# Fuzzy Modelling and Identification

## Fuzzy Clustering with Application to Data-Driven Modelling

# Introduction

The ability to cluster data (concepts, perceptions, etc.)

- essential feature of human intelligence.
- A cluster is a set of objects that are more similar to each other than to objects from other clusters.
- Applications of clustering techniques in pattern recognition and image processing.
- Some machine-learning techniques are based on the notion of similarity (decision trees, case-based reasoning)
- Non-linear regression and black-box modelling can be based on the partitioning data into clusters.

# **Section Outline**

- Basic concepts in clustering
  - data set
  - partition matrix
  - distance measures
- Clustering algorithms
  - fuzzy c-means
  - Gustafson–Kessel
- > Application examples
  - system identification and modelling
  - diagnosis

#### Silvio Simani





# **Problem Formulation**

- Given is a set of data in R<sup>n</sup> and the (estimated) number of clusters to look for (a difficult problem, more on this later).
- Find the partitioning of the data into subsets (clusters), such that samples within a subset are more similar to each other than to samples from other subsets.
- Similarity is mathematically formulated by using a distance measure (i.e., a dissimilarity function).
- Usually, each cluster will have a prototype and the distance is measured from this prototype.

Silvio Simani





Silvio Simani



# **Euclidean norm:** $d^2(\mathbf{z}_i, \mathbf{v}_i) = (\mathbf{z}_i - \mathbf{v}_i)^T (\mathbf{z}_i - \mathbf{v}_i)$ Inner-product norm: $\mathbf{A}_{\mathbf{A}_{i}}(\mathbf{z}_{i}, \mathbf{v}_{i}) = (\mathbf{z}_{i} - \mathbf{v}_{i})^{T} \mathbf{A}_{i}(\mathbf{z}_{i} - \mathbf{v}_{i})$ > Many other possibilities . . .

14/04/2009

112/148

# Lecture Not Fulzzy/Glustering: an silvio Simani Optimisation Approach

## Objective function (least-squares criterion):

$$J(\mathbf{Z}; \mathbf{V}, \mathbf{U}, \mathbf{A}) = \sum_{i=1}^{c} \sum_{j=1}^{N} \mu_{i,j}^{m} d_{\mathbf{A}_{i}}^{2}(\mathbf{z}_{j}, \mathbf{v}_{i})$$

### Subject to constraints:

$$\begin{array}{ll} 0 \leq \mu_{i,j} \leq 1, & i=1,\ldots,c, \ j=1,\ldots,N & \text{membership degree} \\ 0 < \sum_{j=1}^{N} \mu_{i,j} < 1, & i=1,\ldots,c & \text{no cluster empty} \\ \sum_{i=1}^{c} \mu_{i,j} = 1, & j=1,\ldots,N & \text{total membership} \end{array}$$

Silvio Simani



### Repeat:

1. Compute cluster prototypes (means):

$$v_i = \frac{\sum_{k=1}^N \mu_{i,k}^m \mathbf{z}_k}{\sum_{k=1}^N \mu_{i,k}^m}$$

2. Calculate distances:

$$d_{ik} = (\mathbf{z}_k - \mathbf{v}_i)^T (\mathbf{z}_k - \mathbf{v}_i)$$

3. Update partition matrix: until  $\|\Delta \mathbf{U}\| < \epsilon$ 

$$\mu_{ik} = \frac{1}{\sum_{j=1}^{c} (d_{ik}/d_{jk})^{1/(m-1)}}$$

$$(i = 1, \dots, c. k = 1, \dots, N)$$

# Lecture Not Data-Drivens (Black-Box) Simani Modelling



Linear model (for linear systems only, limited in use)
 Neural network (black box, unreliable extrapolation)
 Rule-based model (more transparent, 'grey-box')

# Lecture Not Extended to Base for Silvio Simani Fuzzy Clustering



116/148

# Lecture Not Externa Otions of Rules by silvio Simani Fuzzy Clustering



48

# Example: Non-linear Autoregressive System (NARX)

$$x(k+1) = f(x(k)) + \epsilon(k)$$
$$f(x) = \begin{cases} 2x - 2, & 0.5 < x \\ -2x, & -0.5 \le x < 0.5 \\ 2x + 2, & x \le -0.5 \end{cases}$$

# Lecture NoteStructure Selection and Ilvio Simani Data Preparation

## 1. Choose model order p

$$\begin{aligned} x(k+1) &= f(\underbrace{x(k), x(k-1), \ldots, x(k-p+1)}_{\mathbf{x}(k)}) \end{aligned}$$

119/148

## 2. Form pattern matrix **Z** to be clustered

$$\mathbf{Z}^{T} = \begin{bmatrix} x(1) & x(2) & \dots & x(p) & x(p+1) \\ x(2) & x(3) & \dots & x(p+1) & x(p+2) \\ \vdots & \vdots & & \vdots & & \vdots \\ x(N-p) & x(N-p+1) & \dots & x(N-1) & x(N) \end{bmatrix}$$

Silvio Simani

# **Clustering Results**



# **Rules Obtained**

1) If x(k) is *Positive* then x(k+1) = 2.0244x(k) - 2.0289

2) If x(k) is About zero then x(k+1) = -1.8852x(k) + 0.0005

3) If x(k) is Negative then x(k+1) = 1.9050x(k) + 1.9399

original function: 
$$f(x) = \begin{cases} 2x - 2, & 0.5 < x \\ -2x, & -0.5 \le x < 0.5 \\ 2x + 2, & x \le -0.5 \end{cases}$$

# Lecture Note dentification of Pressuremani Dynamics







# **Application Examples**

Neural Networks for Non-linear Identification, Prediction and Control

#### Silvio Simani

#### Lecture Notes on Neural Networks and Fuzzy Systems

## Nonlinear Dynamic System

- Take a static
   NN
- From static to dynamic NN
- "Quasi-static" NN
- Add inputs, outputs and delayed signals



 $\widetilde{y}(k) = F(u(k-1), u(k-2), u(k-3), \widetilde{y}(k-1), \widetilde{y}(k-2), \widetilde{y}(k-3))$ 

### Example of Quasi-static NN with 3 delayed inputs and outputs

#### Silvio Simani

# **Nonlinear System Identification**



- f(.), unknown target function
- Nonlinear dynamic model
- Approximated via a quasi-static NN
- Nonlinear dynamic system identification
- Recall "*linear system* identification"

# Lecture Notes on Neural Networks and Fuzzy Systems Silvio Simani Nonlinear System Identification







Target function: $y_p(k+1) = f(.)$ Identified function: $y_{NET}(k+1) = F(.)$ Estimation error:e(k+1)

# Lect Nonlinear's System Neural Control"



d: reference/desired response
y: system output/desired output
u: system input/controller output
ū: desired controller input
u\*: NN output

e: controller/network error

The goal of training is to find an appropriate plant control u from the desired response d. The weights are adjusted based on the difference between the outputs of the networks I & II to minimise e. If network I is trained so that y = d, then  $u = u^*$ . Networks act as inverse dynamics identifiers.

#### Silvio Simani

# **Neural Networks for Control**



Figure 1: Direct Inverse Control using neural networks



Figure 2: Model Reference Control using neural networks



Figure 3: Training the neural network  $NN_C$ 

Figures 1 and 3 Problems.

- Open-loop unstable models
- Disturbances

```
129/148
```

#### Silvio Simani

## **Neural Model Reference Adaptive Control**



Figure 2: Model Reference Control using neural networks

The signal  $e_C$  is used to train or adapt online the weights of the controller  $NN_C$ . Two are the approaches used to design a MRAC control for an unknown plant: **Direct and Indirect Control**.

**Direct Control**: This procedure aims at designing a controller without having a plant model. As the knowledge of the plant is needed in order to train the neural network which corresponds to the controller (*i.e.*  $NN_C$ ), until present, no method has been proposed to deal with this problem.

Silvio Simani



#### Silvio Simani

#### Lecture Notes on Neural Networks and Fuzzy Systems





Figure 4: Indirect MRAC

This approach uses two neural networks: one for modelling the plant dynamics  $(NN_M)$ , and another one trained to control the real plant (G) so as its behaviour is as close as possible to the reference model (M) via the neural controller ( $NN_{C}$ ).

Silvio Simani

#### Lecture Notes on Neural Networks and Fuzzy Systems

![](_page_27_Picture_2.jpeg)

![](_page_27_Figure_3.jpeg)

Figure 4: Indirect MRAC

The **neural** network **NN<sub>M</sub>** is trained to approximate the plant **G** input/output relation using the signal  $e_{M}$ . This is usually done offline, using a batch of data gathered from the plant in open loop.

# **Indirect Control (2)**

![](_page_28_Figure_3.jpeg)

Figure 4: Indirect MRAC

Then,  $NN_M$  is fixed, its output and behaviou are known and easy to compute.

Once the model  $NN_M$  is trained, it is used to train the network NN<sub>C</sub> which will act as the controller. The model  $NN_M$  is used instead of the real plant's output because the real plant is unknown, so back-propagation algorithms can not be used. In this way, the control error  $e_{C}$ **1**S calculated as the difference between the desired reference model output  $y_d$  and  $\hat{y}$ , which is the closed loop predicted output.

Silvio Simani

![](_page_29_Picture_2.jpeg)

### **Matlab and Simulink solution**

![](_page_29_Figure_4.jpeg)

Neural controller, reference model, neural model

14/04/2009

135/148

## Matlab NNtool GUI (Graphical User Interface)

| -> Network/Data Manager                   |           |                     |  |
|-------------------------------------------|-----------|---------------------|--|
| Inputs:                                   | Networks: | Outputs:            |  |
| U                                         | network1  | out5                |  |
|                                           | network2  | out10               |  |
|                                           |           |                     |  |
|                                           |           |                     |  |
| Targets:                                  |           | Errors:             |  |
| У                                         |           | err5                |  |
|                                           |           | err10               |  |
|                                           |           |                     |  |
| Input Dolou Stateo:                       |           | Louar Dalau Stataa: |  |
|                                           |           |                     |  |
|                                           |           |                     |  |
|                                           |           |                     |  |
|                                           |           |                     |  |
| <ul> <li>Networks and Data ———</li> </ul> |           | ·                   |  |
| Networks and Data                         | - ir - ir |                     |  |
| Help New Data New Network                 |           |                     |  |
| Import Export View Delete                 |           |                     |  |
|                                           |           |                     |  |
| Networks only                             |           |                     |  |
| Initializa Disculata Tusia Adaut          |           |                     |  |
| Innuanze Ornulate Inain Ruapt             |           |                     |  |

#### Silvio Simani

![](_page_31_Figure_2.jpeg)

#### Silvio Simani

![](_page_32_Picture_2.jpeg)

#### Silvio Simani

| Control of a Robot Arm Example                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Plant Identification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| File Window Help  Plant Identification  Network Architecture  Size of Hidden Layer  10 No. Delayed Plant Inputs  2 Sampling Interval (sec)  0.05 No. Delayed Plant Outputs  2 Normalize Training Data  Training Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Model Reference Controller         Frandom Reference         Plant Output         Plant Output         Output         Plant Output         Plant (Robie Arm)         Neural Network Model Reference Control of a Robot Arm<br>(Double click on the "?" for more info)         To start and stop the simulation, use the "Start/Stop" selection in the "Simulation" pull-down menu |  |  |  |
| Maximum Plant Input       15       Maximum Plant Output       3.1         Minimum Plant Input       -15       Minimum Plant Output       -3.1         Maximum Interval Value (sec)       2       Simulink Plant Model:       Browse         Minimum Interval Value (sec)       0.1       robotarm       Image: State St | Plant Identification:                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| Generate Training Data       Import Data       Export Data         Training Parameters       Training Epochs       300       Training Function         Import Data       Import Data       Import Data       Import Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Data generation from the<br>Reference Model for<br>Neural Network training                                                                                                                                                                                                                                                                                                        |  |  |  |

#### Silvio Simani

## **Control of a Robot Arm Example**

![](_page_34_Figure_3.jpeg)

![](_page_34_Figure_4.jpeg)

## After Plant Identification:

### **Neural Network training**

#### Silvio Simani

![](_page_35_Picture_2.jpeg)

Silvio Simani

![](_page_36_Figure_2.jpeg)

### **Training and Validation Data**

Silvio Simani

![](_page_37_Figure_2.jpeg)

## **Testing Data and Training Results**

14/04/2009

143/148

#### Silvio Simani

| <b>Control of a Ro</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | bot Arm Example                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 🛃 Model Reference Control 📃 🗖 🔀                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| File Window Help                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Model Reference Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Network Architecture         Size of Hidden Layer       13       No. Delayed Reference Inputs       2         Sampling Interval (sec)       0.05       No. Delayed Controller Outputs       1         Normalize Training Data       No. Delayed Plant Outputs       2         Maximum Reference Value       0.7       Controller Training Samples       6000         Minimum Reference Value       -0.7       Defines how many data points will be generated to the second | Model Reference Controller         Image: Controller Reference Controller         Reference       Neural Network Model Reference Controller Signal         Image: Plant Output       Plant         Neural Network Model Reference Control of a Robot Am (Double click on the "?" for more info         Image: Plant Output       Image: Plant Output         Image: Plant Output       Image: Plant Output         Image: Plant Output       Plant Output |
| Generate Training Data Import Data Export Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Training Parameters         Controller Training Epochs       10       Controller Training Segments       30         Use Current Weights       Use Cumulative Training         Plant Identification       Train Controller       0K       Cancel       Apply         Generate or import data before training the neural network controller.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

### Plant identification with a NN Data Generation for NN Controller Identification 14/04/2009 144/148

#### Silvio Simani

![](_page_39_Figure_2.jpeg)

## Accept the Data Generated for NN Controller Identification

145/148

Silvio Simani

| Cont                                                                       | rol of a Robo                         | t Arm Example                                                                                                           |
|----------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| 🛷 Model Reference Control                                                  |                                       |                                                                                                                         |
| File Window Help                                                           |                                       |                                                                                                                         |
| Model Reference Control                                                    |                                       |                                                                                                                         |
| ۸ ۱                                                                        | Network Architecture                  |                                                                                                                         |
| Size of Hidden Layer                                                       | 13 No. Delayed Reference Inputs 2     | Plant Output<br>Plant Output<br>Plant Output<br>(Robot Arm)                                                             |
| Sampling Interval (sec)                                                    | 0.05 No. Delayed Controller Outputs 1 |                                                                                                                         |
| Normalize Training Data                                                    | No. Delayed Plant Outputs 2           |                                                                                                                         |
| Training Data                                                              |                                       | al Network Model Reference Control of a Robot Arm<br>(Double click on the "?" for more info) ? bouble click<br>here for |
| Maximum Reference Value                                                    | 0.7 Controller Training Samples 6000  | o start and stop the simulation, use the "Start/Stop"<br>selection in the "Simulation" pull-down menu                   |
| Minimum Reference Value                                                    | -0.7                                  |                                                                                                                         |
| Maximum Interval Value (sec)                                               | 2 Reference Model: Browse             |                                                                                                                         |
| Minimum Interval Value (sec)                                               | 0.1 robotref                          |                                                                                                                         |
| Erase Generated Data                                                       | Import Data Export Data               |                                                                                                                         |
| Training Parameters                                                        |                                       | NN Controller                                                                                                           |
| Controller Training Epochs                                                 | 10 Controller Training Segments 30    | Training                                                                                                                |
| Use Current Weights                                                        | Use Cumulative Training               |                                                                                                                         |
| Plant Identification Train Co                                              | ontroller OK Cancel Apply             |                                                                                                                         |
| Your training data set has 6000 samples.<br>You can now train the network. |                                       |                                                                                                                         |
| <u> </u>                                                                   |                                       | 146/148                                                                                                                 |

Silvio Simani

## **Control of a Robot Arm Example**

![](_page_41_Figure_3.jpeg)

## NN Controller Training and Results

147/148

Silvio Simani

148/148

## **Control of a Robot Arm Example**

![](_page_42_Figure_3.jpeg)