Research Issues

Silvio Simani

Department of Engineering (EnDiF), University of Ferrara Via Saragat 1E – 44123 Ferrara (FE), ITALY Ph.: 347 9421171. Fax: 0532 974844 Email: silvio.simani@unife.it URL: www.silviosimani.it

Introduction

- A. Research main points
 - > 3 selected works
- **B. Current research topics**
 - Recent activities & projects
- C. Research perspective overview Near, medium & long term focusses

A. Research Main Issues

Research Topics

- Inspired by realistic applications, case studies
 <u>A</u> projects
- \geq 2 examples considered in the 3 papers

- 1. Gas turbine (1999)
 - ABB Alstom UK (R.J. Patton, M. Grimble, UK)
 - Feasibility study (2005)
- 2. Wind turbine/wind farm (2009)
 - kk-electronic (DK) & MathWorks (USA)
 - Int. competitions (kk-electronic, MathWorks, 2014-2015)

Application Example (1)

Application Example (2)

Application Example (3)

Wind farm simulator (Matlab & Simulink) kk-electronic (DK)

10 L

x-column 1

7/31

Research Main Results (1)

- Fault diagnosis feasibility study for a gas turbine
- Motivations
 - Proposed by ABB Alstom UK (1999)
 - Ron J. Patton, Mike Grimble & S. Daley (UK)
- Challenge of developing effective & viable diagnostic tools
 - Predictive maintenance detect slowly developing (incipient) faults in their earlier occurrence
- Application of model-based FDI approaches
- [58] S. Simani, "Identification and Fault Diagnosis of a Simulated Model of an Industrial Gas Turbine," IEEE Transactions on Industrial Informatics, vol. 1, 202–216, 2005

Research Main Results (1.1)

> Main contributions

- Complex thermodynamic model not required
- Linear system identification methods (EE & EIV)
- Linear output estimators for residual generation
- Advantageous in terms of solution complexity & performance (arbitrary trade-off)
- Robust & reliable solutions are designed
 - EIV description enhances the model-reality mismatch minimisation & the fault effect maximisation
 - EIV models used for FDI purpose
- Sundamental when proper certification & validation procedures are under customer operation

Research Main Results (1.2)

- Strength points
- International cooperation
 - Technology transfer purpose
- Viable application of model-based FDI to complex systems
- Methodologies assessed & applied to other systems
 - Aircraft & spacecraft simulators (PRIN)
 - EU Project (ESA, Astrium, Hull University): ROBEST -"Robust Estimation for Failure Detection", Ref: EAA.TCN.89079.ASTR

Research Main Results (2)

Fault tolerant control for wind turbines

Motivations

- International "Competition on Fault Detection and Fault Tolerant Control for Wind Turbines", award sponsored by kk-electronic (DK) & MathWorks (USA)
- Wind turbine benchmark
 - Developed by P.F. Odgaard (kk-electronic, DK)
- **Key issue for offshore wind turbine installations**
 - Guarantee proper working conditions even in case of severe malfunctions before the planned maintenance operations take place
- [130] S. Simani and P. Castaldi, "Active Actuator Fault Tolerant Control of a Wind Turbine Benchmark Model," *International Journal of Robust and Nonlinear Control*, vol. 24, pp. 1283–1303, 2014

Research Main Results (2.1)

- Main contributions
- Fault tolerant ("sustainable") control (FTC) design
- Solution States Stat
 - The nonlinearity of the wind turbine is identified (C_p map)
 - A nonlinear geometric approach can be applied
 - Controller accommodation scheme exploits the on-line estimate of the faults from the nonlinear filters
- Section Strate Strat
 - Comparisons with different fault-tolerant schemes

Research Main Results (2.2)

Strength points

- Award & 3rd prize received @ the "Competition on Fault Diagnosis and Tolerant Control for Wind Turbines" (IFAC SafeProcess 2012, Mexico City)
- IFAC activities, different workshops & plenaries
- Validated on more complex wind turbines
 - Reliable, effective and viable procedures for the sustainable control of wind turbines

□ Challenging topic in Horizon 2020 (e.g. LCE calls)

 Operation & management (O&M) highly affect the final cost of the energy production (@UniFE)

Research Main Results (3)

> Fault diagnosis for wind turbines & farms

Motivations

- International "Competition on Fault Detection and Fault Tolerant Control for Wind Turbines and Wind Farms"
- Wind turbine + wind farm benchmarks
 - kk-electronic (DK) & MathWorks (USA)
- FDI important for offshore wind turbines
 - Fundamental the detection of faults in their earlier occurrence
 - Fault diagnosis for preventive/predictive maintenance
- [147] S. Simani, S. Farsoni, and P. Castaldi, "Fault Diagnosis of a Wind Turbine Benchmark via Identified Fuzzy Models," *IEEE Transactions on Industrial Electronics*, vol. 62, pp. 3775–3782, June 2014. Special issue "Real-time fault diagnosis and fault tolerant control"

Research Main Results (3.1)

Main contributions

- Development of a fault diagnosis scheme relying on identified fuzzy models
 - Model uncertainty & data noise
- Residual generators used for FDI
 - Organised into banks for fault isolation
 - Fuzzy identification enhances the bank design
- □ Monte-Carlo analysis: performance optimisation
- Comparison with different solutions from the international competition

Research Main Results (3.2)

Strength points

- Award & 3rd prize received @ the "Competitions on Fault Detection and Isolation for Wind Turbines and Wind Farm" (IFAC WC 2011, Milan & IFAC WC 2014, Cape Town)
- Data-driven "plug&play" strategies
- IFAC activities, workshops & plenaries
- Tecnology transfer projects
 - Fuzzy modelling applied to diesel engine real data "Towards the virtual motor thermal-fluid-dynamic modelling of advanced diesel engines via software tools, practical experiments, and test rigs" (application nr. DM28633, Art.12EMec)
 - Strategies implemented in the product developed in the "Road Wind" (2012 2013) & "Air Energy" (2013 2014)

B. Current Research Topics

Current Research Topics (1)

- 1. Modelling, control, fault diagnosis & fault tolerant control for hydroelectric systems
 - Fuzzy & adaptive approaches
 - Cooperation with Civil & Industrial Engineering Groups @ EnDiF
 - Local funds & technology transfer projects
- 2. Modelling & control of a thermal unit
 - Fuzzy, MPC, NN
 - Cooperation with Coventry & Izmir (HVAC)
 - Horizon 2020 calls (e.g. LCE, SCC)

Current Research Topics (2)

- 3. FDI & FTC for wind turbine installations
 - Strategy validation & performance assessment
 - FDI & FTC joint design (control oriented ident.)
 - IFAC & IEEE activities, international consortium
 - Horizon 2020 calls (e.g. LCE)
- 4. FDI/FTC for satellites & aircrafts
 - Strategy validation & performance assessment
 - Cooperation with Aerospace Dept. (UniBO)
 - Technological demonstrator (LAURA)
 - Horizon 2020 calls (e.g. Industrial Leadership)

C. Research Perspective Overview Near, medium & long term

Research Perspectives (1) Near Term

Modelling & control methodologies to HVAC systems

- Cooperation
 with Coventry &
 Izmir (Turkey)
- Extension tomore complexplant models
- Smart buildings applications

Research Perspectives (2) Near Term

Control of grid-connected hydroelectric systems (extension to networks with PAT)

- Cooperation with Hydraulic & Industrial Depts. @ UniFE
- Modelling, FDI & FTC

Research Perspectives (3) Near Term

□ FTC for wind farm installations

- More complex benchmark (wake/wind models)

Research Perspectives (4) Near Term

Automatic tuning of controllers for brake dynamometers of diesel engine motor test bench

- Already tested for ECU (Bosch) control design
- On-line identification for adaptive control design
- Technology transfer project with VM Motors (FCA)

Research Perspectives (5) Medium Term

Pumps used As Turbines (PATs) to exploit residual hydraulic energy

- Cooperation with Hydraulic & Industrial Depts. @ UniFE
- Water distribution networks + parallel PATs
- Cheaper than classic hydraulic turbines
- Challenging control issues (limit excessive pressures)

Research Perspectives (6) Medium Term

□ Air Energy – Innovative Startup (est. in 21/10/2015)

- 7 partners: 3 University researchers & 4 companies
- Harvesting energy from vehicle air flow using micro-wind turbines (placed along highways or medium-density roads)
- Regional funds, contacts with Fondazione Torino Smart City & Associazione "Centro Studi per la Smart Economy" (TO)

Research Perspectives (7) Medium Term

Design of innovative solutions to improve physical & mobility impairment in frailty & elderly (Sept. 2015)

- Control of mechanical devices & fitness tools
- Local cooperation & funds (PRIA, Sept. 2015)

Research Perspectives (8) Long Term

□ Innovative design & control concepts for OWT

- Smart & lighter (floating) structures
- Large rotor disturbance + O&M reduction
- Consortium (7 Universities + 4 industries, UniFE leader)
- IFAC workshops, plenaries, SafeProcess 2018

Research Perspectives (9) Long Term

Wave energy conversion (WEC) systems

- Cooperation with Hull & Maynooth Universities
- Modelling & control issues

Research Perspectives (10) Long Term

LAboratorio Universitario Ricerche Aerospaziali – LAURA (Forlì, BO)

- Collaboration
 with DEI
 @ UniBO
 FDI/FTC
 real
 case
 study
- Wind
 effect
 decoupling

Thank You for Your Attention