Advanced Issues of Wind Turbine Modelling and Control

Silvio Simani

Department of Engineering, University of Ferrara

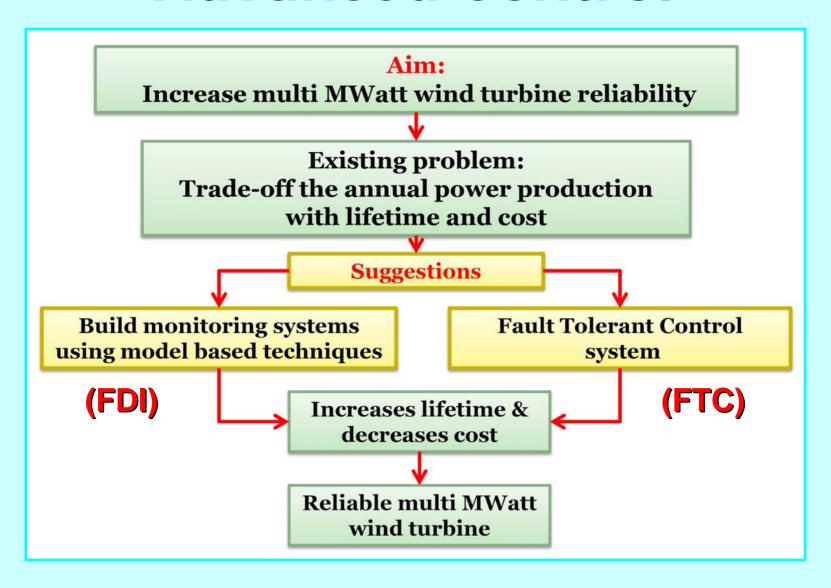
Via Saragat 1E 44123 Ferrara (FE), ITALY

Ph./Fax:+390532974844

Email: silvio.simani@unife.it. URL: www.silviosimani.it

Available from: http://www.silviosimani.it/talks.html

Discussion Topics


- > General considerations
- > Advanced control
- > FDI/FTC general structures
- > Fault models
- > Competition challenges
- > Wind turbine modelling issues
- Concluding remarks
- Selected references

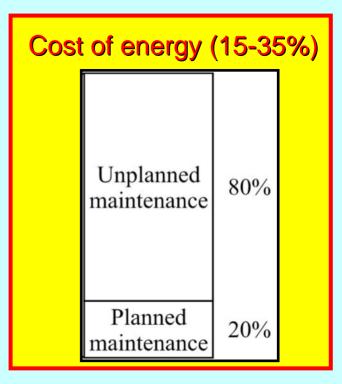
- Control systems have high influence on the total cost of energy
- ✓ Focus on advanced control solutions
 - Condition monitoring
 - Fault diagnosis and fault tolerant control
- ✓ The design of control solutions is enhanced by the development of high-fidelity benchmark models and prototypes
 - Modelling issues
- Solutions characterised by craftsmanship, quality, reliability, and proven technology

Advanced Control

Safety-Critical Systems

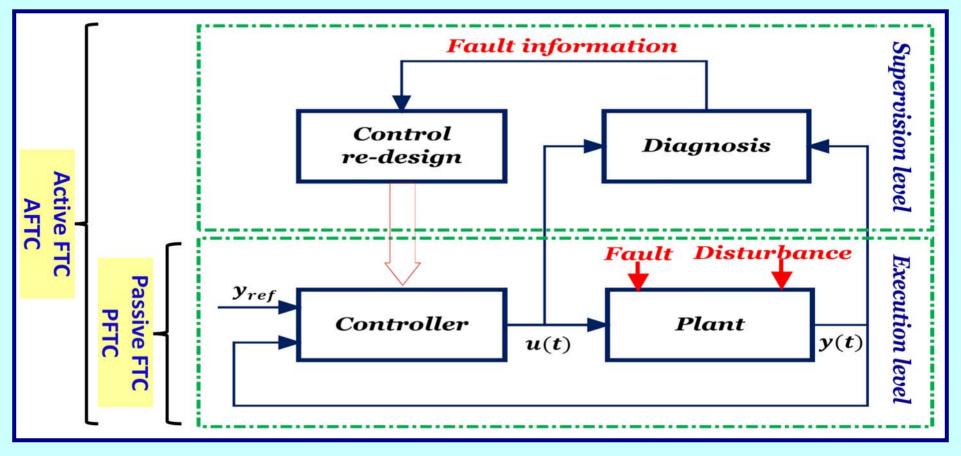
- ✓ Model-based FDI and FTC are proposed as new approaches for sustainable (high degree of reliability and availability) wind turbine control
- ✓ Manage loads (storms, ...) and faults
- ✓ NOTE: FTC was developed as aerospace topic, focussed mainly on NASA projects, motivated by advanced aircraft that could be reconfigured by control through a high degree of flight surface redundancy

Motivations

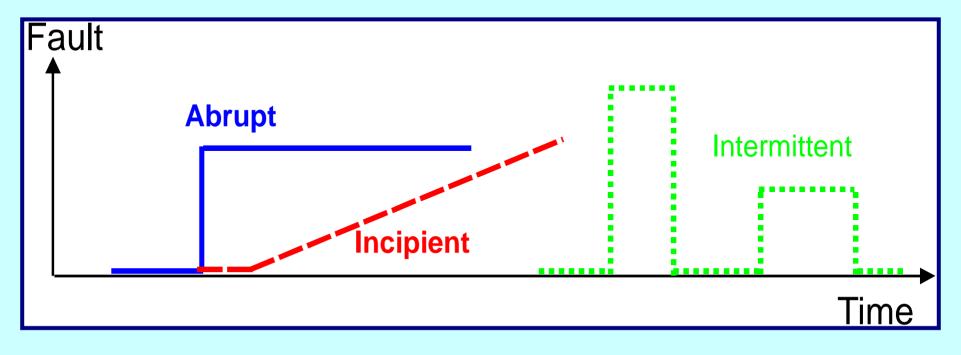


- Harsh environment asks for the system to be well protected
- Offshore wind turbines are stand-alone power plants in inadequate service and maintenance attendance
- ✓ Safety-related control systems to help avert major incidents resulting from lightning, storms, gusts and other <u>periodic incidents</u>, and <u>faults</u> that affect the energy drive train and the electricity production

Example...



- ✓ A 5 MW wind turbine stopped will loose 24 MWh per day in production if 40% wind capacity is assumed
 - Combine this with difficult
 accessibility at an offshore wind
 farm, it might take days before a
 fault is cleared
 - Advanced FDI and FTC included in the control system could provide information on the fault, thus allowing for correct and faster repair if required, and/or continued


energy generation eventually at lower level until maintenance service

- ✓ PFTC: Robust fixed structure controller
 - No fault information provided
- ✓ AFTC: Real-time controller reconfiguration
 - Fault reconstruction

- ✓ Abrupt fault: e.g. failures
- ✓ Incipient fault: i.e. hard to detect
- ✓ Intermittent fault: e.g. disconnections

Silvio Simani – Advanced Issues of Wind Turbine Modelling and Control

System Requirements

- Safeguard w.r.t. all the different types of loads that inflict a wind turbine and regulate accordingly
 - loads from the environment (e.g. storms, waves, wind shear and wakes),
 - loads from the wind turbine itself (e.g. blades aerodynamic imbalances, yaw misalignments),
 - loads from the system (start/stop and turbine failures)
- Analyse system performance to avoid instabilities
- Balancing efficient production with lifetime considerations
- Ensure redundant system capabilities to allow production until service and maintenance (O&M) are possible

Wind Turbine Maintenance

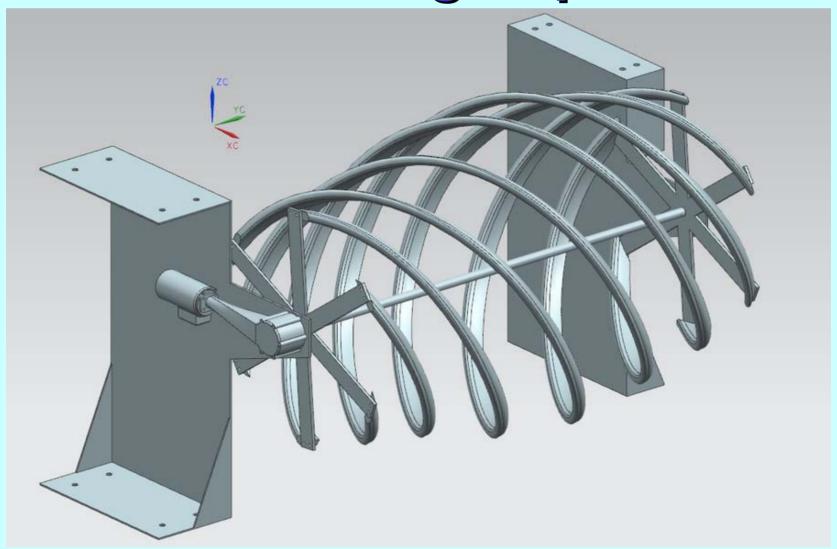
- High degree of reliability and availability (sustainability) is required and at the same expensive and safety critical maintenance work can occur
- ✓ Site accessibility, system availability not always ensured, severe weather conditions (+ sea installations)
- ✓ FTC and FDI researches are stimulated in this application area since important aspects for decreasing wind energy cost and increasing electrical grid penetration
- ✓ FTC can enhance specific control actions to prevent plant damage and ensure system availability during malfunctions
- ✓ Maintenance costs (O&M) and off-time can be significantly reduced

Silvio Simani – Advanced Issues of Wind Turbine Modelling and Control

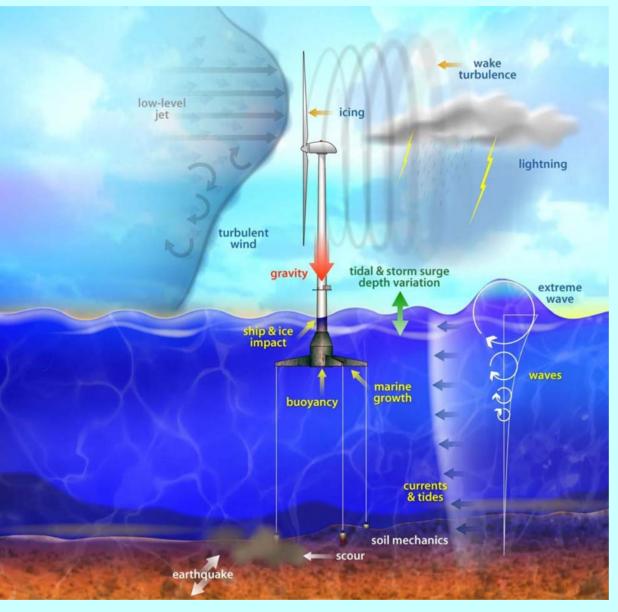
International Challenge

- kk-electronic (Denmark) together with MathWorks
 launched a number of benchmark models for fault
 detection and accommodation, which allows turbine
 owners and researchers to find the best schemes to
 handle different faults.
- Based on these models, a series of competitions and challenges have been launched
 - Simple Wind Turbine FDI/FTC benchmark model
 - Advanced WT FDI / FTC benchmark model
 - Wind farm FDI/FTC benchmark model

Benchmark Model Motivations


- ✓ Wind turbine benchmarks were proposed to provide generic platforms (freely available) for designing and testing different FDI and FTC solutions
- ✓ The target was researchers in the FDI and FTC community, such that they can apply and compare their methods on wind turbine realistic installations
- ✓ The model is generic, it can be provided to the public
- Solutions finally verified on accurate wind turbine models (confidential)

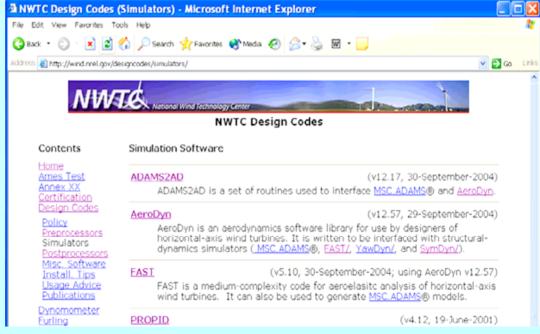
Competition Challenges



- ✓ Fault diagnosis and fault-tolerant control scheme designs
- ✓ Design procedure
 - Modelling
- ✓ Describe the considered system
 - Fault analysis
- ✓ Identify faults to be handled
 - Detect, isolate (and estimate faults)
 - Fault-tolerant control
- ✓ Based on signal correction
- Based on scheduling and reconfiguration of the controller

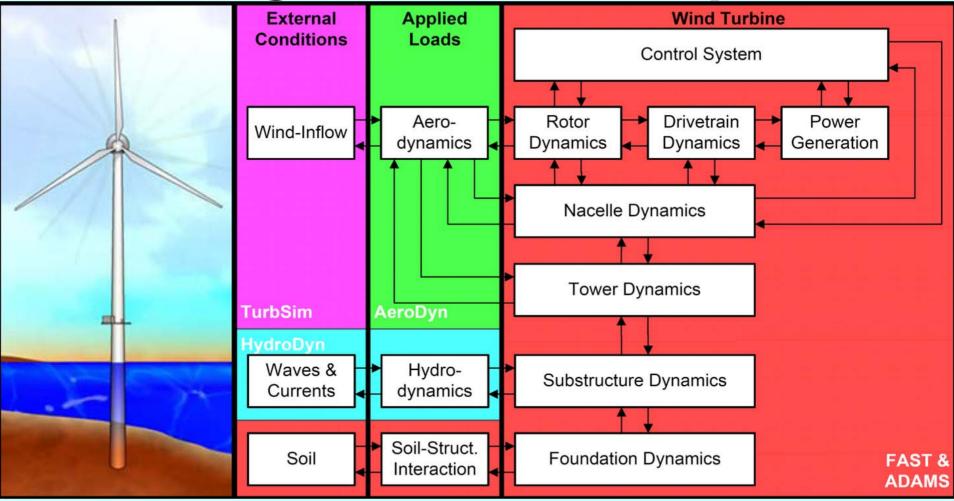
Modelling Topics

Silvio Simani - Advanced Issues of Wind Turbine Modelling and Control

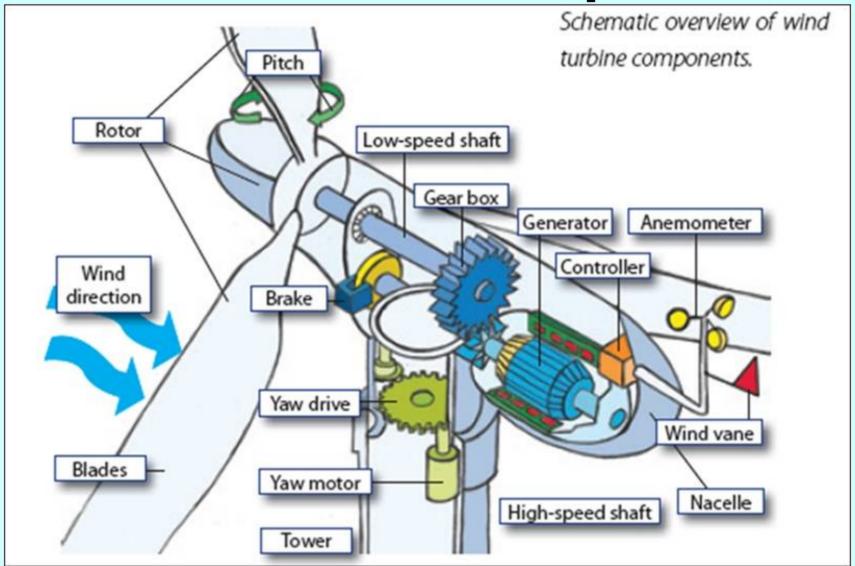


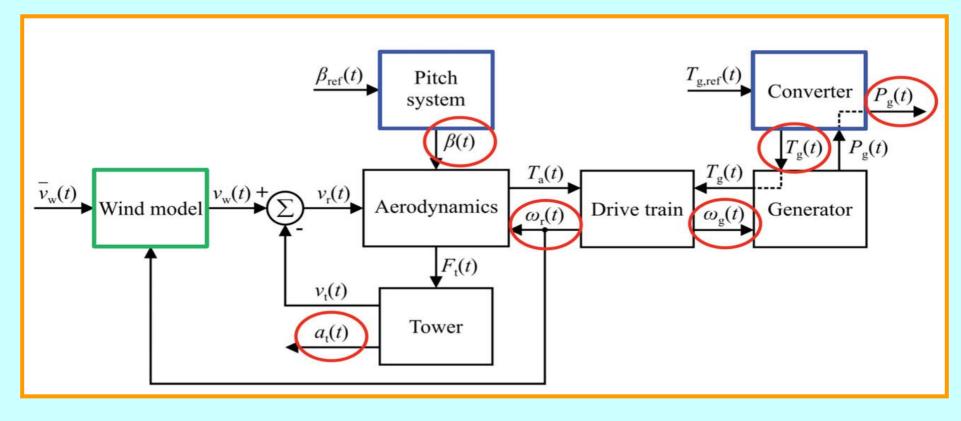
- > Coupled aero-hydroservo-elastic interaction
- > Models originate from different disciplines
 - Wind-Inflow
 - **Waves**
 - **Aerodynamics**
 - **Hydrodynamics**
 - Structural dynamics
 - **Control systems**
- **Multi-Physics Simulation Tools**

NREL Design Codes

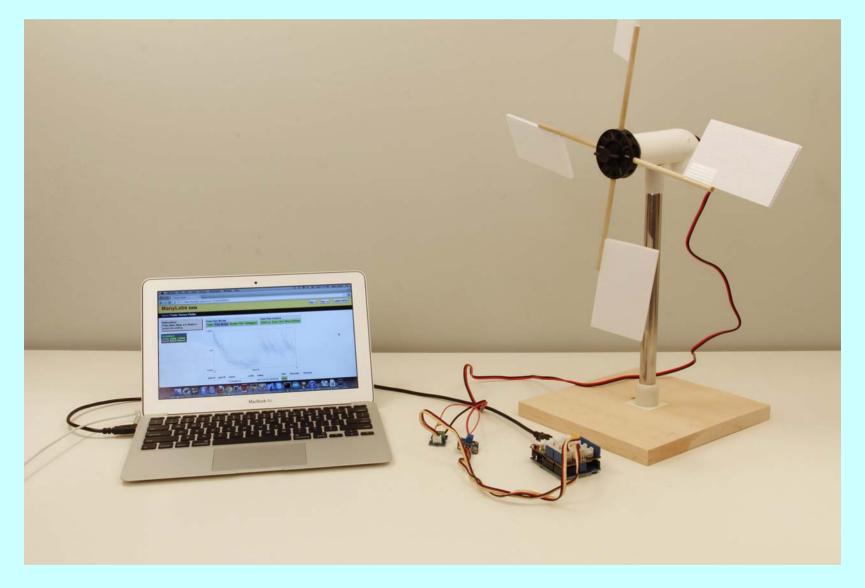

National Renewable Energy Laboratory

- ✓ http://wind.nrel.gov/designcodes
- ✓ One set of models
 - FAST
 - aeroelasticity
 - TurbSim
 - turbulent inflow
 - Others... e.g. ADAMS (MSC)
- ✓ Freely available


- ✓ Used heavily in industry, academia and other governmental research organizations
- ✓ Important for control systems design


Design Codes Examples

Coupled Aero-Hydro-Servo-Elastic Simulation


Wind Turbine Components

- Stochastic wind model including tower shadow and wind shear
- > Actuator models
- > Zero-mean Gaussian distributed measurement noise

Measurement Sensors

Measurements

Sensor Type	Symbol	Unit	Noise Power
Anemometer - Wind speed at hub height	$v_{ m w,m}$	m/s	0.0071
Rotor Speed	$\omega_{ m r,m}$	rad/s	10^{-4}
Generator Speed	$\omega_{ m g,m}$	rad/s	$2 \cdot 10^{-4}$
Generator Torque	$ au_{ m g,m}$	Nm	0.9
Generated Electrical Power	$P_{ m g,m}$	W	10
Pitch Angle of <i>i</i> th Blade	$eta_{i,\mathrm{m}}$	deg	$1.5 \cdot 10^{-3}$
Azimuth angle low speed side	$\phi_{ m m}$	rad	10^{-3}
Blade root moment <i>i</i> th blade	$M_{\mathrm{B},i,\mathrm{m}}$	Nm	10^{3}
Tower top acceleration (x and y directions) measurement	$egin{bmatrix} \ddot{x}_{X,m} \ \ddot{x}_{y,m} \end{bmatrix}$	m/s ²	$5 \cdot 10^{-4}$
Yaw error	Ξe,m	deg	$5 \cdot 10^{-2}$

Wind Turbine Actuators

Actuator Models

> Pitch actuator model

$$\frac{\beta(s)}{\beta_{\rm r}(s)} = \frac{\omega_{\rm n}^2}{s^2 + 2 \cdot \zeta \omega_{\rm n} \cdot s + \omega_{\rm n}^2}$$

Generator and converter model

$$\frac{\tau_{g}(s)}{\tau_{g,r}(s)} = \frac{\alpha_{gc}}{s + \alpha_{gc}},$$

Generator power

$$P_{g}(t) = \eta_{g}\omega_{g}(t)\tau_{g}(t),$$

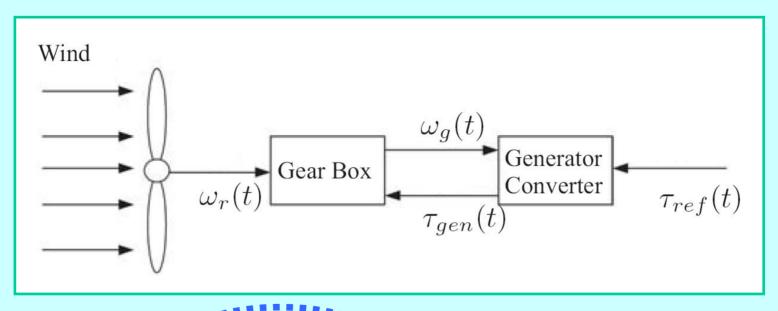
Wind Turbine Submodels

$$\dot{\omega}_r(t) = \frac{1}{J} \left(\tau_{aero}(t) - \tau_{gen}(t) \right)$$

$$\dot{\tau}_{gen}(t) = p_{gen} \left(\tau_{ref}(t) - \tau_{gen}(t) \right)$$

Drive-train model

Hydraulic pitch system

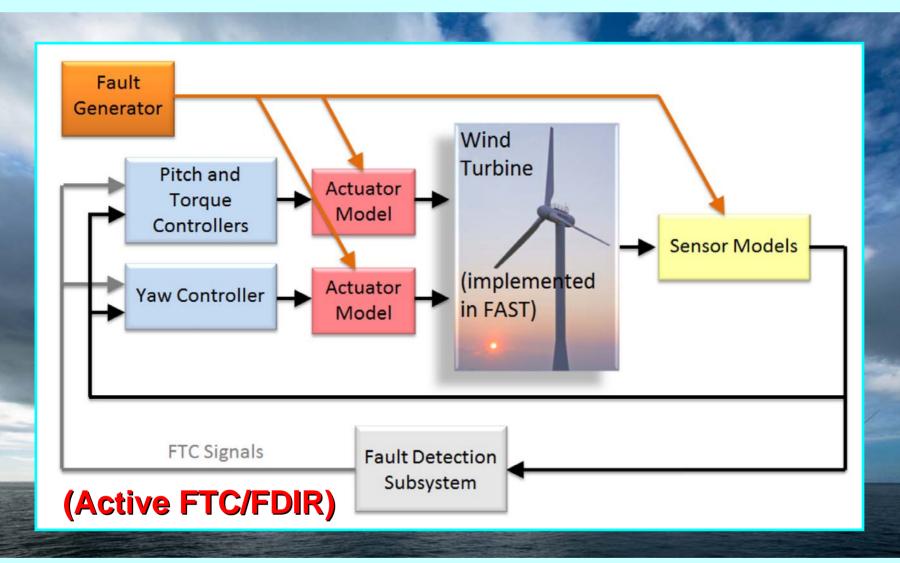

$$\frac{\beta(s)}{\beta_r(s)} = \frac{\omega_n^2}{s^2 + 2\zeta \omega_n s + \omega_n^2}$$

$$\frac{\tau_g(s)}{\tau_{gr}(s)} = \frac{\alpha_{gc}}{s + \alpha_{gc}}$$

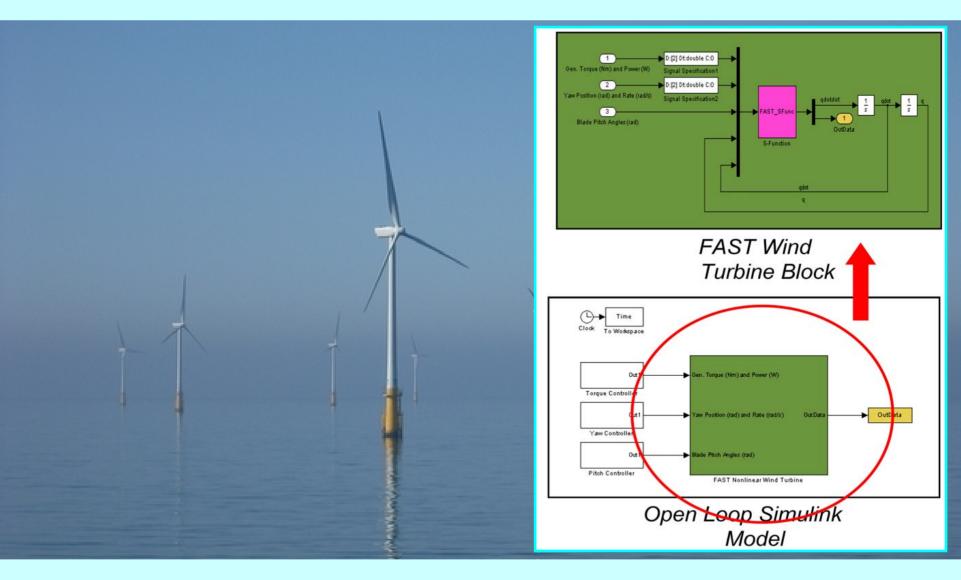
Generator & converter models

$$P_g(t) = \eta_g \,\omega_g(t) \,\tau_g(t)$$

Aerodynamic Model

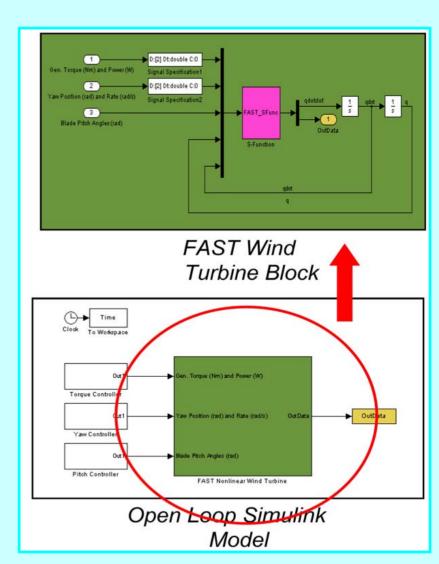

$$\tau_{aero}(t) = \frac{\rho A C_p (\beta(t), \lambda(t)) v^3(t)}{2 \omega_r(t)}$$

Aerodynamic torque and tipspeed ratio

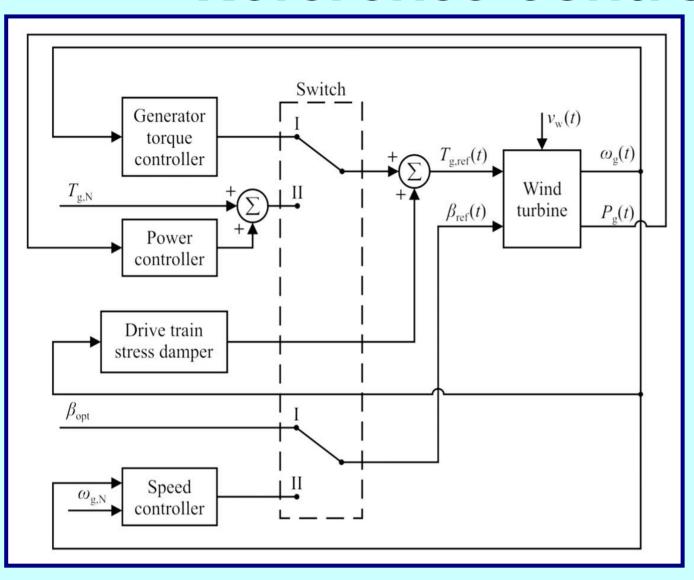

$$\lambda(t) = \frac{\omega_r(t) R}{v(t)}$$

Wind speed is not unknown, but measured but highly noisy

Simulink-based Scheme



Wind Turbine Simulators

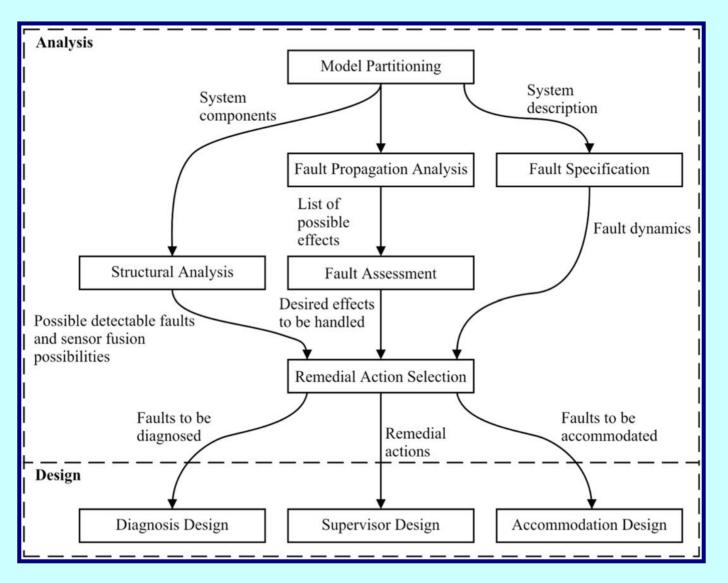

Turbine Model & Controller

- Routines for pitch, torque, & yaw controllers
- ✓ Dynamic link library (DLL):
 - DLL interface routines included with FAST archive
 - Can be Fortran, C++, etc.
- ✓ MATLAB/Simulink:
 - FAST implemented as S-Function block
 - Controls implemented in block-diagram form

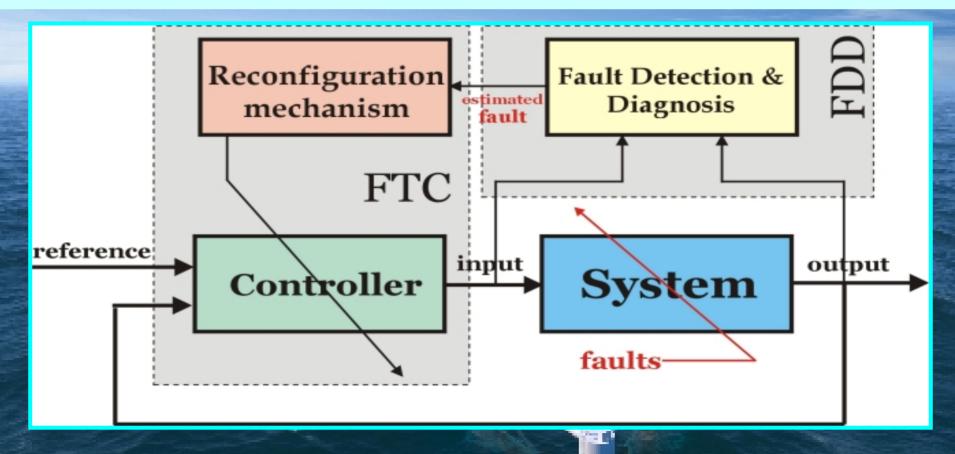
Reference Controller

- 2 working conditions: (I) partial & (II) full load
- Approximates
 the
 configuration
 of an existing
 control
 system
- ✓ Used in the design of the fault diagnosis algorithms

Fault Analysis



FMEA


Fault Scenario

Component	Fault
Pitch sensor	Biased output
Pitch actuator	Pump wear
	High air content in oil
	Hydraulic leakage
	Valve blockage
	Pump blockage
Generator speed sensor	Proportional error
	Fixed output
	No output

Fault Examples

No.	Fault	Type
1	Blade root bending moment sensor	Scaling
2	Accelerometer	Offset
3	Generator speed sensor	Scaling
4	Pitch angle sensor	Stuck
5	Generator power sensor	Scaling
6	Low speed shaft position encoder	Bit error
7	Pitch actuator	Abrupt change in dynamics
8	Pitch actuator	Slow change in dynamics
9	Torque offset	Offset
10	Yaw drive	Stuck drive

FTC General Structure

- ✓ PFTC: Robust fixed structure controller
- ✓ AFTC: Real-time controller reconfiguration

Fault Accommodation

Component	Fault	Fault Accommodation Method	
Pitch sensor	Biased output	Signal correction of measurement and reference signals	
Pitch actuator	High air content in oil	A stive and maggive fault talement control	
	Pump wear	Active and passive fault-tolerant control	
	Hydraulic leakage		
	Valve blockage	Shut down the wind turbine	
	Pump blockage		
Generator speed sensor	Proportional error	Signal correction of measurement signal	
	Fixed output	Signal correction of measurement signal (PL)	
	No output	Active and passive fault-tolerant control (FL)	

FDI & FTC Competitions

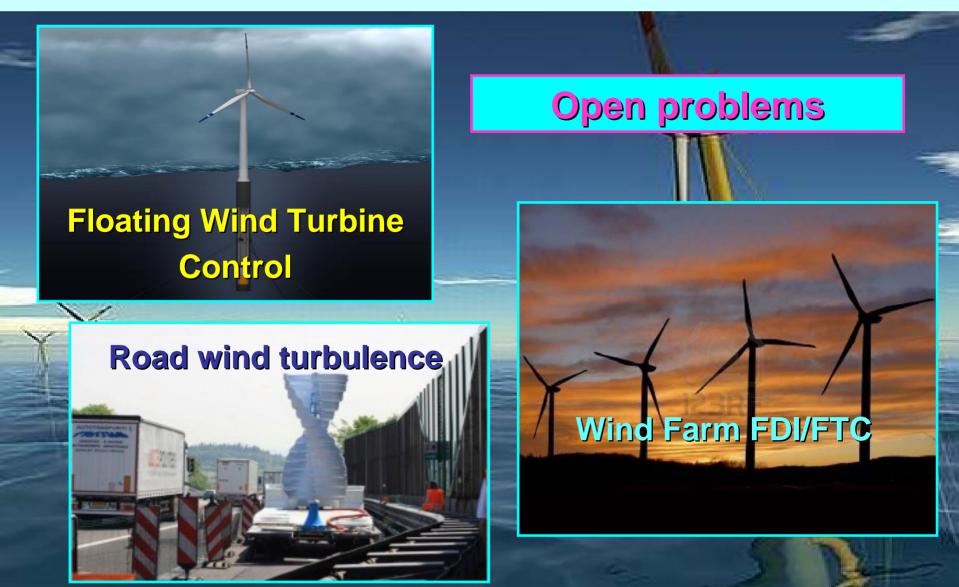
Two competitions in two parts launched on (I) wind turbine and (II) wind farm benchmark models

- ✓ Part I.I on FDI: solutions were presented in two invited sessions at IFAC World Congress, Milan, Italy, 2011
- ✓ Part I.II on FTC: solutions were presented in two and a half invited sessions at IFAC SafeProcess, Mexico City, Mexico, 2012
- Three prizes for each part was sponsored by kkelectronic a/s and Mathworks

- ✓ Part II.I on FDI: solutions were presented in one invited session at 2014 IFAC World Congress, Cape Town, South Africa, August 2014
- ✓ Part II.II on FTC: solutions were presented in one invited session at IFAC SafeProcess, Paris, France, September 2015
- > Three prizes for each part was sponsored by Mathworks

Conclusion

- ✓ Advanced FDI and FTC in wind turbines are motivated
- ✓ Wind turbine benchmark models are required
- FDI schemes were developed
- ✓ FTC solutions were proposed
- Wind turbine benchmark models and challenges were launched


Conclusion (cont'd)

- ✓ Current state-of-the-art design tools
 - Originate in separate disciplines
- ✓ Classical modelling tools
 - Good for turbines that are operating below rated wind speed
 - Structurally stiff
 - Very little yaw
 - Low turbulence
- Next generation turbines
 - Larger and more flexible
 - More accurate models
 - Closer coupling
 - Advanced control schemes

Recent Challenges

- ✓ Original benchmark model is combined with NREL's FAST to provide a FDI and FTC test case with a more detailed aerodynamic and structural model
- ✓ Contributions were submitted as invited session at ACC 2013 (June 17 – 19, 2013, Washington, DC)
- ✓ A benchmark model for FDI and FTC of wind turbines on a wind farm level have been proposed, and a competition in two parts – FDI and FTC have been launched and still running
- The wind farm model is quite (too?) simplified

Research Issues

Forthcoming Events

- ✓ EACD 2015: 12th European Workshop on Advanced Control and Diagnosis, Pilsen, Czech Republic, November 19 – 20, 2015 (*deadline 14/9*)
- SysTol'16: 3rd Conference on Control and Fault-Tolerant Systems, September 7-9, 2016 – Barcelona, Catalonia, Spain
- IFAC WC 2017: World Congress, Toulouse, France. 9-14 July, 2017
- SafeProcess 2018 (just announced): August/Sept. (to be defined) 2018, Warsaw, Poland

Selected References (1)

- 1. F. D. Bianchi, H. D. Battista, R. J. Mantz, *Wind Turbine Control Systems: Principles, Modelling and Gain Scheduling Design*, 1st Edition, Advances in Industrial Control, Springer, 2007, ISBN: 1–84628–492–9
- 2. L. Y. Pao, K. E. Johnson, Control of Wind Turbines, *IEEE Control Systems Magazine* 31 (2) (2011) 44–62
- 3. M. Blanke, M. Kinnaert, J. Lunze, M. Staroswiecki, *Diagnosis and Fault-Tolerant Control*, Springer-Verlag, Berlin, Germany, 2006
- 4. T. Burton, D. Sharpe, N. Jenkins, E. Bossanyi, *Wind Energy Handbook*, 2nd Edition, John Wiley & Sons, New York, 2011
- 5. P. F. Odgaard, J. Stoustrup, M. Kinnaert, Fault–Tolerant Control of Wind Turbines: A Benchmark Model, *IEEE Transactions on Control Systems Technology* 21 (4) (2013) 1168–1182, ISSN: 1063–6536. DOI: 10.1109/TCST.2013.2259235
- 6. L. Y. Pao, K. E. Johnson, A Tutorial on the Dynamics and Control of Wind Turbines and Wind Farms, in: *Proceedings of the American Control Conference, 2009 ACC'09*, IEEE, St. Louis, MO, USA, 2009, pp. 2076–2089, ISSN: 0743–1619. ISBN: 978–1–4244–4523–3. DOI: 10.1109/ACC.2009.5160195
- 7. A. Betz, D. G. Randall, *Introduction to the Theory of Flow Machines*, Permagon Press, Oxford, 1966, ISBN: 978–0080114330
- 8. S. Simani, C. Fantuzzi, R. J. Patton, *Model-based fault diagnosis in dynamic systems using identification techniques*, 1st Edition, Vol. 1 Advances in Industrial Control, Springer–Verlag, London, UK, 2003, ISBN: 1852336854

Selected References (2)

- 9. J. Chen, R. J. Patton, *Robust Model–Based Fault Diagnosis for Dynamic Systems*, Kluwer Academic Publishers. Boston. MA. USA. 1999
- 10. M. Mahmoud, J. Jiang, Y. Zhang, *Active Fault Tolerant Control Systems: Stochastic Analysis and Synthesis*, Lecture Notes in Control and Information Sciences, Springer–Verlag, Berlin, Germany, 2003, ISBN: 3540003185
- 11. Y. Zhang, J. Jiang, Bibliographical review on reconfigurable fault-tolerant control systems, Annual Reviews in Control 32 (2008) 229–252
- 12. S. X. Ding, Model-based Fault Diagnosis Techniques: Design Schemes, Algorithms, and Tools, 1st Edition, Springer, Berlin Heidelberg, 2008, ISBN: 978–3540763031
- 13. W. Leithead, B. Connor, Control of variable speed wind turbines: design task, International Journal of Control 73 (13) (2000) 1189–1212, DOI: 10.1080/002071700417849
- 14. P. F. Odgaard, J. Stoustrup, Fault Tolerant Wind Farm Control a Benchmark Model, in: Proceedings of the IEEE Multiconference on Systems and Control – MSC2013, Hyderabad, India, 2013, pp. 1–6.
- 15. P. F. Odgaard, J. Stoustrup, A benchmark evaluation of fault tolerant wind turbine control concepts, *IEEE Transactions on Control Systems Technology* 23 (3) 1221–1228
- 16. C. L. Bottasso, A. Croce, B. Savini, Performance comparison of control schemes for variable—speed wind turbines, in: *Journal of Physics: Conference Series*, Vol. 75, IOP Publishing, 2007, p. 012079, DOI: 10.1088/1742-6596/75/1/012079
- 17. S. Simani, P. Castaldi, Active Actuator Fault Tolerant Control of a Wind Turbine Benchmark Model, *International Journal of Robust and Nonlinear Control* 24 (8–9) (2014) 1283–1303, John Wiley. DOI: 10.1002/rnc.2993
- 18. E. A. Bossanyi, G. Hassan, The Design of Closed Loop Controllers for Wind Turbines, *Wind Energy* 3 (3) (2000) 149–164, john Wiley & Sons, Ltd. DOI: 10.1002/we.34

Selected References (3)

- 19. K. E. Johnson, L. Y. Pao, M. J. Balas, L. J. Fingersh, Control of variable–speed wind turbines: standard and adaptive techniques for maximizing energy capture, *IEEE Control Systems Magazine* 26 (3) (2006) 70–81, DOI: 10.1109/MCS.2006.1636311
- 20. C. E. Plumley, B. Leithead, P. Jamieson, E. Bossanyi, M. Graham, Comparison of individual pitch and smart rotor control strategies for load reduction, in: *Journal of Physics: Conference Series*, Vol. 524, 2014, p. 012054, DOI: 10.1088/1742-6596/524/1/012054
- 21. A.-P. Chatzopoulos, W. E. Leithead, Reducing tower fatigue loads by a co-ordinated control of the supergen 2MW exemplar wind turbine, in: *Proc. of the 3rd Torque 2010 Conference*, Heraklion, Crete, Greece, 2010, pp. 667–674
- 22. F. Shi, R. J. Patton, An active fault tolerant control approach to an offshore wind turbine model, *Renewable Energy* 75 (1) (2015) 788–798, DOI: 10.1016/j.renene.2014.10.061