Lecture 2

Non-recursive (Off-line) Identification Methods

e Linear Regression and the Least Squares (LS) Methods
e Prediction Error Methods (PEM)

e Instrumental Variable Methods (IVM)
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The Least Squares (LS) Methods

Linear regression

The least squares method

Properties of the (deterministic) least squares method

BLUE

Computational aspects
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Linear Regression

System Identification (SI) procedure: Collect data, choose a model

class, find the best model in the model class, validation.

e Linear regression models. Models that are linearly parametrized.
The simplest type of parametric model.
Computationally simple.
Simple to implement.
Low memory consumption.
Common in signal processing, e.g. echo cancellation.

e Original work by Gauss 1809 for calculating orbits of the planets.

e Starting point of system identification.
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Linear Regression (Cont’d)

Model structure (M):
ym(t) =l ()8, t=1,....N (1)

where y,,(t) is the model output, ¢(t) € R"*! is a vector of known
quantities and @ € R"*! is a vector of unknown quantities. The
elements of vector ¢(t) is called as regression variables or regressors,
and vector 8 is known as parameter vector.

The model (1) can be compactly written as

ym.(l) L,Ol(l)
Y"HI, — (l)gn Y-'}',r), — . -.(l) — . (2)

Yo (V) @' (N)
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Linear Regression and Least Squares (Optimization)

Problem: Find an estimate of @ for given measurement
y(1), (1), ..., y(N), p(N).
Solution: Introduce the equation error

e(t) = y(t) — ym(t) = y(t) — @j-(t)er t=1,....N

or compactly

€:Y—Ym:Y—(b9
Least squares method: Choose 6 such that () is small for all ¢

0,5 = arg mbi nV(o)

. N 1 _
== X —g Sele= (Y - 6)" (Y - $0)

t=1

Lecture 2 Lecture Notes on System Idenftification and Data Analysis Page 5/40



Results: Assume that ®’ & is invertible. Then the solution of the

above optimization is given by solving %1(9) = 0, which leads to

o N N N
s = (@79)'BTY = (3 ele’ (1) 3 i)
t=1 t=1

Note: The above LS algorithm is also referred as to Block/Batch LS.
Weighted least squares (WLS) estimate:

Ow s = arg méi nV(8), V(8)= 5g=:{l_V[/'€

= Oyrs= (@TWe) WY
where W is symmetric (Wl = W) and positive definite.

Remark: W =T = Oy =075

Question: Can you derive/prove the above WLS?
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Least Squares (Statistical Properties)

To explore the properties of the least squares estimate we need to
specify the system, i.e., we need to make some assumptions about

generating data.
Assumptions:
o (t) is deterministic and known. (Quite restrictive assumption!)

o System: y(t) = ¢! (t)8y + e(t), where e(t) is a sequence of
random variables, Ee(t) = 0 and Ee(t)e(s) = R;s. Compactly

written as

Y = $6) + e, '- , Eee! =R

Remark: If R = \?I then e(t) is white noise with variance \°.
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Least Squares (Statistical Properties) - Results

e The (weighted) least squares estimate is unbiased:
~ EOwrs =6

e Covariance matrix, covl = E (8 —E0)(@ —E0)!:
— covOyrs = [P W'D WRW d[d! Wb|!

— covOyg = (@' ®] b RP[D! ]!
—~ R=M)T=
A 201 2T w1 2 r - N
covOrs = )‘T[%fl)l bt = )\T 3 et (1)]

—1

o If ¢(t) is Gaussian distributed e(t) ~ N (0, R), then
Onrs ~ N(8y, cov O 5 s). (Holds for finite V)

e Oyy1s 1s consistent: By s — Oy, N — oc.
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Definition: The estimate 6, is statistically more efficient than 85 if
cov @1 < cov Oy

Question: Which choice of W will minimize cov @y g 7

- . 1 . .
Result: The choice W = R~ yields optimal accuracy:

¢ Oy = ('R '®) 'R Y

® COV éﬂ g [q?’l"R—l d)] 1

In this case By s is known as the BLUE (best linear unbiased

estimator) or the Gauss-Markov estimate.
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BLUE = Best Linear Unbiased Estimator.

White noise, R = A\?I. BLUE vields the same estimate as the

deterministic least squares method.

If e(t) is Gaussian, then BLUE yields the best possible estimate!

If e(t) is non-Gaussian, then there might exist better non-linear

estimates.

BLUE can be derived also for singular R.

Lecture 2 Lecture Notes on System Identification and Data Analysis Page 10/40



Computational Aspects

The least squares solution (& € RY*")
. T w\N—1 7T N T -1 N
015 = (27@) @Y = (L1009’ (1) i o0y
is unsuitable for numerical implementation.

Alternatives: Avoid the inverse!

e The normal equations: (<l>l<l>)é g = 1y .

e Solve an overdetermined linear system of equations: Y = $85.
(Recall that Y —Y,, =Y — &8 should be small.)
— QR factorizations

— SVD factorizations
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QR factorization: Let ® = QR, where Q € RV*Y is orthogonal
(QJ Q = I) and R € RY*" is upper triangular. Then, instead of

solving
Y = 6
we can equally well solve
Q'Y =Q' 6 = RO
which is easy due to the structure of R.
e Requires more computations than solving the normal equations.

e Less sensitive to rounding errors.
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Summary on Least Squares Methods

Regression models describes a large class of dynamic systems

(linear w.r.t the parameters).
Linear regression can be used also for certain non-linear models.

The least squares method is fundamental in system identification,

and can be derived from various starting points.

We have assumed that ® is a known and deterministic matrix.

Problems when this matrix is a function of u(t) and y(t) (e.g.

ARX-model — A(q=Y)y(t) = B(g~YHu(t) + =(t)).
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Issues with the Least-Squares Method

e Up to now, the least squares method has been applied to static

(deterministic) linear regression models (¢(t) deterministic).
e What happens when we consider dynamic models?
A(q™", 0)y(t) = B(q~".0)u(t) + e(t)
= Y= ()6 +et)

where

6 — {(1.-1 ... (1--;?,0_ bl ‘e b-nb}T

Properties of the least squares estimate

N L N

o = (5 Z Pl (1) 5 et

\.

ot)=[—y(t—1) ... —yt —no)ult—1) ... u(t—mny)]"
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Properties: Assume that the true system can be described as

@' ()00 + e(t)

A

Results: The estimate @7 will be consistent ( 8 — 6y as N — oo) if

(i) Ep(t)e! (t) is nonsingular.
(i) Fep(t)e(t) = 0.

The first condition will be satisfied in most cases. A few exceptions:
e The input is not persistently exiting of order ny,.

e The data is noise-free e(t) = 0 and the model order is chosen too
high (which implies that A(¢~!) and B(¢~!) have common

factors).

The second condition is in most cases not satisfied. A notable

exception is when e(?) is white noise.
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Modifications of the Least-Squares Method

To relax the second constraint, we will in the following examine two

different ways to modify the least-squares method:

(1) Prediction error methods (PEM). Model the noise as well!

(i) The instrumental variables methods (IVM) — modifying the

normal equations associated with the least-squares estimate.
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Lecture 2

Prediction Error Methods (PEM)
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Prediction Error Methods (PEM)

Main Idea:
e Model the noise as well = stochastic models, i.e., the outputs
from the models are not deterministic.
e Minimize the prediction errors ¢(t,0) = y(t) — y(t|t — 1,8). The
least-squares method is a special case of this approach; consider

the prediction error

£(t,0) = y(t) — y(t|t — 1,0) = y(t) — ¢ (1)8

A general methodology applicable to a wide range of model

structures.

Lecture 2 Lecture Notes on System Identification and Data Analysis Page 18/40



Examples
Find the optimal predictor, y(t|t — 1) for the following systems
assuming Fe(t) = 0, Ee(t)e(s) = 5,4 \°.

Notice that §(t[t — 1) is a function of {y(s),u(s)}.Z!

S=—0C

b) (1 —0.1¢g7Yy(t) = —0.5¢ tu(t) + e(t)

¢) (1—0.1¢g Hy(t) = —0.5g tu(t) + (1 — 0.8¢ H)e(t)
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Predictions

A predictor can be described as a filter that predicts the output of a
dynamic system given old measured outputs and inputs. Design the
predictor by
(i) Choosing the model structure of y(t), e.g., ARX
o - . B(q— "
(Ala™)u(t) = Bla™)u(t) + (), OF (y(t) = Fghu(t) + (1)), or
ARMAX (A(q~")y(t) = Blg~"ult) + Clq~H)=(1).

(ii) Choosing the predictor, y(t|t — 1,0). A general predictor can be

viewed as

g(tlt —1,0) = Li(q~ ", 8)y(t) + La(q~ ", )u(t)
where Li(¢~1,0) and Lo(g~1, 8) are constrained such that
y(t|t — 1,0) depends on past data.

(iii) Choosing the cost function, Vx(60), to be minimized.
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Optimal Prediction

Optimal Prediction means that minimization of the variance of the
prediction error is used for derivation.
We will here consider the general model structure

y(t) = Glg~ . 0)ult) + H(qg™ ", 0)e(t)

where Ele(t)e! (s)] = A(8)6;., and G(0,80) = 0.

Goal: Find the optimal mean square predictor y(t[t — 1, 8), i.e., solve

min  Fe(t)e! (1)
y(t|t—1)

where £(t) = y(t) — y(t|t — 1) is the prediction error, and y(t|t — 1)

depends on {y(s),u(s)} =}

S—=—00 "
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Results:
Under the assumptions that
(i) y(t) only depends on past measurements

(i1) u(t) and e(s) are uncorrelated for ¢ < s

then

§tlt—1,0) = H (¢, 0)G(q " 0)u(t) + [T — H (g 0)] y(t)

is the optimal mean square predictor, and e(t) the prediction error,
S(,0) = y(t) — tlt — 1,0)
H'(q".6) [y(t) — G(g~".0)u(t)]
e(t)

Hence,

Es(t,0)s' (t,0) = A ()
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Optimal Prediction for State Space Models

As an alternative to the model structure:
y(t) = (g~ O)ult) + H(q™",0)e(t),
it is often common to use state-space models:
r(t+1)=F(@)x(t) + B(O)u(t) + v(t)
y(t) = C(0)x(t) + elt)

where v(t) and e(t) are uncorrelated white noise sequences with zero
mean and covariance matrices R1(68) and R2(8).
In this case the optimal mean square predictor is given by the

Kalman filter. See details in course “Automazione (Laboratorio)”
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Cost Function
How do we find the best model in the model structure?
e Minimize the prediction errors (¢, 0) for all ¢. How?

e Choose a criterion function Vi (6) to minimize:

0 = arg 1119'111 VN (0)

where Vi (0) depends on £(t, @) in a suitable manner.

Depending on the choice of model structure, predictor filters and
criterion function, the minimization of the loss function is more

or less difficult.
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In general, the cost function is chosen as

where h(-) is a scalar-valued monotonically increasing function, and
R (6) is the sample covariance matrix of the prediction errors,

;N

Ry(6) = =) =(t.0)(1.9).

N

t=1

Example: h(-) =tr(:), or h(-) = det(-).

For single-output systems the following criterion function is most

often used
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A PEM Algorithm

To define a PEM the user has to make the following choices:

o Choice of model structure. How should G(q=1,0), H(q~',0) and

A(0) be parameterized?

Choice of predictor y(t|t — 1,8). Usually the optimal mean

square predictor is used.

Choice of criterion function V(6). A scalar-valued function of all

the prediction errors (1, @) £(N, 0), which will assess the

performance of the predictor used.
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Computational Aspects

I. Analytical solution exists

If the predictor is a linear function of the unknown parameters,

j(ilt —1,8) = @ (16

and the criterion function Vi (8) is simple enough, a closed form

solution can be found. For example, when

it is clear that the PEM is equivalent to linear regression (the least
squares method). This holds for FIR (y(t) = B(q~ ")u(t) + &(t)) or
ARX models but not for ARMAX and OE models.
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II. No analytical solution exist

For general criterion functions, and predictors that depend
non-linearly on the data, a numerical search algorithm is required to

find the 6 that minimizes Vi (8).
Numerical minimization:

e Nounlinear = local minima.

e Time consuming (convergence rate) and computationally

complex.

e Initialization.
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Different (standard) methods available:
e The Newton-Raphson algorithm

S(ht1) () (k) (k)

= =6 — a,[V"(6

v

!

The derivatives of the loss function can be computationally
complex to evaluate. Fast convergence.

The Gauss-Newton algorithm is a computationally less
intensive algorithm with a theoretically lower rate of convergence
which can be used as an alternative.

L:\r

é{k—l—l} _ él.\!ll’-,_l 1oy Z L'(f.é{k}\)HL'T(t‘B‘k')] lz .i;?(t‘BI_\;\.'_I)HE?(_{:'GI_\;I\.'_I)
t=1 t=1

Gradient based methods are simpler to apply, but has a slow

convergence r ate.
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Summary on PEM

e The PEM is a general method to obtain a parametric model of a
dynamic system. The following choices define a prediction error
method:

— choice of model structure;

— choice of predictor;

— choice of criterion function.

The PEM principle is to minimize the prediction errors given a
certain model structure and predictor.

The PEM principle leads to parameter estimates that have

several nice properties (in general, consistent and statistically

efficient estimates).
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e Approximation. The PEM is useful also for under-parameterized
models. The model-fit can be controlled by pre-filtering the data,

or by choosing an appropriate input.

If the prediction errors depend linearly on the parameter vector

the PEM estimates are obtained through linear regression (e.g.,

ARX and FIR models).

In the case of more complicated model structures a nonlinear

search algorithm is required to obtain the PEM estimates (e.g.,
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Lecture 2

Instrumental Variable Methods (IVM)

Main Idea: Modify the LS method to be consistent

also for correlated disturbances.
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Least Squares Method

Consider the ARX model,
A(g™"y(t) = Blg~)u(t) + =1

or, equivalently,

y(t) = @1 (10 + =(t)
(

where £(%) is the equation error (y(t) — y,,.(t)), and

[yt =1) ...
6 = [(1.1
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The least squares estimate

which is satisfied if and essentially only if £(¢) is white noise. Hence,
the least squares estimate is not consistent for correlated noise

sources!
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Cure:
e The least squares method.
— Simple and computationally sound.
— Not consistent estimates for correlated noise!
e Prediction error methods (PEM). Model the noise.
— Applicable to general model structures.
— Generally very good properties of the estimates.

— Computationally quite demanding.

e Instrumental variable methods (IVM). Do not model the noise.

Retain the simple LS structure.
Simple and computationally efficient approach.
Consistent for correlated noise.

Less robust and statistically less effective.
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The IV method

Introduce a vector z(t) € R with entries uncorrelated with (7).

Then (for large values of V)

_ . N
! i N z(t)e(t) = % Z; =(1) [y(t) — " (1)6)

t=1
which yields (if the inverse exists)

"\ _1

. N . N
0= [i > =l (0 [% > z(f)y(f)]

The elements of z(7) are usually called the instruments. Note that

if z(t) = @(t). the IV estimate reduces to the LS estimate.
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Choice of Instruments
Obviously, the choice of instruments is very important. They have to
be chosen
such that z(t) is uncorrelated with =(¢) (Ez(t)s(t) = 0), and

such that the matrix

N
T30t~ Ex(n)e’ ()
Tot=1

has full rank. In other words it is essential that z(t) and ¢(t) are

correlated.
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In practice these demands are fulfilled by choosing the instruments to

consist of delayed and/or filtered inputs. The instruments are

commonly chosen such that

-
2(t) = { —n(t—1) ... —nt—n,) ult—1) ... u(t—ny) ]
where the signal 1(t) is obtained by filtering the input as

C(q~H)n(t) = D(g " )u(t).

In the special case when C'(¢~!) =1 and D(qg= 1) = —¢— "¢,
-
z(t) = { w(t—1) ... wu(t—n, —ny) ]

Remark: Notice that u(¢) and the noise (t) are assumed to be

independent.

.
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Summary

The implementation of the PEM is computationally complex for

many model structures.

The computationally convenient LS method is normally biased

for such model structures (i.e. for correlated disturbances).

The IV method uses instruments that are uncorrelated with

the disturbances to make the “LS-like” solution consistent.

The parameters obtained by the IV method are thus consistent

(if instruments chosen with care) but has a (slightly) higher

variance than the PEM estimates.

See course “Automazione (Laboratorio)” for nonlinear function
minimisation with Evolutionary Algorithms (e.g. GA...)
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Reading and Exercises

e Reading: Sections 7.1-7.3, 7.5-7.6

e Exercises: See Lab. Experiments...

.
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