
1

3/17/2009 1/134

Introduction to Matlab

Introduction to MATLAB

3/17/2009 2/134

Introduction to Matlab

Contact Information

• Course website:

– http://www.ing.unife.it/simani/lessons23.html

– Information also will be contained on website
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Course Structure
• Overview of MATLAB

– History of MATLAB
– Overview of MATLAB environment
– Discussion of MATLAB tools

• Basic MATLAB
– Simple MATLAB functionality

• Syntax, Commands
– Exercises involving basic MATLAB 

functionality and its Toolboxes
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Course Structure

• Advanced MATLAB Functionality
– Beyond MATLAB as a calculator
– The MATLAB programming language
– Project showcasing MATLABs advanced 

functionality

• Other Toolboxes
• Dynamic System Simulations
• Digital Control Design



3

3/17/2009 5/134

Introduction to Matlab

Coursework
• Collection of exercises:

– Will occur during the laboratory sessions
– Will involve MATLABs basic functionality
– Will exploit its Toolboxes for Control System 

Design

• Final Examination:
– Single practical project @ PCs;
– Will cover Digital Control System theory.
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MATLAB Overview

• What is MATLAB?
• History of MATLAB

– Who developed MATLAB
– Why MATLAB was developed
– Who currently maintains MATLAB

• Strengths of MATLAB
• Weaknesses of MATLAB
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What is MATLAB?

• MATLAB
– MATrix LABoratory
– Interactive & programming language

• Will be covered during week 2
– Control System Design & Programming tool

• Will be covered during week 3
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What is MATLAB con’t: 2

• Considering MATLAB at home
– Standard edition

• Available for roughly 2 thousand dollars

– Student edition
• Available for roughly 1 hundred dollars.
• Some limitations, such as the allowable size of a 

matrix
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Strengths of MATLAB

• MATLAB is relatively easy to learn
• MATLAB code is optimized to be relatively 

quick when performing matrix operations
• MATLAB may behave like a calculator or 

as a programming language
• MATLAB is interpreted, errors are easier 

to fix
• Although primarily procedural, MATLAB 

does have some object-oriented elements
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Weaknesses of MATLAB

• MATLAB is NOT a general purpose 
programming language

• MATLAB is an interpreted language 
(making it for the most part slower than a 
compiled language such as C++)

• MATLAB is designed for scientific 
computation and is not suitable for some 
things (such as parsing text)
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Overview

• Review of main topics

• Review of the MATLAB environment 

• Declaring and manipulating variables

• Useful functions
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MATLAB GUI
• Launch Pad / Toolbox

• Workspace

• Current Directory

• Command History

• Command Window
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Launch Pad / Toolbox

• Brief details

• Launch Pad allows you to start 
help/demos

• Toolbox is for use with specialized 
packages (e.g., Signal Processing)
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Using MATLAB
• This is the window that appears when you start MATLAB

This is the
menu bar

This window 
shows the 

current 
directory or 

the workspace

This window 
shows the 
command 

history

This is the 
command 

window – we 
use this as our 

calculator
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Workspace

• Allows access to data

• Area of memory managed through the 
Command Window

• Shows Name, Size (in elements), Number 
of Bytes and Type of Variable
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Current Directory
• MATLAB, like Windows or UNIX, has a 

current directory

• MATLAB functions can be called from any 
directory

• Your programs (to be discussed later) are 
only available if the current directory is the 
one that they exist in
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MATLAB as a Calculator 
• You can enter expressions at the command line 

and evaluate them right away.

The ‘>>’ symbols indicate where commands are typed.

previous 
command

next 
command

>> 3 + 5*8

ans = 

43

>>
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Mathematical Operators

5^4 = 625a^bab

5 / 4 = 1.25/÷

5 * 4 = 20*×

5 - 4 = 1-−

5 + 4 = 9++

AlgebraMATLABOperator
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Command History

• Allows access to the commands used 
during this session, and possibly previous 
sessions

• Clicking and dragging to the Command 
window allows you to re-execute previous 
commands
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Command Window

• Probably the most important part of the 
GUI

• Allows you to input the commands that will 
create variables, modify variables and 
even (later) execute scripts and functions 
you program yourself.
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Mathematical Operators
>> 5/4

ans = 

1.2500

>> 5^4

ans = 

625

>> 34^16

ans =

3.1891e+024

>> 5+4

ans = 

9

>> 5-4

ans = 

1

>> 5*4

ans =

20
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Number Representation
• MATLAB uses scientific notation for very large 

numbers and very small numbers.
• MATLAB has a special way of doing this:

2416 101891.334 ×=

>> 34^16

ans =

3.1891e+024



12

3/17/2009 23/134

Introduction to Matlab

“BEDMAS”

B = Brackets
E = Exponentials
D = Division
M = Multiplication
A = Addition
S = Subtraction

Be careful using brackets – check that opening 
and closing brackets are matched up correctly.

>> 3*4 + 2

ans = 

14

>> 3*(4+2)

ans = 

18
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Simple Commands
• who

• whos

• save

• clear

• load
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who

• who lists the variables currently in the 
workspace. 

• As we learn more about the data 
structures available in MATLAB, we will 
see more uses of “who”
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whos

• whos is similar to who, but also gives size 
and storage information 

• s = whos(...) returns a structure with these 
fields name variable name size variable 
size bytes number of bytes allocated for 
the array class class of variable and 
assigns it to the variable s. (We will 
discuss structures more).
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Save

• save – saves workspace variables on disk 

• save filename stores all workspace variables 
in the current directory in filename.mat

• save filename var1 var2 ... saves only 
the specified workspace variables in 
filename.mat. Use the * wildcard to save only 
those variables that match the specified pattern. 
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clear

• clear removes items from workspace, 
freeing up system memory 

• Examples of syntax:

– clear 
– clear name 
– clear name1 name2 name3 ...
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clc

• Not quite clear

• clc clears only the command window, 
and has no effect on variables in the 
workspace.
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load

• load - loads workspace variables from 
disk 

• Examples of Syntax:

– load 
– load filename 
– load filename X Y Z



16

3/17/2009 31/134

Introduction to Matlab

Declaring a Variable in MATLAB

• Not necessary to specify a type. (Such as 
integer or float)

• Several kinds of variables:
– Vector
– Matrix
– Structure
– Cell array
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Declaring a variable, con’t: 2

• For an integer or floating point number: 
simply set a variable name equal to some 
character

• Ex.  >> A = 5;
• Or >> A = 5

– Have you seen any difference?
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Side Note 1

• The presence or lack of a semi-colon (i.e.
;) after a MATLAB command does not 
generate an error of any kind

• The presence of a semi-colon (;) tells 
MATLAB to suppress the screen output of 
the command
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Side Note 1, con’t: 2

• The lack of a semi-colon will make 
MATLAB output the result of the command 
you entered

• One of these options is not necessarily 
better than the other
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Declaring a Variable, con’t: 3

• You may now use the simple integer or 
float that you used like a normal number 
(though internally it is treated like a 1 by 1 
matrix)

• Possible operations:
– +, -, /, *

– Many functions (round(), ceil(), floor())
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Declaring a variable, con’t: 4
• You may also make a vector rather simply

• The syntax is to set a variable name equal to 
some numbers, which are surrounded by 
brackets and separated by either spaces or 
commas

• Ex. >>A = [1 2 3 4 5];

• Or  >>A = [1,2,3,4,5];

– Any difference?
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Declaring a variable, con’t: 5
• You may also declare a variable in a 

general fashion much more quickly

• Ex. >> A = 1:1:10
• The first 1 would indicate the number to 

begin counting at
• The second 1 would be the increase each 

time
• And the count would end at 10
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Declaring a variable, con’t: 6
• Matrices are the primary variable type for 

MATLAB

• Matrices are declared similar to the declaration 
of a vector

• Begin with a variable name, and set it equal to a 
set of numbers, surrounded by brackets.  Each 
number should be separated by a comma or 
semi-colon
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Declaring a variable, con’t: 7

• The semi-colons in a matrix declaration 
indicate where the row would end

• Ex. A = [ 1,2;3,4] would create a 
matrix that looks like

[ 1 2
3 4 ]
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Declaring a variable, con’t: 7

• Matrices may be used as normal variables 
now.  Multiplying is already defined for 
matrices, and additional code does not 
need to be written.
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Declaring a variable, con’t: 8
• The final type of variable we will discuss today will 

be a “struct”.

• The command struct is used to create a structure

• Syntax: 
– s = struct('field1',{},'field2',{},...)
– s = struct('field1',values1,'field2',values2,...)
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Declaring a variable, con’t 9

• A simple declaration of a structure is as 
follows:

Student.name = ‘Joe’;
Student.age = 23;
Student.major = ‘Computer Science’;
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Declaring a variable, con’t: 10
• Arrays of structures are possible.

• Taking the previous example, if one were to 
write:

Student(2).name = ‘Bill’
…etc

Then the array would be created for you.
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Declaring a variable, con’t: 11

• Structures can group information, but 
methods are not written for them.
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Built-In Functions
• Like a calculator, MATLAB has many built-in 

mathematical functions.

• To find out more about MATLAB’s functions use MATLAB’s help 
(from command window).

>> sqrt(4)

ans = 

2

>> abs(-3)

ans = 

3
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Variables
• We use variables so calculations are easily 

represented. 

• You can think of variables as named locations in 
the computer memory in which a number can be 
stored.

032
8.37100

9
5)32(

=⇒=
=⇒=

×−=

CF
CF

FC
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>> F=100

F = 

100

>> C=(F-32)*5/9

C = 

37.7778

>> F = 32

F = 32

>> C=(F-32)*5/9

C = 

0
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Memory as a Filing System
• You can think of computer memory as a large 

set of “boxes” in which numbers can be stored.  
The values can be inspected and changed.

• Boxes can be labelled with a variable name.

>> A=3

A =

3

3

A
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Special Variables

• MATLAB has some special variables:
– ans is the result of the last calculation.
– pi represents π.
– Inf represents infinity.
– NaN stands for not-a-number and occurs 

when an expression is undefined e.g. division 
by zero.

– i, j represent the square root of –1 
(necessary for complex numbers)
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Calculations with Variables
• Suppose we want to calculate the 

volume of a cylinder.
• It’s radius and height are stored as 

variables in memory.

>> volume = pi*radius^2*height

volume radius height
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Simple Commands, con’t: 2
• who and whos are similar, they allow you to see the 

variables in your workspace

• save saves the variables in your workspace to a binary 
file readable by MATLAB

• clear removes the variables from your workspace

• load loads the binary file created by the save command 
and restores the variables to your workspace
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Simple Commands, con’t: 3
• For any of these commands (and many others) 

you can get a more in depth explanation by 
typing help followed by the name of the 
command

• Ex.  >>help clear

• Online documentation for all of these commands 
is also available on the Mathworks website
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Declaring variables in MATLAB

• Learned how to declare several types of 
variables:
– Normal floats and int(eger)s
– Vectors
– Matrices
– Structures
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Declaring variables in MATLAB, con’t: 2

• Regular int/floats

• Variable name followed by an equals sign 
and the value you wish to assign

• Ex.  A = 5;
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Declaring variables in MATLAB, con’t: 3

• Vectors

• Variable name followed by an equals sign 
and one or more numbers separated by 
either spaces or commas and surrounded 
by brackets

• Ex.  A = [ 1 2 3 4 5 ];
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Declaring variables in MATLAB, con’t: 4

• Matrices

• Like vector – variable name followed by an 
equals sign and one or more numbers 
separated by either spaces or commas 
and surrounded by brackets.  Use semi-
colons to indicate a change in row.

• Ex.  A = [ 1 2; 3 4 ];
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Declaring variables in MATLAB, con’t: 5

• Structures

• Like a struct in C or C++, similar to a class 
in C++ or Java, but lacking class specific 
functions or methods

• Declared using a point operator
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Declaring variables in MATLAB, con’t: 6

• Structures, con’t

• Ex.  A.name = ‘Joe’;
A.age = 23;
A.occupation = ‘student’;
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Declaring variables in MATLAB, con’t: 7

• Structures, con’t: 2

• Can have an array of structures

• Ex.  A(2).name = ‘Bob’;

…
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Sample MATLAB functions
• Min

• Max

• Median

• Mean

• Sum

• Diff
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MATLAB Functions: min

• min

• Will find the minimum element of the array

• Works slightly different on vectors and 
matrices
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MATLAB Functions: max

• max

• Will find the maximum element of the array

• Also works slightly different on vectors and 
matrices
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MATLAB Functions: median

• median

• Will find the median value of the array

• Also works slightly different on vectors and 
matrices
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MATLAB Functions: mean

• mean

• Returns the average value of the array

• Works slightly different on vectors and 
matrices
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MATLAB Functions: sum

• sum

• Will return a sum of the array elements

• Also works slightly different on vectors and 
matrices
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diff

• diff

• Will return the difference between adjacent 
elements in an array

• This is an approximate derivative
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Overview

• Matlab further functions

• Plotting – in depth

• File I/O – few details
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New MATLAB Function
• rand() - Uniformly distributed random 

numbers and arrays 

• Example of syntax:
– A = rand(n) 
– A = rand(m,n)

• Where m and n are dimensions of the 
matrix
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rand() con’t: 2

• Scalars may be generated
– Ex. A = rand(1,1);

• Vectors may be generated
– Ex. A = rand(10,1);
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rand() con’t: 3

• Generated random numbers will be 
between 0 and 1.

• Scaling can be done by multiplying the 
resulting matrix or vector by the number 
you wish to scale with
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Plotting

• Several types of plots available

• plot
• polar
• bar
• hist
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plot() (from MATLAB help)

• Linear 2-D plot 

• Syntax:
– plot(Y) 
– plot(X1,Y1,...) 
– plot(X1,Y1,LineSpec,...)
– plot(...,'PropertyName',PropertyValue,...) 

– h = plot(...)
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plot() con’t: 2

• MATLAB defaults to plotting a blue line
between points

• Other options exist:
– Different color lines

– Different types of lines

– No line at all!
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plot() con’t: 3 – Color options
• Color options:

– Yellow - ‘y’
– Magenta - ‘m’
– Cyan - ‘c’
– Red - ‘r’
– Green - ‘g’
– Blue - ‘b’
– White - ‘w’
– Black - ‘k’

• Example:

– >> temp=1:1:10;
– >> plot(temp, ‘y’);
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plot() con’t: 4 – Line options

• Line styles:
– ‘-’: solid line (default)

– ‘--’: dashed line

– ‘:’: dotted line

– ‘-.’: dash-dot line
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plot() con’t: 5 – Line Markings
• + - plus sign
• o - circle
• * - asterisk
• . - Point
• x - cross
• s - square
• d - diamond
• ^ - upward pointing triangle
• v - downward pointing triangle
• > - right pointing triangle
• < - left pointing triangle
• p - five-pointed star (pentagram)
• h - six-pointed star (hexagram)
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polar()

• Plot polar coordinates 

• Syntax: 
– polar(theta,rho) 
– polar(theta,rho,LineSpec)

• theta – Angle counterclockwise from the 3 
o’clock position

• rho – Distance from the origin
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polar() con’t: 2

• Line color, style and markings apply as 
they did in the example with plot() .
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bar()

• Creates a bar graph

• Syntax
– bar(Y)
– bar(x,Y) 
– bar(...,width) 
– bar(...,'style') 
– bar(...,LineSpec)
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hist()

• Creates a histogram plot

• Syntax: 
– n = hist(Y) 
– n = hist(Y,x) 
– n = hist(Y,nbins)
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File I/O

• Both high-level and low-level file I/O

• High-level covered here
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High-Level File I/O
• I/O = input/output; 3 important commands for 

input:
– csvread: M = CSVREAD('FILENAME')

reads a comma separated value formatted file FILENAME.  The result is 
returned in M.  The file can only contain numeric values.

– dlmread: RESULT= dlmread(FILENAME,DELIMITER) reads 
numeric data from the ASCII delimited file FILENAME using the delimiter 
DELIMITER.  The result is returned in RESULT.  Use '\t' to specify a 
tab.

– textread: A = textread('FILENAME') read formatted data 
from text file. It reads also numeric data from the file FILENAME into a 
single variable.  If the file contains any text data, an error is produced.
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csvread

• Read a comma-separated value file 

• Syntax:
– a = csvread('filename') 
– a = csvread('filename',row,col) 
– a = csvread('filename',row,col,range)

• Note – csvread does not like to read in text!
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dlmread

• Like csvread, only instead of a comma, you 
specify the delimiter

• Syntax: 
– a = dlmread(filename,delimiter) 
– a = dlmread(filename,delimiter,R,C) 
– a = dlmread(filename,delimiter,range)

• Treat this like a generalized form of csvread.
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textread

• Reads formatted data from a text file
• Syntax:

– [A,B,C,...] = textread('filename','format')
– [A,B,C,...] = textread('filename','format',N) 

– [...] = textread(...,'param','value',...)

• Useful, but try to do without it, MATLAB is 
somewhat slower when dealing with text data
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Delimiters

• Delimiter: A character or sequence of 
characters marking the beginning or end 
of a unit of data. 

• Ex.  1,2,3 (the delimiter would be ,)

• Also 1:2:3 (the delimiter would be :)
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Delimiters, con’t: 2

• The most common delimiter is a comma: 
hence the term csv (CSV, i.e. Comma 
Separated Value) or comma separated 
values.

• Microsoft Excel can read csv formatted 
files
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High Level File Output

• Some of the input commands have 
corresponding high-level output 
commands

• csvwrite

• dlmwrite
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csvwrite

• Write a matrix to a comma-separated value file

• Syntax:  
– csvwrite('filename',M)
– csvwrite('filename',M,row,col)

writes matrix M starting at offset row , and column col in the file.  row
and col are zero-based,  that is row=col=0 specifies first number in 
the file.

• Ex.  csvwrite(‘blah.csv’,a);
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dlmwrite

• Writes a matrix M to a delimited file (using 
the delimiter you specify)

• Syntax:
– dlmwrite(filename,M,delimiter)
– dlmwrite(filename,M,delimiter,row,col)

• Ex. dlmwrite(‘blah.txt’,a,’:’);
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Low-Level file I/O
• fopen

• fclose

• fprintf

• fgetl / fgets
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fopen

• Opens a file and returns the handle to the 
file object

• File_ID = fopen(‘blah.txt’)

• Capturing the file handle is necessary to 
write or read to/from the file
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fclose

• Closes a file associated with a specific file 
identification handle

• Ex. fclose(File_ID);

• Ex. fclose(‘all’);
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fprintf

• Multi-use:  can output to a file or a screen

• Ex. fprintf(fid,'%6.2f %12.8f\n',y);

• %6.2f means a floating point with 6 leading 
decimals and 2 trailing

• Specifying 1 instead of fid will output to the 
screen
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fgetl / fgets

• Get line and get string, respectively.  
fgetl will get you a line without the 
newline character at the end, while
fgets will preserve the newline character 
(\n).

• Syntax: 
– Line = fgetl(File_ID);
– Line = fgets(File_ID);
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Programming in MATLAB

• Two types of files:

– Scripts

– Functions



49

3/17/2009 97/134

Introduction to Matlab

MATLAB Scripts

• Scripts are MATLAB commands stored in 
text files. When you type the name of the 
script file at the MATLAB prompt the 
commands in the script file are executed 
as if you had typed them in from the 
keyboard. Scripts end with the extension 
.m

• Referred to as M-Files
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Script Files
• You can save a sequence of commands 

for reuse later
• Create a new M-File (script file)



50

3/17/2009 99/134

Introduction to Matlab

Script Files
• Each line is the same as typing a 

command in the command window
• Save the file as filename.m
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Script Files

• Run the 
sequence of 
commands by 
typing the 
filename in 
the command 
window

>> vol_surf

r = 

5

h =

10

volume = 

785.3982

area = 

471.2389

>>
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MATLAB Functions

• Have input and output parameters

• MATLAB can return more than one 
variable at the end of a function

• Variables in scope in the MATLAB function 
go out of scope and are eliminated when 
the MATLAB function ceases to exist.
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Programming in MATLAB

• Two types of files:

– Scripts

– Functions
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MATLAB Scripts

• Scripts are MATLAB commands stored in 
text files. When you type the name of the 
script file at the MATLAB prompt the 
commands in the script file are executed 
as if you had typed them in from the 
keyboard. Scripts end with the extension 
.m

• Referred to as M-Files
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MATLAB Functions

• Functions are similar to scripts

• Functions may take arguments

• Functions may return one or more values
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MATLAB Functions, con’t: 2
• function [output] = function_name(input_arguments)

• The above is a function header and 
should be the first non-comment line in the 
function file

• Comments may be placed below the 
function header
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MATLAB Functions, con’t: 3
• Example function
function [output] = square(input)
%
% The function [output] = square(input)
% computes the square of its input 
%
output = input*input;
return

• Body of functions can contain code just like scripts could
• Comment line will be the output of the command

– >> help square
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MATLAB Functions, con’t: 4
• Another example function
function r = rank(A,tol)
%RANK   Matrix rank.
%   RANK(A) provides an estimate of the number of linearly
%   independent rows or columns of a matrix A.
%   RANK(A,tol) is the number of singular values of A
%   that are larger than tol.
%   RANK(A) uses the default tol = max(size(A)) * norm(A) * eps.

%   Copyright 1984-2001 The MathWorks, Inc. 
%   $Revision: 5.10 $  $Date: 2001/04/15 12:01:33 $

s = svd(A);
if nargin==1

tol = max(size(A)') * max(s) * eps;
end
r = sum(s > tol);
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MATLAB Functions, con’t: 5
• Help of the main functions…

– SVD    Singular value decomposition.
[U,S,V] = SVD(X) produces a diagonal matrix S, 
of the same dimension as X and with 
nonnegative diagonal elements in decreasing 
order, and unitary matrices U and V so that X 
= U*S*V'.

S = SVD(X) returns a vector containing the 
singular values.

– NARGIN Number of function input arguments.
Inside the body of a user-defined function, 
NARGIN returns the number of input arguments 
that were used to call the function.
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Looping!

• Scripts and functions also allow the ability 
to loop using conventional for and while
loops.

• Note that the interpreter also lets you do it, 
it is simply less easy to grasp
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for Loops

• Common to other programming languages

for variable = expression 
statement 
... 
statement 

end 
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For Loops, con’t: 2
• Example: (taken from MATLAB help)

• a = zeros(k,k) % Pre-allocate matrix 
for m = 1:k 

for n = 1:k 
a(m,n) = 1/(m+n -1); 

end 
end 
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For Loops, con’t: 3

• The looping variable is defined in much 
the same way that we defined 
arrays/vectors.

• Ex. m = 1:k

• Or, m = 1:10
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For Loops, con’t: 4

• Loops are shown to end by the keyword 
“end”

• Curly braces are not present to subdivide 
packets of code

• Make use of adequate white-space and 
tabbing to improve code readability
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while Loops

• Similar to while loops in other languages

while expression 
statement
…

end 
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while Loops, con’t: 2

• Ex. (taken from help while)

while (1+eps) > 1 
eps = eps/2; 

end 
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while Loops, con’t: 3

• Same notes apply to while loops.

• Code is separated by the keyword “end”
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Looping conclusion

• Some other aspects of looping exist

• Use 
>> help while

and
>> help for

to see them
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MATLAB Code Optimization

• Two ways to optimize MATLAB code

• Vectorise code

• Pre-allocate matrices
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Look Ahead
• Review of topics (when requested) or use 

Matlab help and its helpdesk

• Code generation for Digital Control 
System CAD 

• Each laboratory class will introduce more 
information about Matlab and its 
Toolboxes
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Review

• MATLAB commands

• Looping!

• Optimization
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Case statements

• Syntax
– switch switch_expr 
case case_expr
statement,...,statement 
case …
{case_expr1,case_expr2,case_expr3,
...} statement,...,statement ... 
otherwise 
statement,...,statement end 
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Case statements, con’t: 2
• Ex. (taken from help case)

method = 'Bilinear'; 
switch lower(method) 

case {'linear','bilinear'} 
disp('Method is linear') 

case 'cubic' 
disp('Method is cubic') 

case 'nearest' 
disp('Method is nearest') 

otherwise disp('Unknown method.') 
end 

Method is linear

NOTE – when case matches it will not execute all following cases.  
(Break not necessary).
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if statements
• Ex. (taken from Matlab help)

if expression
statements

elseif expression
statements

else
statements

end
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if statements, con’t: 2
• Ex. (taken again from Matlab help)

if I == J
A(I,J) = 2;

elseif abs(I-J) == 1
A(I,J) = -1;

else
A(I,J) = 0;

end
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MATLAB Code Optimization

• Two ways to optimize MATLAB code

• Vectorise code

• Pre-allocate matrices
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More plotting
• plotyy: example

x = 0:0.01:20;
y1 = 200*exp(-0.05*x).*sin(x);
y2 = 0.8*exp(-0.5*x).*sin(10*x);
[AX,H1,H2] = plotyy(x,y1,x,y2,'plot');
set(get(AX(1),'Ylabel'),'String','Left Y-axis')
set(get(AX(2),'Ylabel'),'String','Right Y-axis')
xlabel('Zero to 20 \musec.')
title('Labeling plotyy')
set(H1,'LineStyle','--')
set(H2,'LineStyle',':')



64

3/17/2009 127/134

Introduction to Matlab

More plotting
• plotyy: example
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More plotting
• plot3: example

t = 0:pi/50:10*pi;
plot3(sin(t),cos(t),t)
grid on
axis square
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More plotting
• plot3: example
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More plotting
• bar3 example

Y = cool(7);

subplot(3,2,1)
bar3(Y,'detached')
title(‘Detached')

subplot(3,2,2)
bar3(Y,0.25,'detached')
title(‘Width = 0.25')

subplot(3,2,3)
bar3(Y,'grouped')
title(‘Grouped')

subplot(3,2,4)
bar3(Y,0.5,'grouped')
title(‘Width = 0.5')

subplot(3,2,5)
bar3(Y,'stacked')
title(‘Stacked')

subplot(3,2,6)
bar3(Y,0.3,'stacked')
title(‘Width = 0.3')

colormap([1 0 0;0 1 0;0 0 1])
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More plotting• bar3 example
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More plotting
• surf: 2 examples
% Example 1
[X,Y,Z] = peaks(30);
surfc(X,Y,Z)
colormap hsv
axis([-3 3 -3 3 -10 5])

%Example 2
k = 5;
n = 2^k-1;
[x,y,z] = sphere(n);
c = hadamard(2^k);
surf(x,y,z,c);
colormap([1  1  0; 0  1  1])
axis equal
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More plotting
• surf: 2 examples
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Matlab and its Toolboxes

Direct application examples in 
laboratory room


