun, \graph2d,
\graph3d, \specgraph, \graphics, \uitools, \strfun, \iofun, \timefun, \datatypes,
\local, \intp. These names can be changed if necessary by editing startint.m.

3 - The background color of the figures can be set to black, whose advantages
are less radiation and very clean colors in ink-jet prints, or to white, that is more
similar to other Windows applications, like Word.
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4 - When a high-resolution monitor is used, the figures are often located with the
mouse to achieve overall view while running applications that open many figures.
The figure locations can be permanently stored for subsequent TFI sessions by using
this option, thus avoiding repetition of adjustment with mouse.

5 - The utility legend available in Matlab specifies, in the figures, the names of the
transfer functions referring to the colors of the corresponding plots. It generates a
small window that can be moved by the mouse to the most convenient location. Since
the current version of legend is quite time-consuming, particularly in the Matlab 4
version, its use is left as an option that can be switched on/off with startint.

The above settings are permanently saved in the file set tfi#.mat or set tfi5.mat,
located in the work directories of both Matlab and TFI.

3.26.2 Operation

Let us reproduce here, as a typical use of startint , the interactive session that
specifies the work directory of TFI, that should be done when TFI is called the
first time after installation. Entering

> startint (enter)

produces the following display:

TFI was called from and will exit to C:\MATLAB\WORK

at present the TFI work directory is C:\MATLAB\WORK

to change the TFI directory enter its path

(default no change) : C:\MATLAB\WORKINT

you can reduce the matlabpath to avoid possible conflict of names

with new toolboxes; the matlabpath IS NOT REDUCED

do you want to reduce the matlabpath ? (1/0, default "no change") :

the figure background IS BLACK

black or white figure background ? (1/0, default "no change") : 0

the figure locations ARE NOT STORED for next TFI sessions

do you want to store them ? (1/0, default "no change") :

legend in figures IS NOT ACTIVATED (legend is quite time-consuming)

do you want legend in figures ? (1/0, default "no change") :

When some TFI settings have been changed with startint , it is advisable to exit
and enter TFI again, to be sure that the new settings are stored in both the Matlab
and TFI work directories.
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3.27 Tfeval

The command

> tfeval,gi (enter)

computes and displays the value assumed by the transfer function gi(s) or gi(z) for
any interactively given value of s or z.

3.27.1 Operation

Let us consider the transfer functions

gi(s) =
40

s (s + 1) (s + 10)
,

gj(z) =
0.3279 (z + 0.1442) (z + 2.342)

(z − 0.1353) (z − 0.8187) (z − 1)
.

Entering “tfeval,gi” produces interactive request of the value of the variable s
(any complex number) and display of the corresponding value of gi(s) as follows:

enter a value for s (return to exit) : 4

value of gi(4) : 0.1429

abs.value: 0.1429; angle: 0 degrees (0 radians)

enter a value for s (return to exit) : 2*j

value of gi(2i) : -0.8462-0.2308i

abs.value: 0.8771; angle: -164.7 degrees (-2.875 radians)

enter a value for s (return to exit) :
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Likewise, in the discrete-time case, “tfeval,gj” produces:

enter a value for z (return to exit) : 4

value of gj(4) : 0.02337

abs.value: 0.02337; angle: 0 degrees (0 radians)

enter a value for z (return to exit) : 2*j

value of gj(2i) : -0.02006+0.005877i

abs.value: 0.0209; angle: 163.7 degrees (2.857 radians)

enter a value for z (return to exit) :

TFI provides a quicker access to the application tfeval by simply entering the value
of the argument in round brackets after the transfer function name. In this case the
display in the Command Window appears as follows:

> gi(4) (enter)

value of gi(4) : 0.1429

abs.value: 0.1429; angle: 0 degrees (0 radians)

> gi(2*j) (enter)

value of gi(2i) : -0.8462-0.2308i

abs.value: 0.8771; angle: -164.7 degrees (-2.875 radians)

> gj(4) (enter)

value of gj(4) : 0.02337

abs.value: 0.02337; angle: 0 degrees (0 radians)

> gj(2*j) (enter)

value of gj(2i) : -0.02006+0.005877i

abs.value: 0.0209; angle: 163.7 degrees (2.857 radians)
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3.28 Tresp

The command

> tresp,gi (enter)

plots the step or impulse response of the system with transfer function gi(s) or gi(z),
with choice between open loop or unit feedback.

3.28.1 Recall

The impulse response is obtained by computing the inverse L-transform of gi(s)
[gi(s)/(1+gi(s)) in the closed loop case] or the inverse Z-transform of gi(z) [gi(z)/(1+
gi(z)) in the closed loop case]. See the Recall section of application invtr for details.
The step response is obtained by computing the inverse transform to the above
transfer functions multiplied by 1/s in the continuous-time case or z/(1−z) in the
discrete-time case. Plots are obtained with linear interpolation of 600 samples in
the continuous-time case and with stairstep graph of a maximum of 400 samples in
the discrete-time case. The first plot is drawn with automatic scaling.

3.28.2 Operation

The input menu that appears in the Command Window after “tresp,gi” is:

1 - step response, open-loop

2 - step response, closed-loop

3 - impulse response, open-loop

4 - impulse response, closed-loop

enter your choice (default is 1) :

After the choice is performed, you must select the color of the plot according to
the following request:

choose color of plot: k=black, g=green,

b=blue, r=red, y=yellow, m=magenta, c=cyan, default is green :

After an admissible color has been selected, the current graphic window is cleared,
shown at full-screen size, and, after some delay for computations, the selected type
of step reponse diagram is shown.

To go back to the Command Window and see the main menu, press return.
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Figure 3.89. Two step responses in the continuous-time case.

Fig. 3.89 shows a typical screen layout in the continuous-time case. The main
menu for continuous-time or mixed continuous and discrete-time systems is:

MENU :

1 - change the reference axes and plot again

2 - grid on

3 - information (on step response only)

4 - plot another function in different color

5 - recover the figure

6 - information on plot(s) with mouse

enter your choice (return to exit) :
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Figure 3.90. Two step responses in the discrete-time case.

Fig. 3.90 shows a typical screen layout in the discrete-time case. The main menu
for discrete-time systems is:

MENU :

1 - change the reference axes and plot again

2 - grid on

3 - information (on step response only)

4 - plot another function in different color

5 - recover the figure

6 - information on plot(s) with mouse

7 - change from discrete to continuous time or vice versa

enter your choice (return to exit) :

We now provide a brief description of the items of the above menus.
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Change the reference axes and plot again. This option allows selection of ranges
and number of divisions for both axes. The default value for range is the previous
one while the number of divisions, if not specified, is automatically determined. A
typical interactive selection of new reference axes in the continuous-time case is the
following:

the time interval is [0 25];

press return to maintain or enter new values: [t1 t2] = [0 10]

number of divisions for x-axis: 5;

press return to plot again with automatic scaling

or enter a new value: ndx =

the y-axis interval is [0 1.8];

press return to maintain or enter new values: [ym yM] =

number of divisions for y-axis: 9;

press return to plot again with the previous scale

or enter a new value: ndy =

while in the discrete-time case it appears as:

the interval of samples is [0 80];

press return to maintain or enter new values: [k1 k2] = [0 60]

number of divisions for x-axis: 8;

press return to plot again with automatic scaling

or enter a new value: ndx =

the y-axis interval is [0 2];

press return to maintain or enter new values: [ym yM] =

number of divisions for y-axis: 10;

press return to plot again with the previous scale

or enter a new value: ndy =

When new reference axes have been defined, the figure is drawn again.

Grid on. Draws the figure again with a grid referred to the axes divisions. In
subsequent menus option 2 appears as:

2 - grid off

and allows recovering of figure without grid. The two types of option 2 toggle. A
mouse-oriented Grid on/off facility is also provided in the command bar at the top
of the figure.
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Information (on step response only). This option provides information on the
most important parameters of step responses that have been plotted; information
appears in the Command Window. A typical example is:

STEP RESPONSE :

maximum overshoot: 13.31 percent at time: 0.9701 sec

delay time (to 50 percent): 0.3466 sec

rise time (from 10 to 90 percent): 0.4131 sec

settling time (to plus/minus 5 percent): 1.507 sec

STEADY-STATE ERRORS (CLOSED LOOP ONLY) :

step input steady-state error: 0

ramp input steady-state error: 0.25

press any key to continue

while in the discrete-time case we have:

STEP RESPONSE :

maximum overshoot: 81.74 percent at time: 9 samples (1.8 sec)

delay time (to 50 percent): 4 samples (0.8 sec)

rise time (from 10 to 90 percent): 3 samples (0.6 sec)

settling time non-computable: please enlarge the time scale

STEADY-STATE ERRORS (CLOSED LOOP ONLY) :

step input steady-state error: 0

ramp input steady-state error: 0.25

press any key to continue

Note that in the second case time is measured both in number of samples and
seconds. If several plots have been drawn in the same figure in different colors (by
using option 4 of the main menu), before display of information we have the following
request:

select function by entering color :

that allows selection by color of the transfer function, particularly easy when a
legend is available in the figure. If a legend is not present, the Recall facility in the
command bar of the figure may be helpful.
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If the function addressed is not a step response (it has been created with options
3 or 4 of the input menu) the following message is displayed:

**** error: not a step response

press any key to continue

and, when a key is pressed, the main menu is displayed again.

Plot another function in different color. This option makes it possible to plot
in the same figure several graphs in different colors, referring to different transfer
functions. A typical use is for comparing time responses for different compensators.
The corresponding interactive request appears as follows:

enter transfer function : g2

When a new transfer function is entered, the input menu is displayed again, to
allow choice among different types of responses also for the new function. Then, we
obtain the standard request:

choose color of plot: k=black, g=green,

b=blue, r=red, y=yellow, m=magenta, c=cyan, default is green :

The same function can be entered again with a different choice in a different
color. The added plot is referred to the previous time axis (while the magnitude
axis is automatically adapted if necessary), so that it is often necessary to use option
1 for the best compromise in the time axis selection. When working with discrete
time axis and a time-continuous function is added, the following error message is
displayed:

**** error: conflict between continuous & discrete-time

hint: use option 7 to convert the time axis

press any key to continue

On pressing a key, the main menu is recovered and option 7 can be used to change
the current axis type.

Recover the figure. This option produces recovering of the current figure from
the Command Window by using the keyboard instead of the mouse.
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Figure 3.91. The discrete-time step responses with the time scale changed.

Information on plot(s) with mouse. This option first produces in the Command
Window the following request:

**** press return to enable selection

When the return key is pressed, the current figure is accessed, the mouse is activated
and the message:

Select a point with mouse (use button 1, button 2 to exit) (a)

is displayed in the top left corner of the figure. The aim of selection is to define a
value of the time. In fact, when a point is selected, a vertical bar passing through
it appears and the values of the time response plots in the figure corresponding to
the intersections with the vertical bar are displayed, each in the color of the plot,
in the top right corner, as shown in Fig. 3.92 The value of time is also displayed in
orange. If both continuous and discrete-time plots are mixed in the figure, both the
value of time and the number of samples are displayed. Selection with button 1 can
be repeated, thus changing the abscissa of the vertical bar and, consequently, the
displayed values.
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Figure 3.92. The “information with mouse” session.

When button 2 is pressed, the message:

PRESS RETURN TO RECOVER THE MAIN MENU

is displayed in the bottom left corner. Pressing the return key causes return to the
Command Window with the main menu.

Change from discrete to continuous time or vice versa. This option allows switch-
ing from discrete time k to continuous time t with t=k/T if all the plotted functions
are discrete-time. In this case the reverse passage is also allowed. On the other
hand, if some of the plotted functions are continuous-time (so that the time axis
is restricted to be continuous), the option is not displayed. When the time axis is
continuous, it is possible to plot together several discrete-time response functions
created with different sampling times, possibly all different from the current envi-
ronmental sampling time. In this case the values of k and kc appearing in the top
right corner in Fig. 3.92 may be different.
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3.28.3 Examples

Let us consider the unit-feedback control loop consisting of a lead compensator with
transfer function gc(s) and a plant with transfer function gi(s), defined by:

gc(s) =
10 (s + 1.413)

s + 14.13
, gi(s) =

40

s (s + 1) (s + 10)
. (3.40)

Let gh(s) := gc(s) gi(s) be the open-loop transfer function. Fig. 3.89 shows the
closed-loop step responses of gi(s) and gh(s); note that the compensator provides
a significant improvement of the dynamic behavior, as can also be pointed out in
quantitative terms by using option 3 of the main menu. In fact, the maximum
overshoot from 60.8 per cent reduces to 13.3 per cent, while the settling time from
10.05 sec reduces to 1.50 sec.

Similarly as an example for the discrete-time case, we consider a discrete compen-
sator with transfer function gd(z) connected to the plant gj(z) obtained from gi(s)
by conversion from continuous to discrete according to the zero-hold equivalence and
sampling time T = 0.2 sec (see the TFI application convert). The transfer functions
referred to are:

gd(z) =
5.6 (z − 0.72)

z + 0.52
, gj(z) =

0.03279 (z + 0.1442) (z + 2.342)

(z − 0.1352) (z − 0.8187) (z − 1)
. (3.41)

Let gk := gd(z) gj(z). As in the continuous-time case, we plot the closed-loop step
responses of gj(z) and gk(z) to point out the effect of the compensator. Fig. 3.90
shows these responses with respect to the discrete time axis, while Fig. 3.91, obtained
with the option 7 of the main menu, shows the same plots referred to continuous
time. Improvement in quantitative terms can be checked by using option 3: the
maximum overshoot is reduced from 81.7 per cent to 25.8 per cent, the setting time
is reduced from 134 samples (26.8 sec) to 8 samples (1.6 sec).

Fig. 3.92 shows all the above plots in one figure during an information-with-
mouse session (option 6). In this case the time axis is continuous, since the transfer
functions considered are of mixed types.



3.29. Wplane 207

3.29 Wplane

The command

> wplane,gi,gj (enter)

converts a discrete-time transfer function gi(z) to the w-plane function gj(w), that
is displayed and saved in the work directory as gj(s), or a continuous-time transfer
function gi(s), considered as the w-plane function gi(w), to gj(z), that is displayed
and saved in the work directory.

3.29.1 Recall

The direct and inverse w-plane conversions are defined by:

w =
2

T

z − 1

z + 1
and z =

1 + wT
2

1− wT
2

.

The basic properties of the w-plane transformation are:

1. the unit circle of the z plane is transformed in the left half w plane;

2. the w-plane equivalent transfer functions gi(z) and gj(w) have equal steady-
state error constants.

Property 1 is proved as follows: let w=µ+jν and z=u+jv; we have

w = µ + jν =
2

T

u + jv − 1

u + jv + 1
=

2

T

(u− 1 + jv) (u + 1− jv)

(u + 1)2 + v2

=
2

T

(u2 + v2 − 1) + j (−2v)

(u + 1)2 + v2
=

2

T

(|z|2 − 1) + j (−2v)

(u + 1)2 + v2
;

hence the real part of w is positive if and only if |z| > 1. To prove property 2,
recall that the first finite (neither zero nor infinite) error constant for discrete and
continuous-time systems is respectively defined by

lim
z→1

1

T h
(z − 1)h gi(z) and lim

w→0
wh gj(w) ,

where h denotes the order of the unit pole in the first case and that of the pole at
the origin in the second case. We have

gi(z) =
gi(z)

(z − 1)h
, gj(w) =

gj(w)

(w T )h

(

1− w T

2

)h
,

where gi(z) and gj(w) have respectively no unit and no zero poles and correspond
with each other in the w-plane equivalence, so that gi(1)=gj(0).



208 Chapter 3. TFI and Its Applications

3.29.2 Operation and Examples

The typical use of the w-plane conversion is to design the discrete-time feedback
compensators and regulators by using the continuous-time techniques.

Let us refer to the Examples section of application tresp and consider the trans-
fer function gj(z) in (3.41), that is the discrete-time zero-order hold equivalent
of gi(s) in (3.40). Its w-plane transform gw(w) is obtained with the command
“wplane,gj,gw”, that produces:

transformation from discrete to continuous according to the

direct wplane equivalence; the assumed sampling time is 0.2 sec

0.00912 (s - 10) (s + 13.37) (s - 24.9)

gw = ---------------------------------------

s (s + 0.9967) (s + 7.616)

The transfer function gw(s) (that may more properly be considered a function of
w instead of s) is used to derive a lead compensator gcw(s), by using the application
leadc, that works only in the continuous-time case. Let

gcw(s) =
20.07 (s + 1.628)

(s + 31.67)

be the derived compensator. By means of the reverse w-plane transformation we
obtain a discrete-time compensator gd(z) such that the open-loop transfer function
gd(z) gj(z) has the same stability margins as gcw(s) gw(s). The corresponding
command is “wplane,gcw,gd”, that produces:

transformation from continuous to discrete according to the

inverse wplane equivalence; the assumed sampling time is 0.2 sec

5.6 (z - 0.72)

gd = --------------

(z + 0.52)

Let gk(z) := gd(z) gj(z). Figs. 3.90 and 3.91 of application tresp show (and
make it possible to compare) the step response of the non-corrected feedback system
gj(z) and that of the system gk(z), corrected by using application wplane exactly
as described.
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3.30 Zpplots

The command

> zpplots,gi,gj,gk,gw (enter)

plots the zero-pole maps of up to four transfer functions in different colors in the
same figure.

Figure 3.93. Some pole-zero layouts in the complex plane.

3.30.1 Operation

Let us consider the transfer functions

gi(s) =
40

s (s + 1) (s + 10)
,

gj(s) =
10 (s + 1.413)

(s + 14.13)
,

gk(s) =
s6 − 21 s5 + 210 s4 − 1260 s3 + 4725 s2 − 10395 s + 10395

s6 + 21 s5 + 210 s4 + 1260 s3 + 4725 s2 + 10395 s + 10395
.

The command “zpplots,gi,gj,gk” provides the zero-pole maps of the above transfer
functions, plotted together in the current graphic window as shown in Fig. 3.93.
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The zero-pole maps are shown in the following color sequence: green, red , cyan
and yellow , and can easily be distinguished by using the Recall facility available in
the command bar of the figure, where the Grids facility is also present, making it
possible to obtain the regular grid and/or the constant damping loci.

Continuous-time and discrete-time transfer functions cannot be mixed in the
same call. In such a case, the following message appears in the Command Window:

**** error: mixed continuous and discrete time

TFI provides a quicker access to function zpplots by simply entering the transfer
function name followed by a semicolon. Of course, this mode is restricted to a single
transfer function map. Hence:

> gi; (enter)

produces the zero-pole map of function gi(s) or gi(z). In this case the current
graphic window is not overwritten, since a new figure is created and cancelled when
the return key is pressed.
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Index

analytic regulator design, 33
ans, 17
asymptotic approximation, 55, 61

backlash, 44, 97
Bessel filter, 30
Bode diagrams, 54
Butterworth filter, 31

CAD functions, 1
Cartesian form, 76, 77
clear, 23
closed-loop pole assignment, 139
coltbl.m, 10, 14
command window font, 10
commands, keyboard-oriented, 4
commands, mouse-oriented, 4
constant damping loci, continuous-

time, 175
constant damping loci, discrete-time,

175
constant M loci, 55, 61
constant N loci, 55, 61
conversion, from Matlab to TFI, 21
conversion, from TFI to Matlab, 21
convert, *, 25

dead zone, 44, 96
defactf, *, 29
deftf, *, 30
degrid, 23
delete, 23
delf, 12, 23
descrf, *, 43
describing function, 43

Diophantine equation, 137, 156
Diophantine equation, direct solution,

137
dir, 23

encapsulated postscript, 14
enl[arge], 23
enlarge, 12
export.m, 21

factf, *, 52
feedback-only derivative action, 112,

119, 133
feedforward unit, 106
fign, 23
figure background, 8
figure locations, permanent, 194
file set tfi5.mat, 8
file time#.mat, 189
finite delay, 3, 63
first-order hold, 26
fresp, *, 54

gain, 112, 119, 144
gain margin, 71
gain margin, generalized, 71
gpmarg, *, 70
grid, 23

help, 23

import.m, 21
impulse response, closed-loop, 198
impulse response, open-loop, 198
installing TFI, 7
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intp4, 7
intp5, 7
inversion formulae, of the lag compen-

sator, 145, 146
inversion formulae, of the lead com-

pensator, 145, 146
inversion formulae, of the PD regula-

tor, 127
inversion formulae, of the PI regulator,

128
inversion formulae, of the PID regula-

tor, 128
inversion formulae, proof, 147
invtr, *, 75

L-transform, inverse, 75
lag compensator, 81, 144
lagc, *, 81
lar[ge], 23
large, 12
last, 12, 23
lead compensator, 88, 144
leadc, *, 88
legend, 8
LTI system, 21

makeleg, *, 95
Matlab student edition, 3
Matlab, using in TFI, 18
matlabpath, 7
med[ium], 23
medium, 12
mid-band frequency, 112
monitor driver, 10
monitor, high-resolution, 13
monitor, low-resolution, 14

new, 11, 23
Nichols diagram, 54
nlsim, *, 96
nonlinear system, 96
nonlinearity, generic, 44, 96
numerical robustness, 2

Nyquist diagram, 54

ordf, 12, 23

Padé delay, 32
parametric form, 3
path, 23
path reduction, 7
PD regulator, 126
perfect tracking, 102
perftra, *, 102
phase margin, 71
phase margin, generalized, 71
PI regulator, 126
PI regulator, continuous-time, 113
PI regulator, discrete-time, 120
PID regulator, 126
PID regulator, continuous-time, 112
PID regulator, discrete-time, 119
pidc, *, 112
pidd, *, 119
pidnich, *, 126
plant relative degree, 102
polar form, in terms of cosine, 76, 77
polar form, in terms of sine, 76, 77
pole scattering due to parameter

change, 166
pole-zero-gain assignment, 156
postscript, 14
preaction, 102
print, 23
proportional sensitivity, 112, 119

red[uce], 23
reduce, 12
reference models, 33
regdph, *, 137
regnich, *, 144
regrootl, *, 156
relay, ideal, 44, 97
relay, with dead zone, 44, 97
relay, with hysteresis, 44, 97
res[figlo], 23
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resfiglo, 13
RGB color tables, 10
robpar, *, 165
robustness of the cl pole locations, 165
robustness, of asymptotic tracking,

106
root contour, 166
root locus, asymptotes, 174
root locus, branching points, 175
rootl, *, 174
Routh criterion, 186
Routh table, 185
routh, *, 185

sampling time, 119
samptime, *, 189
saturation, 44, 96
saturation, with dead zone, 44, 96
select, *, 191
shg, 12, 23
Simulink, 3
sma[ll], 23
small, 12
startint, 8
startint, *, 194
startup.m, 7
step response, closed-loop, 198
step response, open-loop, 198

tfeval, *, 196
TFI environment, sampling time of,

189
TFI installation, 7
tfi, *, 15
TFI, background color of figures, 194
TFI, legend in figures, 194
TFI, matlabpath reduction, 194
TFI, syntax errors, 19
TFI, work directory, 194
time constant of the derivative action,

112, 119
time constant of the integral action,

112, 119

time constant ratio, 112
toolbox, 1
transfer function, display of, 17
transfer function, evaluation at a

point, 18, 196
transfer function, in parametric form,

165
transfer function, interpretation of, 15
transfer function, sampling time of,

189
transfer function, splitting of, 17
transfer function, time-constant form,

17
transfer function, zero-pole form, 17
transfer function, zero-pole map, 17
transfer functions, operation on, 16
tresp, *, 198

uicontrol font, 10
uncertainty interval, 165
using TFI tf’s in m-files, 21

w-plane conversion, direct, 207
w-plane conversion, inverse, 207
what, 23
whitebg, 10, 23
work directory, Matlab, 8
work directory, TFI, 8
worst-case plant, 166
wplane, *, 207

Z transform, 25
Z-transform, inverse, 76
zero-pole map, 209
zero-pole map, defining with mouse,

34
zoom, 23
zoom by steps, 61
zpplots, *, 209


