Lectures 3

Recursive (On-line) Identification Methods

Recursive Least Squares (RLS) Methods

Forgetting Factor and Tracking Time-Varying Parameters

Identification condition problem

Computational Aspects
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Course QOutline

Introduction and overview on system identification
e Non-recursive (off-line) identification methods
o Recursive (on-line) identification methods (1)

e Recursive (on-line) identification methods (II)

Practical aspects and applications of system

identification
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Why is recursive identification of interest?
e On-line Estimation.
o Adaptive Systems.
e Time Varying Parameters.
e Fault Detection and Diagnosis.

e Simulation.
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How do we estimate time-varying parameters?
e Update the model regularly (once every sampling instant)
e Make use of previous calculations in an efficient manner.

e The basic procedure is to modify the corresponding off-line
method, e.g., the block/batch least squares method, the

prediction error method.
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Desirable Properties

We desire our recursive algorithms to have the following properties:
e Fast convergence.
e Consistent estimates (time-invariant models).
e Good tracking (for time-varying parameters, e.g. in the event of
fault occurrence or operating condition changes).
e Computationally simple (perform all calculations during one

sampling interval).
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No algorithm is perfect. The design is always based on trade-offs,

such as:
e Convergence versus tracking.

e Computational complexity versus accuracy.

. J

Lecture 3 | gctyre Notes on System Identification and Data Analysis Page 6/26




Recursive Least Squares Method (RLS)

.
. 1) _ 22 (J
O(t) = argmin V;(6).  Vi(6) Z (%)

where (k) = y(k) — ¢’ (k)8. The solution reads:

O(t) = R, 'r,

where
t t
R =Y ok (k). =) ok)yk)
k=1 k="
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e The criterion function V;(8) changes every time step, hence the

estimate @(t) changes every time step.

e How can we find a recursive implementation of 8(t)?
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RLS

Algorithm:
At time t = 0: Choose initial values of 8(0) and P(0)
At each sampling instant, update ¢(t) and compute

o(t)

(f*l)+K() (1)
y(t

Question: How to obtain/derive this recursive version of LS from
the block/batch LS?
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How do we handle time-varying parameters? — two ways:

e Postulate a time-varying model for the parameters. Typically we
let the parameters vary according to a random walk and use the
Kalman filter as an estimator.

e Modify the cost function so that we gradually forget old data.

Hence, the model is fitted to the most recent data (the

parameters are adapted to describe the newest data).
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e Modified cost function:

t
O(t) = are min V;(0), V, = Bt k)2 (K
O(t) = argmin V1 (6).  Vi(6) ;%(u)(n

e Suppose that the weighting function 3(t, k) satisfies

At k)

At)3(t—1,k), 0<k<t
3(t.t) =1

A common choice is to let A(t) = A\, where A is referred to as a

so-called forgetting factor. In this case we get:
Blt.k)y=\N"% 0<r<1

e A\ = 1 corresponds to the standard RLS.
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Weighted RLS

Algorithm:
At time t = 0: Choose initial values of 8(0) and P(0)

At each sampling instant, update ¢(t) and compute
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Initial Conditions

o 9(0) is the initial parameter estimate.
e View P(0) as an estimate of the covariance matrix of the initial
parameter estimate.
— P(0) (and P(t)) are covariance matrices, and must be
svimetric and positive definite.
— Choose P(0) = pI.
— p large = large initial response. Good if initial estimate é(())

1S uncertain.
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Forgetting Factor

Let A(t) = A. The forgetting factor A will then determine the
tracking capability.

e We must have A = 1 to get convergence.

e )\ small = Old data is forgotten faster, hence better tracking.

e )\ small = the algorithm is more sensitive to noise (bad

convergence).

e The memory constant is defined as T{) = ﬁ IfTA=0095"1T,=20
The choice of A is consequently a trade-off between tracking
capability and noise sensitivity. A typical choice is A € (0.95,0.99). It
is common to let A(?) tend exponentially to 1, e.g.,

At =1 Ay(1— A(0))
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Conclusions

In practical scenarios, one often need to use recursive identification

(time-varying systems, online identification, fault diagnosis).

Both the LS and the IVM can easily be recast in recursive forms. The
PEM can only be approximated.
The properties of the on-line methods are comparable with the off-line

case.

Tracking capability can be incorporated by using forgetting factor

techniques, or by model the parameter variations.

There is always a tradeoff between convergence speed and tracking

properties, as well as computational complexity and accuracy.

In practice, one can make simplifications and modifications to make

the recursion cheaper and more numerically robust.
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