## Research Talk at NUAA

Silvio Simani

Department of Engineering

University of Ferrara, Italy

08/09/2025

## **Discussion Topics**

1. How to write a scientific paper

2. Further research directions

3. Comments and Suggestions

# (1) How to Write a Scientific Paper Best Practices and Guidelines

## **Good Scientific Writing is Important**

- Clear communication of research findings
- Enhanced impact, visibility, and citations
- Essential for peer review and publishing
- Professional recognition and career development

## Structure of a Scientific Paper

- Abstract
- Introduction
- Methodology
  - Test Case Presentation (real or simulated)
- Results
- Discussion
- Conclusions
- References

## **How to Write an Effective Abstract**

### Clearly state

- •Research objective (why?)
- OMethodology (how?)
- OKey results (what did you find?)
- OMain conclusions (what does it mean?)

### Tips

- Keep concise (typically 150–250 words)
- Avoid references, figures, and acronyms
- OWrite the abstract last

## **Writing The Introduction**

- Define the problem clearly:
  - Describe background and context
  - Review relevant literature concisely
- Motivate your research clearly:
  - oldentify research gaps
  - Explain the novelty and significance of your work
- Clearly state your research objectives or questions

## Writing a Clear Methodology

- Explain what you did, how you did it, and why
- Describe:
  - Materials, experimental setup, data collection
  - Methods and procedures (clearly and precisely)
  - Ensure your methodology is reproducible
- Common pitfalls to avoid:
  - Missing details or ambiguous descriptions
  - Unnecessary complexity

## **Presenting Results Clearly**

- Summarise your key findings clearly and objectively
- Use tables and figures effectively:
  - Clear and self-explanatory captions
  - Ensure readability (font size, colour, clarity)
  - Clearly label axes and legends
- Highlight important trends or relationships clearly
- Avoid discussing or interpreting results here

## **Discussion and Conclusions**

#### Discussion:

- Interpret the significance of your results
- Link your results clearly back to your research questions
- Explain how your results relate to existing research

#### Conclusions:

- Summarise the key outcomes clearly
- Suggest future research directions or implications

### • Important:

Avoid introducing new data here

## **Writing Style for Scientific Papers**

- Use clear, precise, concise language:
  - Avoid ambiguity, unnecessary jargon, and complexity
- Be consistent:
  - Acronyms clearly defined at first use
  - Use past tense for methodology and results
  - Present tense for established facts and general statements
- Use a formal but straightforward style to improve readability

## Effective Reference Management

- Carefully choose relevant and reliable sources
- Consistently follow a standard referencing style (IEEE, APA, etc.)
- Use reference management software effectively:
- Examples:
  - LaTeX with IEEE or Elsevier
  - Helps maintain consistency and accuracy
  - Makes citation and bibliography management easy

## **Common Mistakes in Scientific Writing**

- Poor structure and unclear logical flow
- Missing key methodological details
- Overly complicated or verbose writing
- Misuse or overuse of acronyms and jargon (too technical)
- Inconsistent referencing and formatting
- Tips for avoiding these pitfalls clearly outlined

## **Final Checklist Before Submission**

- Ensure logical coherence (introduction → conclusions)
- Verify accuracy and clarity of results, tables, and figures
- Check grammar, spelling, and consistency of style
- Verify correct referencing and citation style
- Confirm compliance with journal or conference requirements

## (2) **Future Research Directions**

## **Explainable and Interpretable Machine Learning**

#### Goal:

 Develop Machine Learning (ML) models that clearly explain diagnostic decisions

- Black-box models
- Integration of fuzzy logic and ML

## **Transfer Learning & Domain Adaptation**

#### Goal:

 Adapt ML models trained on one system for application to similar systems

- Supervised/unsupervised transfer learning
- Neural networks for domain adaptation
- Shared feature extraction across different domains

## **Online & Incremental Fault Diagnosis**

#### Goal:

 Real-time updating of ML models with streaming sensor data.

- Incremental ML methods (e.g., Online Support Vector Machines (SVM), Incremental Random Forest (IRF))
- Adaptive feature extraction
- Real-time model updating

## Robustness against Data Corruption & Adversarial Attacks

#### • Goal:

 Enhance model robustness to noisy, corrupted, or adversarial data

- Robust neural networks (Adversarial Training)
- Robust statistical data preprocessing
- Ensemble-based robust detection methods

## Unsupervised & Semi-Supervised Fault Diagnosis

#### Goal:

 Develop fault diagnosis methods with limited labelled data

- Autoencoder-based anomaly detection
- Density-Based Spatial Clustering of Applications with Noise (DBSCAN), Isolation Forest
- Semi-supervised ML techniques (e.g., Co-Training algorithms)

## Hybrid Approaches: Data-driven & Model-based Integration

#### Goal:

 Combine advantages of physical (model-based) and ML-based (data-driven) approaches.

- Kalman filters integrated with ML classifiers
- Model-based feature extraction integrated into ML
- Physical residual generation combined with MLbased decision logic

## Fault Prognosis & Remaining Useful Life (RUL) Prediction

#### Goal:

 Extend fault diagnosis to fault prognosis and Remaining Useful Life (RUL) prediction of systems/components.

#### Approaches:

- Recurrent Neural Networks (RNN) such as Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU)
- Autoregressive Integrated Moving Average (ARIMA) models
- Deep learning-based predictive maintenance

#### • Health Aware Control (new, since 2023)

o Replaces FTC, sustainable control, ...

## **Now: From Your Side...**

#### Goal:

New targets.

#### Approaches:

 Methodologies and solutions of interest for your course of studies

### Applications

- Novel plants, processes and systems
- Simulated, real or realistic
- Hardware In the Loop (HIL)

## **Concluding Remarks on Future Directions**

- Increasing demand for robust, adaptive, and interpretable ML methods
- Potential impact on predictive maintenance and operational efficiency
- Encouragement to pursue interdisciplinary approaches (control theory, data science, engineering)

## Thanks for Listening!

# (3) From you all: Comments and Suggestions

Please feel free to contact me via email (silvio.simani@unife.it) or phone (+393203044076) if you need help or have suggestions and recommendations regarding your thoughts and work