Recap artificial neural networks part 1

Recap artificial neural networks part 1

Backward pass: calculate $\nabla_W J$ and use it in an optimization algorithm to iteratively update the weights of the network to minimize the loss J.

Outline

- 1 Regularization & Validation
- 2 Specialized structures
- 3 (Semi) Unsupervised Learning & Reinforcement Learning
- 4 Examples

Approximation error vs. number of parameters

Approximation error vs. number of parameters

Underfitting

Good fit

Overfitting

Validation

System:
$$y = f(\mathbf{x})$$
 or $y(k+1) = f(\mathbf{x}(k), \mathbf{u}(k))$
Model: $\hat{y} = F(\mathbf{x}; \theta)$ or $\hat{y}(k+1) = F(\mathbf{x}(k), \mathbf{u}(k); \theta)$

True criterion:

$$I = \int_X \|f(\mathbf{x}) - F(\mathbf{x})\| d\mathbf{x}$$
 (1)

Usually cannot be computed as $f(\mathbf{x})$ is not available, use available data to numerically approximate (1)

- use a validation set
- cross-validation (randomize)

Validation Data Set

Cross-Validation

• Regularity criterion (for two data sets):

$$RC = \frac{1}{2} \left[\frac{1}{N_A} \sum_{i=1}^{N_A} (y^A(i) - \hat{y}_B^A(i))^2 + \frac{1}{N_B} \sum_{i=1}^{N_B} (y^B(i) - \hat{y}_A^B(i))^2 \right]$$

v-fold cross-validation

Some Common Criteria

Mean squared error (root mean square error):

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (y(i) - \hat{y}(i))^{2}$$

Variance accounted for (VAF):

$$VAF = 100\% \cdot \left[1 - \frac{var(y - \hat{y})}{var(y)} \right]$$

• Check the correlation of the residual $y - \hat{y}$ to u, y and itself.

Test set

The *validation* set is used to select the right **hyper-parameters**.

- Structure of the network
- Cost function
- Optimization parameters
- ...

What might go wrong?

Test set

The *validation* set is used to select the right **hyper-parameters**.

- Structure of the network
- Cost function
- Optimization parameters
- ...

What might go wrong?

Use a separate *test* set to verify the hyper-parameters have not been over-fitted to the validation set.

Outline

- Regularization & Validation
- 2 Specialized structures
- 3 (Semi) Unsupervised Learning & Reinforcement Learning
- 4 Examples

Applications of neural nets

- Black-box modeling of systems from input-output data.
- Reconstruction (estimation) soft sensors.
- Classification.
- Neurocomputing.
- Neurocontrol.