e Nonparametric Methods
e Input Signals

e Model Parameterizations
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System Identification

Obtain a model of a system from measured inputs and outputs.

Type of model depends on application and system. Often we assume
that the true system can be described as a LTI (linear time-invariant)
system:

y(t) = Go(q)u(t) + v(t) (1a)

or, equivalently,
o0
y(t) = Z go(k)u(t — k) + v(t) (1b)
k=1

Question: How do we determine the model Gy(q) or {go(k)}?
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Lecture 2.5 Lecture Notes on System Identification and Data Analysis Page 2/28




r

\.

Parametric models:

Postulate a model G(q, @) parameterized by 6.
e [asy to use for simulation, control design, etc.
e Often accurate models.
e Requires some work...
e Example: FIR model
y(t) = u(t) + bru(t — 1) + bou(t — 2)
= G(qg 1,0)=1+bqg  +byg? 0=Ib byt

Question: Can we determine Gy(q) or {go(k)} without postulating a

parameterized model?
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Nonparametric Identification

Nonparametric models:
Determine Gy or {go(k)} without parameterizing,
e Simple to obtain.

e Results often in graphs or tables which can not easily be used for

simulation, etc.
e Often used to validate parametric models.

e Transient analysis, correlation analysis, frequency analysis,

spectral analysis.

J
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Transient Analysis

Impulse response analysis: Applying the input

k, t=0
0, t#0

to (1b) gives the output

y(t) = kgo(t) + v(t)

which motivates the impulse response estimate

\ J
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Step-response analysis Applying the input

E, t>0
0, t<0

u(t) =

gives the output
t
y(t) =k Z go(k) 4+ v(t)
k=1
which motivates the impulse response estimate

oyt =yt —1)
g(t) = -

. S

Lecture 2.5 Lecture Notes on System Identification and Data Analysis Page 28




Ex: Step-response (true — solid, measured — x)
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Transient analysis
e Input taken as impulse or step.
e Model consists of recorded output, or an estimate of go(k).

e Convenient for deriving crude models. Gives estimates of

dominating time constants, time delays and static gain.
e Sensitive to noise.

e Poor excitation.

\ y
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Correlation Analysis

System:

oo

y(t) = Zg()(k)u(t — k) 4+ v(t)

k=1

where u(f) is a stochastic process which is independent of v(f).

Multiplying by u(t — 7) and taking expectation yields

ryu(T) = Z go(kE)ry (T — k)
k=1

which is known as the Wiener-Hopf equation.

In practice, truncate the sum and solve the resulting system of eq.

M
Tyu(T) = E G(k)ru (T — k)
k=1
. J
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Estimates of the covariance functions.
e Lirst choice:
1 N—T
Tyu(T) = ~ y(k+1)u(k) (v >0)
k=1
e Second choice:
1 :‘T\'T—T
Fyu(T) = N E y(k+71)u(k) (7 >0)
N—T
k=1
Which one to prefer?
\ J
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Frequency Analysis

Estimate Go(e*)!

Go(e™)| cos(wt + @) + v(t)

v cos(wt) !
———  Gol(2)

Repeat experiment for different w (t =1,..., N).

Determine the phase shift and the amplitude of the output.

Results in a Bode plot (|Go(e™)| and arg Go(e™)).

Sensitive to noise. Require long experiments.

Gives basic information about the system.

\ J

Lecture 2.5 Lecture Notes on System Identification and Data Analysis Page 1/28




r \
Spectral Analysis
e The correspondence of the Wiener-Hopt equation in the
frequency domain is given by:
—iw
Pyu(w) = Gle™™) Py (w)
e An estimate of the transfer function can be obtained as:
Gle™ ) =Py (w)/Py(w)
e Use estimates of the spectral densities, e.qg..
N
byu(w) = == 3 Fyu(r)e
" » 2
Y 2N U
7T=—N
\ J
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e Errors in 7,,(7) are summed together = not consistent!
— N large = total (square) error is large even if the error in
Fyu(7) is small for all 7.
— 7y (7) decreases slowly = poor estimate of 7, (7) for large
values of 7.
e Better estimates are obtained if a lag window, w(t), is used:
N
(i) . 1 o~ ) L iTW
yu(Ww) = — Fyu(T)w(T)e
2T )
T—=—N
e Length of lag window (M) - compromise between bias and
rariance (high resolution and reducing erratic fluctuations).
\.
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Figure 1: Spectral analysis, N = 256: Left: Periodogram. Right:
Bartlett window M = 128.
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Summary - Nonparametric Methods

Results often in graph or table (step response, weighting

function, transfer function etc.).

Transient analysis (step-response, impulse response).
e Frequency analysis (sinusoidal input).

e Correlation analysis (weighting function estimate).

e Spectral analysis (transfer function estimate).

e Useful for obtaining crude estimates of time constants, cut-off

frequencies etc. or for model validation.

\ J
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The quality of the model is dependent on an appropriate choice of

input signal.
Examples of useful input signals are:
e Step function.

e Pseudorandom binary sequence (PRBS).

¢ Sums of sinusoids
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Most often the input signal is characterized by its first and second

order moments:

m = Fu(t)
r(1) = E(u(t + 1) — m)(u(t) — m)T

and /or its spectral density:

Rem: Deterministic signals

1
Fu(t) = A;gn}x) N Z’u,(t)

t=1

S
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Step Function

Properties

e Mostly used for transient analysis: overshoot, static gain, major

time constants.

e Limited usability for parametric modeling.

\.
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PseudoRandom Binary Sequence (PRBS)

A PRBS u(t) is a periodic, deterministic signal with white-noise-like

properties.

u(t) = rem(A(q)u(t),2) = rem(ayu(t — 1) + -+ + a,u(t — n),2)

Properties

e The signal shifts between two levels in a certain fashion

depending on A(q).

e Spectral characteristics is determined by A(qg) and, in particular,
by the period length M = 2" — 1.

e Deterministic sequence behaving as noise (reproducibility).

\.
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Figure 2: PRBS sequence, p—0.5, M = oo. Left: Example of realiza-
tion. Right: Spectral density.
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Sum of Sinusoids

u(t) = Z Ay SIN (Wit + @)

m=1

Properties
e User parameters: a,,, w,, and @,,.

e Covariance function given by:

M
ax
7-(7—) - Z é” C()S(wnlt + l:IO'H"L)
m=1
e Spectral density given by:
M
¢ (w) = Z 2”" [0(w — wp,) + 6w + wm )]
m=1
. J
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Figure 4: Sum of 4 sinusoids. Left: Signal. Right: Spectral density.
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Persistent Excitation

To obtain estimates of a parametric model the input signal has to be

“rich” enough to excite all modes of the system.
A input signal is said to be persistently exciting (p.e.) of order n if:

(i) The following limit exists:

N—o0

N
1
ro(7) = lim N E u(t + T)'U..l (t)
=1

Rem: u(t) ergodic implies

ro(7) = Bu(t +1)u’ (¢)

\. J
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(ii) The matrix:

( r.(0) 7w (1) ru(n — 1)\
T (73 ( 1) Ir'f.l- (0)
R,(n) =
\T‘u(l n) 7y (0) /
is positive definite.
e Another definition: det R, (n) # 0.
e And another: u(t) is p.e. of order n if ¢, (w) # 0 on at least n
points in the interval —7m < w < 7.
\. J
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An input signal that is p.e. of order 2n can be used to consistently
estimate a parametric model of order < n.

e A step function is p.e. of order 1.

e A PRBS with period M is p.e. of order M.

e A sum of m sinusoids is p.e. of order 2m (if w,, # 0 and w,,, # w).
. J
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Another important observation!

A parametric model becomes more accurate in the
frequency region where the input signal has the major part

of its energy.

A physical process is often of low frequency character = use low-pass

ed signal as input.

\. J
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Summary - Input Signals

e The choice of input signal determines the quality of the final
parametric model.

e The obtained parametric model is more accurate in frequency
regions where the input signal contains much energy.

e An input signal has to be rich enough to excite all interesting
modes of the system (persistently exciting of sufficiently high
order).

e In practice there might be some restrictions on the input.

. S
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