
1

3/17/2009 1/134

Introduction to Matlab

Introduction to MATLAB

3/17/2009 2/134

Introduction to Matlab

Contact Information

• Course website:

– http://www.ing.unife.it/simani/lessons23.html

– Information also will be contained on website

2

3/17/2009 3/134

Introduction to Matlab

Course Structure
• Overview of MATLAB

– History of MATLAB
– Overview of MATLAB environment
– Discussion of MATLAB tools

• Basic MATLAB
– Simple MATLAB functionality

• Syntax, Commands
– Exercises involving basic MATLAB

functionality and its Toolboxes

3/17/2009 4/134

Introduction to Matlab

Course Structure

• Advanced MATLAB Functionality
– Beyond MATLAB as a calculator
– The MATLAB programming language
– Project showcasing MATLABs advanced

functionality

• Other Toolboxes
• Dynamic System Simulations
• Digital Control Design

3

3/17/2009 5/134

Introduction to Matlab

Coursework
• Collection of exercises:

– Will occur during the laboratory sessions
– Will involve MATLABs basic functionality
– Will exploit its Toolboxes for Control System

Design

• Final Examination:
– Single practical project @ PCs;
– Will cover Digital Control System theory.

3/17/2009 6/134

Introduction to Matlab

MATLAB Overview

• What is MATLAB?
• History of MATLAB

– Who developed MATLAB
– Why MATLAB was developed
– Who currently maintains MATLAB

• Strengths of MATLAB
• Weaknesses of MATLAB

4

3/17/2009 7/134

Introduction to Matlab

What is MATLAB?

• MATLAB
– MATrix LABoratory
– Interactive & programming language

• Will be covered during week 2
– Control System Design & Programming tool

• Will be covered during week 3

3/17/2009 8/134

Introduction to Matlab

What is MATLAB con’t: 2

• Considering MATLAB at home
– Standard edition

• Available for roughly 2 thousand dollars

– Student edition
• Available for roughly 1 hundred dollars.
• Some limitations, such as the allowable size of a

matrix

5

3/17/2009 9/134

Introduction to Matlab

Strengths of MATLAB

• MATLAB is relatively easy to learn
• MATLAB code is optimized to be relatively

quick when performing matrix operations
• MATLAB may behave like a calculator or

as a programming language
• MATLAB is interpreted, errors are easier

to fix
• Although primarily procedural, MATLAB

does have some object-oriented elements

3/17/2009 10/134

Introduction to Matlab

Weaknesses of MATLAB

• MATLAB is NOT a general purpose
programming language

• MATLAB is an interpreted language
(making it for the most part slower than a
compiled language such as C++)

• MATLAB is designed for scientific
computation and is not suitable for some
things (such as parsing text)

6

3/17/2009 11/134

Introduction to Matlab

Overview

• Review of main topics

• Review of the MATLAB environment

• Declaring and manipulating variables

• Useful functions

3/17/2009 12/134

Introduction to Matlab

MATLAB GUI
• Launch Pad / Toolbox

• Workspace

• Current Directory

• Command History

• Command Window

7

3/17/2009 13/134

Introduction to Matlab

Launch Pad / Toolbox

• Brief details

• Launch Pad allows you to start
help/demos

• Toolbox is for use with specialized
packages (e.g., Signal Processing)

3/17/2009 14/134

Introduction to Matlab

Using MATLAB
• This is the window that appears when you start MATLAB

This is the
menu bar

This window
shows the

current
directory or

the workspace

This window
shows the
command

history

This is the
command

window – we
use this as our

calculator

8

3/17/2009 15/134

Introduction to Matlab

Workspace

• Allows access to data

• Area of memory managed through the
Command Window

• Shows Name, Size (in elements), Number
of Bytes and Type of Variable

3/17/2009 16/134

Introduction to Matlab

Current Directory
• MATLAB, like Windows or UNIX, has a

current directory

• MATLAB functions can be called from any
directory

• Your programs (to be discussed later) are
only available if the current directory is the
one that they exist in

9

3/17/2009 17/134

Introduction to Matlab

MATLAB as a Calculator
• You can enter expressions at the command line

and evaluate them right away.

The ‘>>’ symbols indicate where commands are typed.

previous
command

next
command

>> 3 + 5*8

ans =

43

>>

3/17/2009 18/134

Introduction to Matlab

Mathematical Operators

5^4 = 625a^bab

5 / 4 = 1.25/÷

5 * 4 = 20*×

5 - 4 = 1-−

5 + 4 = 9++

AlgebraMATLABOperator

10

3/17/2009 19/134

Introduction to Matlab

Command History

• Allows access to the commands used
during this session, and possibly previous
sessions

• Clicking and dragging to the Command
window allows you to re-execute previous
commands

3/17/2009 20/134

Introduction to Matlab

Command Window

• Probably the most important part of the
GUI

• Allows you to input the commands that will
create variables, modify variables and
even (later) execute scripts and functions
you program yourself.

11

3/17/2009 21/134

Introduction to Matlab

Mathematical Operators
>> 5/4

ans =

1.2500

>> 5^4

ans =

625

>> 34^16

ans =

3.1891e+024

>> 5+4

ans =

9

>> 5-4

ans =

1

>> 5*4

ans =

20

3/17/2009 22/134

Introduction to Matlab

Number Representation
• MATLAB uses scientific notation for very large

numbers and very small numbers.
• MATLAB has a special way of doing this:

2416 101891.334 ×=

>> 34^16

ans =

3.1891e+024

12

3/17/2009 23/134

Introduction to Matlab

“BEDMAS”

B = Brackets
E = Exponentials
D = Division
M = Multiplication
A = Addition
S = Subtraction

Be careful using brackets – check that opening
and closing brackets are matched up correctly.

>> 3*4 + 2

ans =

14

>> 3*(4+2)

ans =

18

3/17/2009 24/134

Introduction to Matlab

Simple Commands
• who

• whos

• save

• clear

• load

13

3/17/2009 25/134

Introduction to Matlab

who

• who lists the variables currently in the
workspace.

• As we learn more about the data
structures available in MATLAB, we will
see more uses of “who”

3/17/2009 26/134

Introduction to Matlab

whos

• whos is similar to who, but also gives size
and storage information

• s = whos(...) returns a structure with these
fields name variable name size variable
size bytes number of bytes allocated for
the array class class of variable and
assigns it to the variable s. (We will
discuss structures more).

14

3/17/2009 27/134

Introduction to Matlab

Save

• save – saves workspace variables on disk

• save filename stores all workspace variables
in the current directory in filename.mat

• save filename var1 var2 ... saves only
the specified workspace variables in
filename.mat. Use the * wildcard to save only
those variables that match the specified pattern.

3/17/2009 28/134

Introduction to Matlab

clear

• clear removes items from workspace,
freeing up system memory

• Examples of syntax:

– clear
– clear name
– clear name1 name2 name3 ...

15

3/17/2009 29/134

Introduction to Matlab

clc

• Not quite clear

• clc clears only the command window,
and has no effect on variables in the
workspace.

3/17/2009 30/134

Introduction to Matlab

load

• load - loads workspace variables from
disk

• Examples of Syntax:

– load
– load filename
– load filename X Y Z

16

3/17/2009 31/134

Introduction to Matlab

Declaring a Variable in MATLAB

• Not necessary to specify a type. (Such as
integer or float)

• Several kinds of variables:
– Vector
– Matrix
– Structure
– Cell array

3/17/2009 32/134

Introduction to Matlab

Declaring a variable, con’t: 2

• For an integer or floating point number:
simply set a variable name equal to some
character

• Ex. >> A = 5;
• Or >> A = 5

– Have you seen any difference?

17

3/17/2009 33/134

Introduction to Matlab

Side Note 1

• The presence or lack of a semi-colon (i.e.
;) after a MATLAB command does not
generate an error of any kind

• The presence of a semi-colon (;) tells
MATLAB to suppress the screen output of
the command

3/17/2009 34/134

Introduction to Matlab

Side Note 1, con’t: 2

• The lack of a semi-colon will make
MATLAB output the result of the command
you entered

• One of these options is not necessarily
better than the other

18

3/17/2009 35/134

Introduction to Matlab

Declaring a Variable, con’t: 3

• You may now use the simple integer or
float that you used like a normal number
(though internally it is treated like a 1 by 1
matrix)

• Possible operations:
– +, -, /, *

– Many functions (round(), ceil(), floor())

3/17/2009 36/134

Introduction to Matlab

Declaring a variable, con’t: 4
• You may also make a vector rather simply

• The syntax is to set a variable name equal to
some numbers, which are surrounded by
brackets and separated by either spaces or
commas

• Ex. >>A = [1 2 3 4 5];

• Or >>A = [1,2,3,4,5];

– Any difference?

19

3/17/2009 37/134

Introduction to Matlab

Declaring a variable, con’t: 5
• You may also declare a variable in a

general fashion much more quickly

• Ex. >> A = 1:1:10
• The first 1 would indicate the number to

begin counting at
• The second 1 would be the increase each

time
• And the count would end at 10

3/17/2009 38/134

Introduction to Matlab

Declaring a variable, con’t: 6
• Matrices are the primary variable type for

MATLAB

• Matrices are declared similar to the declaration
of a vector

• Begin with a variable name, and set it equal to a
set of numbers, surrounded by brackets. Each
number should be separated by a comma or
semi-colon

20

3/17/2009 39/134

Introduction to Matlab

Declaring a variable, con’t: 7

• The semi-colons in a matrix declaration
indicate where the row would end

• Ex. A = [1,2;3,4] would create a
matrix that looks like

[1 2
3 4]

3/17/2009 40/134

Introduction to Matlab

Declaring a variable, con’t: 7

• Matrices may be used as normal variables
now. Multiplying is already defined for
matrices, and additional code does not
need to be written.

21

3/17/2009 41/134

Introduction to Matlab

Declaring a variable, con’t: 8
• The final type of variable we will discuss today will

be a “struct”.

• The command struct is used to create a structure

• Syntax:
– s = struct('field1',{},'field2',{},...)
– s = struct('field1',values1,'field2',values2,...)

3/17/2009 42/134

Introduction to Matlab

Declaring a variable, con’t 9

• A simple declaration of a structure is as
follows:

Student.name = ‘Joe’;
Student.age = 23;
Student.major = ‘Computer Science’;

22

3/17/2009 43/134

Introduction to Matlab

Declaring a variable, con’t: 10
• Arrays of structures are possible.

• Taking the previous example, if one were to
write:

Student(2).name = ‘Bill’
…etc

Then the array would be created for you.

3/17/2009 44/134

Introduction to Matlab

Declaring a variable, con’t: 11

• Structures can group information, but
methods are not written for them.

23

3/17/2009 45/134

Introduction to Matlab

Built-In Functions
• Like a calculator, MATLAB has many built-in

mathematical functions.

• To find out more about MATLAB’s functions use MATLAB’s help
(from command window).

>> sqrt(4)

ans =

2

>> abs(-3)

ans =

3

3/17/2009 46/134

Introduction to Matlab

Variables
• We use variables so calculations are easily

represented.

• You can think of variables as named locations in
the computer memory in which a number can be
stored.

032
8.37100

9
5)32(

=⇒=
=⇒=

×−=

CF
CF

FC

24

3/17/2009 47/134

Introduction to Matlab MATLAB Variables
>> F=100

F =

100

>> C=(F-32)*5/9

C =

37.7778

>> F = 32

F = 32

>> C=(F-32)*5/9

C =

0

3/17/2009 48/134

Introduction to Matlab

Memory as a Filing System
• You can think of computer memory as a large

set of “boxes” in which numbers can be stored.
The values can be inspected and changed.

• Boxes can be labelled with a variable name.

>> A=3

A =

3

3

A

25

3/17/2009 49/134

Introduction to Matlab

Special Variables

• MATLAB has some special variables:
– ans is the result of the last calculation.
– pi represents π.
– Inf represents infinity.
– NaN stands for not-a-number and occurs

when an expression is undefined e.g. division
by zero.

– i, j represent the square root of –1
(necessary for complex numbers)

3/17/2009 50/134

Introduction to Matlab

Calculations with Variables
• Suppose we want to calculate the

volume of a cylinder.
• It’s radius and height are stored as

variables in memory.

>> volume = pi*radius^2*height

volume radius height

26

3/17/2009 51/134

Introduction to Matlab

Simple Commands, con’t: 2
• who and whos are similar, they allow you to see the

variables in your workspace

• save saves the variables in your workspace to a binary
file readable by MATLAB

• clear removes the variables from your workspace

• load loads the binary file created by the save command
and restores the variables to your workspace

3/17/2009 52/134

Introduction to Matlab

Simple Commands, con’t: 3
• For any of these commands (and many others)

you can get a more in depth explanation by
typing help followed by the name of the
command

• Ex. >>help clear

• Online documentation for all of these commands
is also available on the Mathworks website

27

3/17/2009 53/134

Introduction to Matlab

Declaring variables in MATLAB

• Learned how to declare several types of
variables:
– Normal floats and int(eger)s
– Vectors
– Matrices
– Structures

3/17/2009 54/134

Introduction to Matlab

Declaring variables in MATLAB, con’t: 2

• Regular int/floats

• Variable name followed by an equals sign
and the value you wish to assign

• Ex. A = 5;

28

3/17/2009 55/134

Introduction to Matlab

Declaring variables in MATLAB, con’t: 3

• Vectors

• Variable name followed by an equals sign
and one or more numbers separated by
either spaces or commas and surrounded
by brackets

• Ex. A = [1 2 3 4 5];

3/17/2009 56/134

Introduction to Matlab

Declaring variables in MATLAB, con’t: 4

• Matrices

• Like vector – variable name followed by an
equals sign and one or more numbers
separated by either spaces or commas
and surrounded by brackets. Use semi-
colons to indicate a change in row.

• Ex. A = [1 2; 3 4];

29

3/17/2009 57/134

Introduction to Matlab

Declaring variables in MATLAB, con’t: 5

• Structures

• Like a struct in C or C++, similar to a class
in C++ or Java, but lacking class specific
functions or methods

• Declared using a point operator

3/17/2009 58/134

Introduction to Matlab

Declaring variables in MATLAB, con’t: 6

• Structures, con’t

• Ex. A.name = ‘Joe’;
A.age = 23;
A.occupation = ‘student’;

30

3/17/2009 59/134

Introduction to Matlab

Declaring variables in MATLAB, con’t: 7

• Structures, con’t: 2

• Can have an array of structures

• Ex. A(2).name = ‘Bob’;

…

3/17/2009 60/134

Introduction to Matlab

Sample MATLAB functions
• Min

• Max

• Median

• Mean

• Sum

• Diff

31

3/17/2009 61/134

Introduction to Matlab

MATLAB Functions: min

• min

• Will find the minimum element of the array

• Works slightly different on vectors and
matrices

3/17/2009 62/134

Introduction to Matlab

MATLAB Functions: max

• max

• Will find the maximum element of the array

• Also works slightly different on vectors and
matrices

32

3/17/2009 63/134

Introduction to Matlab

MATLAB Functions: median

• median

• Will find the median value of the array

• Also works slightly different on vectors and
matrices

3/17/2009 64/134

Introduction to Matlab

MATLAB Functions: mean

• mean

• Returns the average value of the array

• Works slightly different on vectors and
matrices

33

3/17/2009 65/134

Introduction to Matlab

MATLAB Functions: sum

• sum

• Will return a sum of the array elements

• Also works slightly different on vectors and
matrices

3/17/2009 66/134

Introduction to Matlab

diff

• diff

• Will return the difference between adjacent
elements in an array

• This is an approximate derivative

34

3/17/2009 67/134

Introduction to Matlab

Overview

• Matlab further functions

• Plotting – in depth

• File I/O – few details

3/17/2009 68/134

Introduction to Matlab

New MATLAB Function
• rand() - Uniformly distributed random

numbers and arrays

• Example of syntax:
– A = rand(n)
– A = rand(m,n)

• Where m and n are dimensions of the
matrix

35

3/17/2009 69/134

Introduction to Matlab

rand() con’t: 2

• Scalars may be generated
– Ex. A = rand(1,1);

• Vectors may be generated
– Ex. A = rand(10,1);

3/17/2009 70/134

Introduction to Matlab

rand() con’t: 3

• Generated random numbers will be
between 0 and 1.

• Scaling can be done by multiplying the
resulting matrix or vector by the number
you wish to scale with

36

3/17/2009 71/134

Introduction to Matlab

Plotting

• Several types of plots available

• plot
• polar
• bar
• hist

3/17/2009 72/134

Introduction to Matlab

plot() (from MATLAB help)

• Linear 2-D plot

• Syntax:
– plot(Y)
– plot(X1,Y1,...)
– plot(X1,Y1,LineSpec,...)
– plot(...,'PropertyName',PropertyValue,...)

– h = plot(...)

37

3/17/2009 73/134

Introduction to Matlab

plot() con’t: 2

• MATLAB defaults to plotting a blue line
between points

• Other options exist:
– Different color lines

– Different types of lines

– No line at all!

3/17/2009 74/134

Introduction to Matlab

plot() con’t: 3 – Color options
• Color options:

– Yellow - ‘y’
– Magenta - ‘m’
– Cyan - ‘c’
– Red - ‘r’
– Green - ‘g’
– Blue - ‘b’
– White - ‘w’
– Black - ‘k’

• Example:

– >> temp=1:1:10;
– >> plot(temp, ‘y’);

38

3/17/2009 75/134

Introduction to Matlab

plot() con’t: 4 – Line options

• Line styles:
– ‘-’: solid line (default)

– ‘--’: dashed line

– ‘:’: dotted line

– ‘-.’: dash-dot line

3/17/2009 76/134

Introduction to Matlab

plot() con’t: 5 – Line Markings
• + - plus sign
• o - circle
• * - asterisk
• . - Point
• x - cross
• s - square
• d - diamond
• ^ - upward pointing triangle
• v - downward pointing triangle
• > - right pointing triangle
• < - left pointing triangle
• p - five-pointed star (pentagram)
• h - six-pointed star (hexagram)

39

3/17/2009 77/134

Introduction to Matlab

polar()

• Plot polar coordinates

• Syntax:
– polar(theta,rho)
– polar(theta,rho,LineSpec)

• theta – Angle counterclockwise from the 3
o’clock position

• rho – Distance from the origin

3/17/2009 78/134

Introduction to Matlab

polar() con’t: 2

• Line color, style and markings apply as
they did in the example with plot() .

40

3/17/2009 79/134

Introduction to Matlab

bar()

• Creates a bar graph

• Syntax
– bar(Y)
– bar(x,Y)
– bar(...,width)
– bar(...,'style')
– bar(...,LineSpec)

3/17/2009 80/134

Introduction to Matlab

hist()

• Creates a histogram plot

• Syntax:
– n = hist(Y)
– n = hist(Y,x)
– n = hist(Y,nbins)

41

3/17/2009 81/134

Introduction to Matlab

File I/O

• Both high-level and low-level file I/O

• High-level covered here

3/17/2009 82/134

Introduction to Matlab

High-Level File I/O
• I/O = input/output; 3 important commands for

input:
– csvread: M = CSVREAD('FILENAME')

reads a comma separated value formatted file FILENAME. The result is
returned in M. The file can only contain numeric values.

– dlmread: RESULT= dlmread(FILENAME,DELIMITER) reads
numeric data from the ASCII delimited file FILENAME using the delimiter
DELIMITER. The result is returned in RESULT. Use '\t' to specify a
tab.

– textread: A = textread('FILENAME') read formatted data
from text file. It reads also numeric data from the file FILENAME into a
single variable. If the file contains any text data, an error is produced.

42

3/17/2009 83/134

Introduction to Matlab

csvread

• Read a comma-separated value file

• Syntax:
– a = csvread('filename')
– a = csvread('filename',row,col)
– a = csvread('filename',row,col,range)

• Note – csvread does not like to read in text!

3/17/2009 84/134

Introduction to Matlab

dlmread

• Like csvread, only instead of a comma, you
specify the delimiter

• Syntax:
– a = dlmread(filename,delimiter)
– a = dlmread(filename,delimiter,R,C)
– a = dlmread(filename,delimiter,range)

• Treat this like a generalized form of csvread.

43

3/17/2009 85/134

Introduction to Matlab

textread

• Reads formatted data from a text file
• Syntax:

– [A,B,C,...] = textread('filename','format')
– [A,B,C,...] = textread('filename','format',N)

– [...] = textread(...,'param','value',...)

• Useful, but try to do without it, MATLAB is
somewhat slower when dealing with text data

3/17/2009 86/134

Introduction to Matlab

Delimiters

• Delimiter: A character or sequence of
characters marking the beginning or end
of a unit of data.

• Ex. 1,2,3 (the delimiter would be ,)

• Also 1:2:3 (the delimiter would be :)

44

3/17/2009 87/134

Introduction to Matlab

Delimiters, con’t: 2

• The most common delimiter is a comma:
hence the term csv (CSV, i.e. Comma
Separated Value) or comma separated
values.

• Microsoft Excel can read csv formatted
files

3/17/2009 88/134

Introduction to Matlab

High Level File Output

• Some of the input commands have
corresponding high-level output
commands

• csvwrite

• dlmwrite

45

3/17/2009 89/134

Introduction to Matlab

csvwrite

• Write a matrix to a comma-separated value file

• Syntax:
– csvwrite('filename',M)
– csvwrite('filename',M,row,col)

writes matrix M starting at offset row , and column col in the file. row
and col are zero-based, that is row=col=0 specifies first number in
the file.

• Ex. csvwrite(‘blah.csv’,a);

3/17/2009 90/134

Introduction to Matlab

dlmwrite

• Writes a matrix M to a delimited file (using
the delimiter you specify)

• Syntax:
– dlmwrite(filename,M,delimiter)
– dlmwrite(filename,M,delimiter,row,col)

• Ex. dlmwrite(‘blah.txt’,a,’:’);

46

3/17/2009 91/134

Introduction to Matlab

Low-Level file I/O
• fopen

• fclose

• fprintf

• fgetl / fgets

3/17/2009 92/134

Introduction to Matlab

fopen

• Opens a file and returns the handle to the
file object

• File_ID = fopen(‘blah.txt’)

• Capturing the file handle is necessary to
write or read to/from the file

47

3/17/2009 93/134

Introduction to Matlab

fclose

• Closes a file associated with a specific file
identification handle

• Ex. fclose(File_ID);

• Ex. fclose(‘all’);

3/17/2009 94/134

Introduction to Matlab

fprintf

• Multi-use: can output to a file or a screen

• Ex. fprintf(fid,'%6.2f %12.8f\n',y);

• %6.2f means a floating point with 6 leading
decimals and 2 trailing

• Specifying 1 instead of fid will output to the
screen

48

3/17/2009 95/134

Introduction to Matlab

fgetl / fgets

• Get line and get string, respectively.
fgetl will get you a line without the
newline character at the end, while
fgets will preserve the newline character
(\n).

• Syntax:
– Line = fgetl(File_ID);
– Line = fgets(File_ID);

3/17/2009 96/134

Introduction to Matlab

Programming in MATLAB

• Two types of files:

– Scripts

– Functions

49

3/17/2009 97/134

Introduction to Matlab

MATLAB Scripts

• Scripts are MATLAB commands stored in
text files. When you type the name of the
script file at the MATLAB prompt the
commands in the script file are executed
as if you had typed them in from the
keyboard. Scripts end with the extension
.m

• Referred to as M-Files

3/17/2009 98/134

Introduction to Matlab

Script Files
• You can save a sequence of commands

for reuse later
• Create a new M-File (script file)

50

3/17/2009 99/134

Introduction to Matlab

Script Files
• Each line is the same as typing a

command in the command window
• Save the file as filename.m

3/17/2009 100/134

Introduction to Matlab

Script Files

• Run the
sequence of
commands by
typing the
filename in
the command
window

>> vol_surf

r =

5

h =

10

volume =

785.3982

area =

471.2389

>>

51

3/17/2009 101/134

Introduction to Matlab

MATLAB Functions

• Have input and output parameters

• MATLAB can return more than one
variable at the end of a function

• Variables in scope in the MATLAB function
go out of scope and are eliminated when
the MATLAB function ceases to exist.

3/17/2009 102/134

Introduction to Matlab

Programming in MATLAB

• Two types of files:

– Scripts

– Functions

52

3/17/2009 103/134

Introduction to Matlab

MATLAB Scripts

• Scripts are MATLAB commands stored in
text files. When you type the name of the
script file at the MATLAB prompt the
commands in the script file are executed
as if you had typed them in from the
keyboard. Scripts end with the extension
.m

• Referred to as M-Files

3/17/2009 104/134

Introduction to Matlab

MATLAB Functions

• Functions are similar to scripts

• Functions may take arguments

• Functions may return one or more values

53

3/17/2009 105/134

Introduction to Matlab

MATLAB Functions, con’t: 2
• function [output] = function_name(input_arguments)

• The above is a function header and
should be the first non-comment line in the
function file

• Comments may be placed below the
function header

3/17/2009 106/134

Introduction to Matlab

MATLAB Functions, con’t: 3
• Example function
function [output] = square(input)
%
% The function [output] = square(input)
% computes the square of its input
%
output = input*input;
return

• Body of functions can contain code just like scripts could
• Comment line will be the output of the command

– >> help square

54

3/17/2009 107/134

Introduction to Matlab

MATLAB Functions, con’t: 4
• Another example function
function r = rank(A,tol)
%RANK Matrix rank.
% RANK(A) provides an estimate of the number of linearly
% independent rows or columns of a matrix A.
% RANK(A,tol) is the number of singular values of A
% that are larger than tol.
% RANK(A) uses the default tol = max(size(A)) * norm(A) * eps.

% Copyright 1984-2001 The MathWorks, Inc.
% $Revision: 5.10 $ $Date: 2001/04/15 12:01:33 $

s = svd(A);
if nargin==1

tol = max(size(A)') * max(s) * eps;
end
r = sum(s > tol);

3/17/2009 108/134

Introduction to Matlab

MATLAB Functions, con’t: 5
• Help of the main functions…

– SVD Singular value decomposition.
[U,S,V] = SVD(X) produces a diagonal matrix S,
of the same dimension as X and with
nonnegative diagonal elements in decreasing
order, and unitary matrices U and V so that X
= U*S*V'.

S = SVD(X) returns a vector containing the
singular values.

– NARGIN Number of function input arguments.
Inside the body of a user-defined function,
NARGIN returns the number of input arguments
that were used to call the function.

55

3/17/2009 109/134

Introduction to Matlab

Looping!

• Scripts and functions also allow the ability
to loop using conventional for and while
loops.

• Note that the interpreter also lets you do it,
it is simply less easy to grasp

3/17/2009 110/134

Introduction to Matlab

for Loops

• Common to other programming languages

for variable = expression
statement
...
statement

end

56

3/17/2009 111/134

Introduction to Matlab

For Loops, con’t: 2
• Example: (taken from MATLAB help)

• a = zeros(k,k) % Pre-allocate matrix
for m = 1:k

for n = 1:k
a(m,n) = 1/(m+n -1);

end
end

3/17/2009 112/134

Introduction to Matlab

For Loops, con’t: 3

• The looping variable is defined in much
the same way that we defined
arrays/vectors.

• Ex. m = 1:k

• Or, m = 1:10

57

3/17/2009 113/134

Introduction to Matlab

For Loops, con’t: 4

• Loops are shown to end by the keyword
“end”

• Curly braces are not present to subdivide
packets of code

• Make use of adequate white-space and
tabbing to improve code readability

3/17/2009 114/134

Introduction to Matlab

while Loops

• Similar to while loops in other languages

while expression
statement
…

end

58

3/17/2009 115/134

Introduction to Matlab

while Loops, con’t: 2

• Ex. (taken from help while)

while (1+eps) > 1
eps = eps/2;

end

3/17/2009 116/134

Introduction to Matlab

while Loops, con’t: 3

• Same notes apply to while loops.

• Code is separated by the keyword “end”

59

3/17/2009 117/134

Introduction to Matlab

Looping conclusion

• Some other aspects of looping exist

• Use
>> help while

and
>> help for

to see them

3/17/2009 118/134

Introduction to Matlab

MATLAB Code Optimization

• Two ways to optimize MATLAB code

• Vectorise code

• Pre-allocate matrices

60

3/17/2009 119/134

Introduction to Matlab

Look Ahead
• Review of topics (when requested) or use

Matlab help and its helpdesk

• Code generation for Digital Control
System CAD

• Each laboratory class will introduce more
information about Matlab and its
Toolboxes

3/17/2009 120/134

Introduction to Matlab

Review

• MATLAB commands

• Looping!

• Optimization

61

3/17/2009 121/134

Introduction to Matlab

Case statements

• Syntax
– switch switch_expr
case case_expr
statement,...,statement
case …
{case_expr1,case_expr2,case_expr3,
...} statement,...,statement ...
otherwise
statement,...,statement end

3/17/2009 122/134

Introduction to Matlab

Case statements, con’t: 2
• Ex. (taken from help case)

method = 'Bilinear';
switch lower(method)

case {'linear','bilinear'}
disp('Method is linear')

case 'cubic'
disp('Method is cubic')

case 'nearest'
disp('Method is nearest')

otherwise disp('Unknown method.')
end

Method is linear

NOTE – when case matches it will not execute all following cases.
(Break not necessary).

62

3/17/2009 123/134

Introduction to Matlab

if statements
• Ex. (taken from Matlab help)

if expression
statements

elseif expression
statements

else
statements

end

3/17/2009 124/134

Introduction to Matlab

if statements, con’t: 2
• Ex. (taken again from Matlab help)

if I == J
A(I,J) = 2;

elseif abs(I-J) == 1
A(I,J) = -1;

else
A(I,J) = 0;

end

63

3/17/2009 125/134

Introduction to Matlab

MATLAB Code Optimization

• Two ways to optimize MATLAB code

• Vectorise code

• Pre-allocate matrices

3/17/2009 126/134

Introduction to Matlab

More plotting
• plotyy: example

x = 0:0.01:20;
y1 = 200*exp(-0.05*x).*sin(x);
y2 = 0.8*exp(-0.5*x).*sin(10*x);
[AX,H1,H2] = plotyy(x,y1,x,y2,'plot');
set(get(AX(1),'Ylabel'),'String','Left Y-axis')
set(get(AX(2),'Ylabel'),'String','Right Y-axis')
xlabel('Zero to 20 \musec.')
title('Labeling plotyy')
set(H1,'LineStyle','--')
set(H2,'LineStyle',':')

64

3/17/2009 127/134

Introduction to Matlab

More plotting
• plotyy: example

0 2 4 6 8 10 12 14 16 18 20
-200

-150

-100

-50

0

50

100

150

200
Le

ft
Y

-a
xi

s

Zero to 20 µs ec .

Labeling plotyy

0 2 4 6 8 10 12 14 16 18 20
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

R
ig

ht
 Y

-a
xi

s

3/17/2009 128/134

Introduction to Matlab

More plotting
• plot3: example

t = 0:pi/50:10*pi;
plot3(sin(t),cos(t),t)
grid on
axis square

65

3/17/2009 129/134

Introduction to Matlab

More plotting
• plot3: example

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1
0

5

10

15

20

25

30

35

3/17/2009 130/134

Introduction to Matlab

More plotting
• bar3 example

Y = cool(7);

subplot(3,2,1)
bar3(Y,'detached')
title(‘Detached')

subplot(3,2,2)
bar3(Y,0.25,'detached')
title(‘Width = 0.25')

subplot(3,2,3)
bar3(Y,'grouped')
title(‘Grouped')

subplot(3,2,4)
bar3(Y,0.5,'grouped')
title(‘Width = 0.5')

subplot(3,2,5)
bar3(Y,'stacked')
title(‘Stacked')

subplot(3,2,6)
bar3(Y,0.3,'stacked')
title(‘Width = 0.3')

colormap([1 0 0;0 1 0;0 0 1])

66

3/17/2009 131/134

Introduction to Matlab

More plotting• bar3 example

1 2 3

1 2 3 4 5 6 7

0

0 .5

1

De ta c h e d

1 2 3

1 2 3 4 5 6 7

0

0 .5

1

W id th = 0 .2 5

1 2 3 4 5 6 7

0

0 .5

1
G ro u p e d

1 2 3 4 5 6 7

0

0 .5

1
W id th = 0 .5

1 2 3 4 5 6 7

0

1

2
S ta c k e d

1 2 3 4 5 6 7

0

1

2
W id th = 0 .3

3/17/2009 132/134

Introduction to Matlab

More plotting
• surf: 2 examples
% Example 1
[X,Y,Z] = peaks(30);
surfc(X,Y,Z)
colormap hsv
axis([-3 3 -3 3 -10 5])

%Example 2
k = 5;
n = 2^k-1;
[x,y,z] = sphere(n);
c = hadamard(2^k);
surf(x,y,z,c);
colormap([1 1 0; 0 1 1])
axis equal

67

3/17/2009 133/134

Introduction to Matlab

More plotting
• surf: 2 examples

-0.5
0

0.5

-0.5

0
0.5

-1

-0.5

0

0.5

1

-3
-2

-1
0

1
2

3

-2

0

2

-10

-5

0

5

2 dimensional Gaussian Sphere

3/17/2009 134/134

Introduction to Matlab

Matlab and its Toolboxes

Direct application examples in
laboratory room

