Motivation for
Intelligent Control




Pro's and Con’s of Conventional Control

+ systematic approach, mathematically elegant

+ theoretical guarantees of stability and robustness

— time-consuming, conceptually difficult
— control engineering expertise necessary

— often insufficient for nonlinear systems



When Conventional Design Fails

® no model of the process available
— mathematical synthesis and analysis impossible
— experimental tuning may be difficult

* process (highly) nonlinear
— linear controller cannot stabilize
— performance limits



Example: Stability Problems
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Example: Stability Problems

3 2
02050 uy

Use Simulink to simulate a proportional controller (nlpid.m)

Conclusions:
® stability and performance depend on process output
® re-tuning the controller does not help

® nonlinear control is the only solution



Intelligent Control

techniques motivated by human intelligence

fuzzy systems (represent human knowledge, reasoning)

artificial neural networks (adaptation, learning)

genetic algorithms (optimization)

particle swarm optimization

® etc.



Intelligent Control

techniques motivated by human intelligence

e fuzzy systems (represent human knowledge, reasoning)
e artificial neural networks (adaptation, learning)

e genetic algorithms (optimization)

® particle swarm optimization

® etc.

® Fuzzy knowledge-based control
® Fuzzy data analysis, modeling, identification
¢ Learning and adaptive control (neural networks)

¢ Reinforcement learning



Fuzzy Control |
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Outline

@ Fuzzy sets and set-theoretic operations
® Fuzzy relations
©® Fuzzy systems

O Linguistic model, approximate reasoning



Fuzzy Sets and Fuzzy Logic

Relatively new methods for representing uncertainty and reasoning
under uncertainty.

Types of uncertainty:

¢ chance, randomness (stochastic)

* imprecision, vagueness, ambiguity (non-stochastic)



Classical Set Theory

A set is a collection of objects with a common property.
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Classical Set Theory

A set is a collection of objects with a common property.

Examples:
¢ Set of natural numbers smaller than 5: A= {1, 2, 3, 4}
¢ Unit disk in the complex plane: A={z|z € C, |z| < 1}

* Alinein R%: A= {(x,y)|lax + by + c =0, (x,y, a, b, c) € R}



Representation of Sets

® Enumeration of elements: A= {x1, x2,..., Xn}
¢ Definition by property: A = {x € X]|x has property P}

e Characteristic function: pa(x): X — {0, 1}

(x) = 1 X is member of A
HAXI =19 0 x is not member of A



Set of natural numbers smaller than 5

A

u
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Fuzzy sets




Why Fuzzy Sets?

® Classical sets are good for well-defined concepts (maths, programs,
etc.)

® Less suitable for representing commonsense knowledge in terms of
vague concepts such as:

® a tall person, slippery road, nice weather, ...
® want to buy a big car with moderate consumption
® If the temperature is too low, increase heating a lot



Classical Set Approach

set of tall people A= {h|h > 180}

A

Ha(h)

I

170 180 190 h [cm]



Logical Propositions

“John is tall” ... true or false

John's height:  hjopn = 180.0 14(180.0) = 1 (true)
hjohn = 179.5 pra(179.5) = 0 (false)

A

w.(h)
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Fuzzy Set Approach

A
14
S 06y
=}
0 ‘\/\ Y T i >
170 180 190 h [cm]
1 h is full member of A (h > 190)
pa(h) =< (0,1) h is partial member of A (170 < h < 190)
h is not member of A (h < 170)



Fuzzy Logic Propositions

“John is tall” ...degree of truth
John's height:  hjop, = 180.0 14(180.0) = 0.6
hjohn = 179.5 1a(179.5) = 0.56
hpau = 201.0 ©a(201.0) =1
A
[
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170 180 190 h [cm]



Subjective and Context Dependent

=06y
=i
0 T — i >
170 180 190 h [em]
tall in China tall in Europe tall in NBA



Shapes of Membership Functions

A

nl triangular trapezoidal bell-shaped




Representation of Fuzzy Sets

¢ Pointwise as a list of membership/element pairs:

A={pal(x1)/xw, ... malxn)/xn} = {palxi)/xilxi € X}

® As a list of a-level/a-cut pairs:

A=A{a1/Aas @2/Axy, - n A, } = {ai/Aq; i € (0,1)}



Representation of Fuzzy Sets

¢ Analytical formula for the membership function:

1

=12 XER

pa(x)
or more generally

1
wix) = 1+d(x,v)

d(x, v) ...dissimilarity measure

Various shorthand notations: pa(x)...A(x)...a



Linguistic Variable

TEMPERATURE <+— linguistic variable

N . linguistic
low medium high T terms
. ) semantic
rule
1
membership
u functions
O >
0 10 20 30 40
t (temperature) <+—— base variable

Basic requirements: coverage and semantic soundness




Properties of fuzzy sets




Support of a Fuzzy Set

supp(A) = {x|pa(x) > 0}

supp(4)

support is an ordinary set



Core (Kernel) of a Fuzzy Set

core(A) = {x|pa(x) = 1}

core is an ordinary set

36 /79



a-cut of a Fuzzy Set

Ay = {x|pa(x) > o} or Ay ={x|pa(x)>a}

a-level

Aq is an ordinary set



Convex and Non-Convex Fuzzy Sets

m convex non-convex

A fuzzy set is convex < all its a-cuts are convex sets.
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Non-Convex Fuzzy Set: an Example
A

Fllf high-risk age

»
»

16 32 48 64  age [years]

High-risk age for car insurance policy.
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Fuzzy Numbers and Singletons

y+ fuzzy number fuzzy
H "about 3" singleton
1 -
0 ‘ .

3 S X

Fuzzy linear regression: y = 3x; + 5xo



Fuzzy set-theoretic operations




Complement (Negation) of a Fuzzy Set

A

w
1_

pa(x) =1—pa(x)




Intersection (Conjunction) of Fuzzy Sets
H A B
1_

pang(x) = min(pa(x), pe(x))



Other Intersection Operators (T-norms)

Probabilistic “and” (product operator):
pang(x) = pa(x) - ws(x)
tukasiewicz “and” (bounded difference):
pang(x) = max(0, pa(x) + pa(x) — 1)

Many other t-norms ... [0, 1] x [0, 1] — [0, 1]



Union (Disjunction) of Fuzzy Sets

A

H A B
1_

paug(x) = max(pa(x), pa(x))



Other Union Operators (T-conorms)

Probabilistic “or":
paus(x) = pa(x) + pe(x) — pa(x) - pp(x)
tukasiewicz “or" (bounded sum):
paus(x) = min(1, pa(x) + ws(x))

Many other t-conorms ... [0, 1] x [0, 1] — [0, 1]



Demo of a Matlab tool




Fuzzy Set in Multidimensional Domains

1}

A= {palxy)/(xy)l(x.y) € X x Y}




Cylindrical Extension




Cylindrical Extension




Cylindrical Extension

ext,Q(A) = {/J.A(Xl)/(Xl,Xz)KXl,Xz) € X1 X Xz}



Projection




Projection onto X;

proj,, (A) = { sup pra(xi, x2)/xi|x1 € X1}
X2 2



Projection onto X»

proj,, (A) = { sup pra(xi, x2)/x2|x2 € Xz}
X1 1



Intersection on Cartesian Product Space

An operation between fuzzy sets are defined in different domains results
in a multi-dimensional fuzzy set.

Example: A; N Az on X1 x Xo:
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Intersection on Cartesian Product Space

An operation between fuzzy sets are defined in different domains results
in a multi-dimensional fuzzy set.

Example: A; N Az on X1 x Xo:
A




Fuzzy Relations

Classical relation represents the presence or absence of interaction
between the elements of two or more sets.

With fuzzy relations, the degree of association (correlation) is
represented by membership grades.

An n-dimensional fuzzy relation is a mapping
R2X1><X2><X3---><X,,—)[0,1]

which assigns membership grades to all n-tuples (xi, x2, . .., xp) from
the Cartesian product universe.



Fuzzy Relations: Example

Example: R: x =y (“x is approximately equal to y")
ur(x.y) = e

membership grade




Relational Composition

Given fuzzy relation R defined in X x Y and fuzzy set A defined in X,
derive the corresponding fuzzy set B defined in Y:

B = Ao R = projy (extxxy(A) N R)

max-min composition:

pe(y) = max(min(ua(x), ur(x.¥)))

Analogous to evaluating a function.



Graphical Interpretation: Crisp Function

crisp argument interval argument




Graphical Interpretation: Interval Function

crisp argument interval argument




Graphical Interpretation: Fuzzy Relation

crisp argument fuzzy argument




Max-Min Composition: Example

pe(y) = mgX(min(#A(X),#R(x,y))), vy

(0.0 0.0 0.0 0.4 03]
0.0 0.1 1.0 0.2 0.0
[1.0 04 01 00 0.0]of 0.0 1.0 0.0 0.0 00 | =
0.0 0.9 0.0 0.0 0.0

| 0.0 0.0 0.8 0.3 0.0 |



Max-Min Composition: Example

pe(y) = m;X(min(#A(X),#R(x,y))), vy

[0.0 0.0 0.0 04 0.8 ]
0.0 01 1.0 02 00
[1.0 0.4 0.1 0.0 0.0]o| 0.0 1.0 0.0 0.0 0.0 | =[0.0 0.1 0.4 0.4 038 ]
0.0 0.9 0.0 0.0 00

| 0.0 0.0 0.8 0.3 0.0 |



Fuzzy Systems




Fuzzy Systems

e Systems with fuzzy parameters
y= §x1 + §x2
® Fuzzy inputs and states
x(t) = Ax(t) + Bu(t), x(0) =2
® Rule-based systems

If the heating power is high

then the temperature will increase fast



Rule-based Fuzzy Systems

® Linguistic (Mamdani) fuzzy model
If xis Athen yis B
® Fuzzy relational model
If x is A then y is B1(0.1), B»(0.8)
® Takagi—Sugeno fuzzy model

If x is A then y = f(x)



Linguistic Model

If xis Athen yis B
x is A — antecedent (fuzzy proposition)
y is B — consequent (fuzzy proposition)

60 / 79



Linguistic Model

If xis Athen yis B
x is A — antecedent (fuzzy proposition)
y is B — consequent (fuzzy proposition)

Compound propositions (logical connectives, hedges):
If x; is very big and x» is not small

60 / 79



Multidimensional Antecedent Sets

A1 N Az on X1 X Xo:




Partitioning of the Antecedent Space

conjunctive other connectives




Inference Mechanism

Given the if-then rules and an input fuzzy set, deduce the corresponding
output fuzzy set.

¢ Formal approach based on fuzzy relations.
¢ Simplified approach (Mamdani inference).

* Interpolation (additive fuzzy systems).
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Formal Approach

@ Represent each if-then rule as a fuzzy relation.

® Aggregate these relations in one relation representative for the

entire rule base.

® Given an input, use relational composition to derive the

corresponding output.



Modus Ponens Inference Rule

Classical logic Fuzzy logic
if x is A then y is B if x is A then y is B
xis A xis A'
yis B y is B’



Relational Representation of Rules

If—then rules can be represented as a relation, using implications or
conjunctions.
Classical implication

(AB] 0 [ 1 |

(AT B A= B (AVE) ]

0o 1 0 1
01 1 1 0 1
110 0

111 1

R: {0,1} x {0,1} — {0,1}
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Relational Representation of Rules

If—then rules can be represented as a relation, using implications or
conjunctions.
Conjunction

(AB] 0 [ 1 |

|AlB]AAB]

ool o 0 0
e 1 0 1
10 o

11 1

R: {0,1} x {0,1} — {0,1}
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Fuzzy Implications and Conjunctions

Fuzzy implication is represented by a fuzzy relation:

R:[0,1] x [0,1] — [0, 1]

pr(x,y) = I(pa(x), ws(y))

I(a, b) — implication function
“classical”  Kleene-Diene I(a, b) = max(1 — a, b)
tukasiewicz  I(a, b) =min(1,1—a+ b)
)
)

T-norms Mamdani I(a, b) = min(a, b)
Larsen I(a,b)=a-b




Inference With One Rule

@ Construct implication relation:

pr(xy) = Lpalx) we(y))



Inference With One Rule

@ Construct implication relation:

pr(xy) = Lpalx) we(y))

® Use relational composition to derive B’ from A’:

B'=AoR
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Graphical lllustration

pr(X, y) = min(ua(x), us(y)) we(y)= mfx(min(MA'(X),MR(X, )/)))

max(min(A’,R))




Inference With Several Rules

@ Construct implication relation for each rule J:
pr; (X, y) = I(pa;(x), ks (y))
@ Aggregate relations R; into one:
ur(x,y) = ager(pr;(x, y))

The aggr operator is the minimum for implications and the
maximum for conjunctions.

© Use relational composition to derive B’ from A’:

B'=AoR



Example: Conjunction

@ Each rule
If X is A; then y is B;

is represented as a fuzzy relation on X x Y:

Ri=AixBi  pr(x,y)=pa(x)Aus(y)



Example: Conjunction, Aggregation

@ Each rule
If X is A; then y is B;

is represented as a fuzzy relation on X x Y:
Ri=AixBi pr(xy)=pa(x)Aps(y)

® The entire rule base’s relation is the union:

K
R= iL:Jl Ri wr(xy) = max [ug,(x.y)]



Example: Conjunction, Aggregation, and Composition

@ Each rule
If X is A; then y is B;

is represented as a fuzzy relation on X x Y:

Ri=AixBi  pr(x,y)=pa(x)Aus(y)

® The entire rule base’s relation is the union:

K
R= iL:Jl Ri wr(xy) = max [ug,(x.y)]

©® Given an input value A’ the output value B’ is:

B'=AoR  pe(y)=max[ua(x)Aur(x,y)]



Example: Modeling of Liquid Level

- If F, is Zero then h is Zero
- IfF, is Med then h is Med
- If F, is Large then h is Med

Zero Medium  Large Zero Medium




R If Flow is Zero then Level is Zero

~

" { Zero Medium
1

wt Zero Medium Large

v




R, If Flow is Medium then Level is Medium

~

" { Zero Medium
1

wt Zero Medium Large

v




Rs If Flow is Large then Level is Medium

~

" { Zero Medium
1
~

wt Zero Medium Large

v




Aggregated Relation
A

~

-

n& Zero Medium Large




Simplified Approach

@ Compute the match between the input and the antecedent
membership functions (degree of fulfillment).

® Clip the corresponding output fuzzy set for each rule by using the
degree of fulfillment.

© Aggregate output fuzzy sets of all the rules into one fuzzy set.

This is called the Mamdani or max-min inference method.



Water Tank Example

Zero Medium Large

- If F, is Zero then h is Zero
- IfF, is Med then h is Med
- If F, is Large then h is Med

Zero Medium




Mamdani Inference: Example

wh Zero  Medium Large v Zero Medium
1

v




Mamdani Inference: Example

wh Zero  Medium Large v Zero Medium
1

v

Given a crisp (numerical) input (Fip).



If F;, is Zero then . ..

wh Zero  Medium Large A Zero Medium
| /' 1\

0 50 100 0 3 6

v

Determine the degree of fulfillment (truth) of the first rule.




If F;, is Zero then h is Zero

wh Zero  Medium Large A Zero Medium
| /' 1\

0 50 100 0 3 6

4
v

Clip consequent membership function of the first rule.




If F;, is Medium then ...

wh Zero  Medium Large A Zero Medium
1 \ 1

4N/ \ R 7/ N\

v

Determine the degree of fulfillment (truth) of the second rule.



If F;, is Medium then h is Medium

wh Zero  Medium Large A Zero Medium
1 \ 1

4N/ \ R /X

v

Clip consequent membership function of the second rule.



Aggregation

wh Zero  Medium Large A Zero Medium

| /\ /' 1\

A N/ _\ > /X
50

100 0 3 6

F, h

m

v

Combine the result of the two rules (union).




Defuzzification

conversion of a fuzzy set to a crisp value

n H

s

|

y

’ ’

y y

(a) center of gravity (b) mean of maxima




Center-of-Gravity Method

F
> we(y)y;
j=1
Yo =

-
> ue(y)
j=1



Defuzzification

wh Zero  Medium Large v Zero Medium
NAS

A N1\

v

100

F.

m

Compute a crisp (numerical) output of the model (center-of-gravity
method).





