
The algorithm derivation below can be found in Brierley [1] and Brierley and Batty [2]. Please 
refer to these for a hard copy.  

 

Back Propagation Weight Update Rule 

This idea was first described by Werbos [3] and popularised by Rumelhart et al.[4].  

 
Fig 1 A multilayer perceptron  

Consider the network above, with one layer of hidden neurons and one output neuron. When an 
input vector is propagated through the network, for the current set of weights there is an output 
Pred. The objective of supervised training is to adjust the weights so that the difference 
between the network output Pred and the required output Req is reduced. This requires an 
algorithm that reduces the absolute error, which is the same as reducing the squared error, 
where: 

Network Error = Pred - Req
 = E 

(1) 

The algorithm should adjust the weights such that E2 is minimised. Back-propagation is such 
an algorithm that performs a gradient descent minimisation of E2. 
 
In order to minimise E2, its sensitivity to each of the weights must be calculated. In other 
words, we need to know what effect changing each of the weights will have on E2. If this is 
known then the weights can be adjusted in the direction that reduces the absolute error. 
 
The notation for the following description of the back-propagation rule is based on the diagram 
below.  



 
Fig 2 notation used 

The dashed line represents a neuron B, which can be either a hidden or the output neuron. The 
outputs of n neurons (O 1 ...O n ) in the preceding layer provide the inputs to neuron B. If 
neuron B is in the hidden layer then this is simply the input vector. 
 
These outputs are multiplied by the respective weights (W1B...WnB), where WnB is the weight 
connecting neuron n to neuron B. The summation function adds together all these products to 
provide the input, IB, that is processed by the activation function  f (.) of neuron B.  f (IB) is the 
output, OB, of neuron B. 
 
For the purpose of this illustration, let neuron 1 be called neuron A and then consider the 
weight WAB connecting the two neurons. 
 
The approximation used for the weight change is given by the delta rule:  

   (2) 

Where η is the learning rate parameter, which determines the rate of learning, and 

 

is the sensitivity of the error, E2, to the weight WAB and determines the direction of search in 
weight space for the new weight WAB(new) as illustrated in the figure below.  



 
Fig 3 In order to minimise E2 the delta rule gives the direction of weight change required 

From the chain rule, 

 

(3) 

and  

 

(4) 

since the rest of the inputs to neuron B have no dependency on the weight WAB. 
 
Thus from eqns. (3) and (4), eqn. (2) becomes,  

 

(5) 



and the weight change of WAB depends on the sensitivity of the squared error, E2, to the input, 
IB, of unit B and on the input signal OA. 
 
There are two possible situations: 
 
1. B is the output neuron; 
2. B is a hidden neuron. 
 
Considering the first case: 
 
Since B is the output neuron, the change in the squared error due to an adjustment of WAB is 
simply the change in the squared error of the output of B:  

 

(6) 

Combining eqn. (5) with (6) we get,  

 

(7) 

the rule for modifying the weights when neuron B is an output neuron. 
 
If the output activation function, f (.), is the logistic function then:  

 

(8) 

differentiating (8) by its argument x;  

 



(9) 

But,  

 

(11) 

inserting (11) into (9) gives:  

 

(12) 

similarly for the tanh function,  

 

or for the linear (identity) function,  

 

This gives:  

 

Considering the second case:  
 
B is a hidden neuron.  



 

(13) 

where the subscript, o, represents the output neuron.  

 

(15) 

where p is an index that ranges over all the neurons including neuron B that provide input 
signals to the output neuron. Expanding the right hand side of equation (15),  

 

(16) 

since the weights of the other neurons ,WpO (p!=B) have no dependency on OB. 
 
Inserting (14) and (16) into (13),  

 

(17) 

Thus is now expressed as a function of , calculated as in (6). 
 
The complete rule for modifying the weight WAB between a neuron A sending a signal to a 
neuron B is,  

 

(18) 

where,  



 

where fo(.) and fh(.)are the output and hidden activation functions respectively.  

 

Example  

 

Network Output = [tanh(IT .WI)] . WO  
 
let  
 
HID = [Tanh(IT.WI)]T - the outputs of the hidden neurons  
 
ERROR = (Network Output - Required Output)  
 
LR = learning rate  
 
The weight updates become,  
 
linear output neuron  
 
WO = WO - ( LR x ERROR x HID )  

(21) 

tanh hidden neuron  
 
WI = WI - { LR x [ERROR x WO x (1- HID2)] . IT }T  

(22) 



Equations 21 and 22 show that the weights change is an input signal multiplied by a local 
gradient. This gives a direction that also has magnitude dependent on the magnitude of the 
error. If the direction is taken with no magnitude then all changes will be of equal size which 
will depend on the learning rate.  
 
The algorithm above is a simplified version in that there is only one output neuron. In the 
original algorithm more than one output is allowed and the gradient descent minimises the total 
squared error of all the outputs. With only one output this reduces to minimising the error.  
 
There are many algorithms that have evolved from the original algorithm with the aim to 
increase the learning speed. These are summarised in [5].  
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