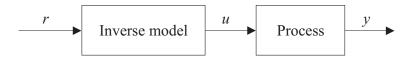
Considered Settings

- Fuzzy or neural model of the process available (many of the presented techniques apply to other types of models as well)
- Based on the model, design a controller (off line)
- Use the model explicitly within a controller
- Model fixed or adaptive

Inverse Control (Feedforward)



Process model: $y(k+1) = f(\mathbf{x}(k), u(k))$, where

$$m{x}(k) = ig[y(k), \dots, y(k - n_y + 1), u(k - 1), \dots, u(k - n_u + 1)ig]^T$$

Controller: $u(k) = f^{-1}(x(k), r(k+1))$

When is Inverse-Model Control Applicable?

- 1 Process (model) is stable and invertible
- 2 The inverse model is stable
- 3 Process model is accurate (enough)
- 4 Little influence of disturbances
- 5 In combination with feedback techniques

How to invert $f(\cdot)$?

minimize

1 Numerically (general solution, but slow):

$$J(u(k)) = \left[r(k+1) - f(\boldsymbol{x}(k), u(k))\right]^2$$
w.r.t. $u(k)$

How to invert $f(\cdot)$?

1 Numerically (general solution, but slow):

$$J(u(k)) = \left[r(k+1) - f(\boldsymbol{x}(k), u(k))\right]^2$$

minimize w.r.t. u(k)

2 Analytically (for some special forms of $f(\cdot)$ only):

- affine in u(k)
- singleton fuzzy model

How to invert $f(\cdot)$?

1 Numerically (general solution, but slow):

$$J(u(k)) = \left[r(k+1) - f(\boldsymbol{x}(k), u(k))\right]^2$$

minimize w.r.t. u(k)

2 Analytically (for some special forms of $f(\cdot)$ only):

- affine in u(k)
- singleton fuzzy model
- 3 Construct inverse model directly from data

Inverse of an Affine Model

affine model:

$$y(k+1) = g(\boldsymbol{x}(k)) + h(\boldsymbol{x}(k)) \cdot u(k)$$

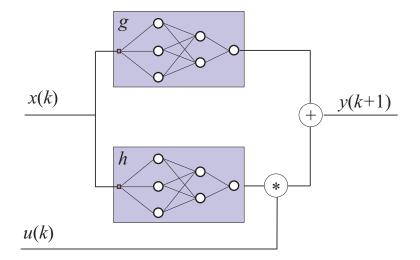
express u(k):

$$u(k) = \frac{y(k+1) - g(\boldsymbol{x}(k))}{h(\boldsymbol{x}(k))}$$

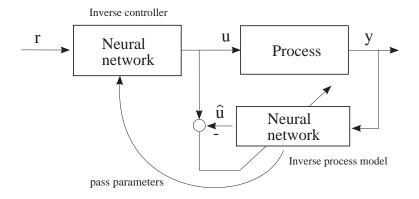
substitute r(k+1) for y(k+1)

necessary condition $h(\mathbf{x}) \neq 0$ for all \mathbf{x} of interest

Example: Affine Neural Network



Learning Inverse (Neural) Model



How to obtain x?

inverse model: $u(k) = f^{-1}(x(k), r(k+1))$

1 Use the prediction model: $\hat{y}(k+1) = f(\hat{x}(k), u(k))$

$$\hat{\mathbf{x}}(k) = [\hat{y}(k), \dots, \hat{y}(k-n_y+1), u(k-1), \dots, u(k-n_u+1)]^T$$

Open-loop feedforward control

How to obtain x?

inverse model: $u(k) = f^{-1}(x(k), r(k+1))$

1 Use the prediction model: $\hat{y}(k+1) = f(\hat{x}(k), u(k))$

$$\hat{\mathbf{x}}(k) = [\hat{y}(k), \dots, \hat{y}(k - n_y + 1), u(k - 1), \dots, u(k - n_u + 1)]^T$$

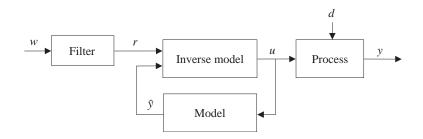
Open-loop feedforward control

2 Use measured process output

$$\mathbf{x}(k) = [y(k), \dots, y(k - n_y + 1), u(k - 1), \dots, u(k - n_u + 1)]^T$$

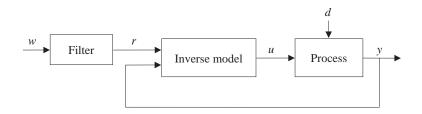
Open-loop feedback control

Open-Loop Feedforward Control



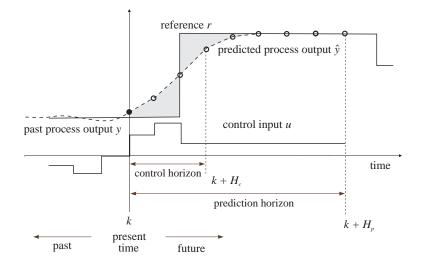
- Always stable (for stable processes)
- No way to compensate for disturbances

Open-Loop Feedback Control



- Can to some degree compensate disturbances
- Can become unstable

Model-Based Predictive Control



Objective Function and Constraints

$$J = \sum_{i=1}^{H_{p}} \|\boldsymbol{r}(k+i) - \hat{\boldsymbol{y}}(k+i)\|_{P_{i}}^{2} + \sum_{i=1}^{H_{c}} \|\boldsymbol{u}(k+i-1)\|_{Q_{i}}^{2}$$

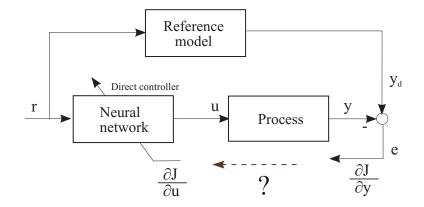
$$\hat{y}(k+1) = f(\hat{\boldsymbol{x}}(k), u(k))$$

u ^{min}	\leq	u	\leq	u ^{max}
Δu^{\min}	\leq	$\Delta \boldsymbol{u}$	\leq	Δu^{\max}
y ^{min}	\leq	у	\leq	y ^{max}
$\Delta m{y}^{min}$	\leq	$\Delta \boldsymbol{y}$	\leq	$\Delta \pmb{y}^{max}$

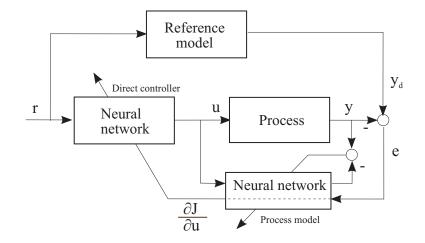
Adaptive Control

- Model-based techniques (use explicit process model):
 - model reference control through backpropagation
 - indirect adaptive control
- Model-free techniques (no explicit model used)
 - reinforcement learning

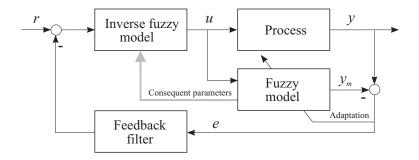
Model Reference Adaptive Neurocontrol



Model Reference Adaptive Neurocontrol



Indirect Adaptive Control



not only for fuzzy models, but also for affine NNs, etc.