Lectures 3

Recursive (On-line) Identification Methods

e Recursive Least Squares (RLS) Methods

e Forgetting Factor and Tracking Time-Varying Parameters

e [dentification condition problem

e Computational Aspects
. J
Lecture 3| ccture Notes on System Identification and Data Analysis  Silvio Simani Page 1/26
4 “

Why is recursive identification of interest?
e On-line Estimation.
o Adaptive Systems.
e Time Varying Parameters.
e Fault Detection and Diagnosis.

e Simulation.
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How do we estimate time-varying parameters?
e Update the model regularly (once every sampling instant)
e Make use of previous calculations in an efficient manner.

e The basic procedure is to modify the corresponding off-line
method, e.g., the block/batch least squares method, the

prediction error method.
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Desirable Properties

We desire our recursive algorithms to have the following properties:
e Fast convergence.
e Consistent estimates (time-invariant models).
e Good tracking (for time-varying parameters, e.g. in the event of
fault occurrence or operating condition changes).

e Computationally simple (perform all calculations during one

sampling interval).
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No algorithm is perfect. The design is always based on trade-offs,
such as:
e Convergence versus tracking.
e Computational complexity versus accuracy.
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Recursive Least Squares Method (RLS)
t
D04\ — e min U _ 207,
O(t) = argmin Vi (9),  V4(6) = > (k)
k=1
where (k) = y(k) — ! (k)8. The solution reads:
0(t)= R, 'r,
where
t t
R =Y ok (k), =) ¢@kyk)
k=1 k=1
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e The criterion function V;(8) changes every time step, hence the

estimate @(t) changes every time step.

e How can we find a recursive implementation of 6(t)?
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RLS
Algorithm:

At time t = 0: Choose initial values of 8(0) and P(0)
At each sampling instant, update ¢(t) and compute

(1‘ — 1)+ K(t)=(t)
y(t) — o (1)0(t — 1)

o(t)

Pt —Np(t)p' ()Pt —1)
L+t () P(t = 1)e(t)

Pt)= Pt 1)

Question: How to obtain/derive this recursive version of LS from
the block/batch LS?
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How do we handle time-varving parameters? — two ways:

e Postulate a time-varying model for the parameters. Typically we
let the parameters vary according to a random walk and use the
Kalman filter as an estimator.

e Modify the cost function so that we gradually forget old data.

Hence, the model is fitted to the most recent data (the

parameters are adapted to describe the newest data).
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e Modified cost function:

t

a — aromin Vi Vs _ 3 52 A
0(1) = argmin V,(6).  V(6) ;;jm/)(ﬂ

e Suppose that the weighting function 3(t, k) satisfies

3(t, k)
3(t.1)

AM)B(t—1,k), 0<k<t
1

A common choice is to let A(t) = A, where A is referred to as a

so-called forgetting factor. In this case we get:
Bt k) =X"" 0<Aa<1

e )\ =1 corresponds to the standard RLS.
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Weighted RLS

Algorithm:
At time t = 0: Choose initial values of 8(0) and P(0)

At each sampling instant, update ¢(t) and compute

6(t) = 0(t — 1) + K(t)=(t)
( .

Pt —1)p(t)e' (1) P(t - 1)
A(t) + @ (1) P(t — 1)ep(t)
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Initial Conditions

. é(()) is the initial parameter estimate.
e View P(0) as an estimate of the covariance matrix of the initial
parameter estimate.
— P(0) (and P(t)) are covariance matrices, and must be
symmetric and positive definite.
— Choose P(0) = pl.
— p large = large initial response. Good if initial estimate 9(0)

1S uncertain.
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Forgetting Factor

Let A(f) = A. The forgetting factor A will then determine the

tracking capability.
e We must have A\ = 1 to get convergence.
e A\ small = Old data is forgotten faster, hence better tracking.
e )\ small = the algorithm is more sensitive to noise (bad
convergence).
e The memory constant is defined as 1) = ﬁ If A=0.95 T, =20

The choice of A is consequently a trade-off between tracking
capability and noise sensitivity. A typical choice is A € (0.95,0.99). It
is common to let A(t) tend exponentially to 1, e.g.,

At) =1 A(1 - \0))

J
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Common Problems for Recursive Identification

e Persistent excitation.

e Estimator windup.

e P(t) becomes indefinite.
J
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Persistent Excitation

Just as for the off-line case, it is important that the input signal
changes sufficiently in order to excite the system so that the
experimental data contains enough information about the dynamics
of the system. This leads to the concept of persistent excitation
relating to the input signal. Such persistent excitation

concept /condition applies during the whole identification period.
Most stable linear systems may be represented by the so called finite

impulse response (FIR) model:

y(t) = byu(t — 1) + bou(t — 2) + ... + byu(t —n) = o1 ()6
where
0=1b ... bt

J
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o=[ult—1) ... u(t—n)
The estimate is given by 6 = (@1 @] 10! Y, where

ZL:;1+1“(;€7“H Ziﬂ;’:n+l uw‘kfljuw‘k.f;Bj Zi::,1+11‘(k*l.‘l‘(k*”,'
Zi:_n+1u(k72}u(kfl} ZE{:”+1U_(,’.‘-,2)3 Zi:-n+1“”“*25‘“(k*”?'

Zi::?z+1-u(k —njyu{k — 1) ZE::?I+1-u(k —nju(k —2) ... ZL:”+1 u(k — )1)2

This matrix has to be non-singular for the estimate to be unique.
This is called an excitation condition. For a long data set, t — oc,

and all sums may be taken from 1 to ¢.

J
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Define:

y 1
C, = hm ?(P o =

—

cn—1) e(n—2) --- c(0)

where ¢(k) are the empirical covariances of the input. That is:

c(k)= lim — Zu w(t — k)

t—oc

Definition: A signal u is called persistently exciting (PE) of order n

if the matrix (', is positive definite.
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Examples:

e White noise: u(t) is white noise, with zero mean and variance
o?. Then ¢(n) = o2
definite. Thus (), is nonsingular for all n, and white noise signal
is PE of all orders.

8., and C,, = 021, which is always positive

e Step signal: u(t) is a step of magnitude o, then ¢(k) = o2, and

(), is nonsingular only if n = 1. Then a step is PE of order 1.

e Impulse signal: u(t) = 1 for t = 0, and 0 otherwise. This gives
c¢(n) = 0 for all n and C,, = 0. Therefore, this signal is not PE of

any order.

Important Note: It is necessary for consistent estimation of an
n-th order system that the input signal be at least persistently
exciting of order 2n.
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Conclusions

In practical scenarios, one often need to use recursive identification

(time-varying systems, online identification, fault diagnosis).

Both the LS and the IVM can easily be recast in recursive forms. The

PEM can only be approximated.

The properties of the on-line methods are comparable with the off-line

case.

Tracking capability can be incorporated by using forgetting factor

techniques, or by model the parameter variations.

There is always a tradeoff between convergence speed and tracking

properties, as well as computational complexity and accuracy.

In practice, one can make simplifications and modifications to make

the recursion cheaper and more numerically robust.
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