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Motivation for
AI Models

   Advanced Fault Detection in Condition Monitoring:
Combining Model-Based and Data-Driven Approaches
                                         Part 5



techniques motivated by human intelligence

� fuzzy systems (represent human knowledge, reasoning)

� artificial neural networks (adaptation, learning)

� genetic algorithms (optimization)

� particle swarm optimization

� etc.

� Fuzzy knowledge-based control

� Fuzzy data analysis, modeling, identification

� Learning and adaptive control (neural networks)

� Reinforcement learning
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Fuzzy Models I



Outline

1 Fuzzy sets and set-theoretic operations

2 Fuzzy relations

3 Fuzzy systems

4 Linguistic model, approximate reasoning
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Fuzzy Sets and Fuzzy Logic

Relatively new methods for representing uncertainty and reasoning
under uncertainty.

Types of uncertainty:

� chance, randomness (stochastic)

� imprecision, vagueness, ambiguity (non-stochastic)
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Classical Set Theory

A set is a collection of objects with a common property.

Examples:

� Set of natural numbers smaller than 5: A = f1; 2; 3; 4g

� Unit disk in the complex plane: A = fz jz 2 C; jz j � 1g

� A line in R2: A = f(x; y)jax + by + c = 0; (x; y ; a; b; c) 2 Rg
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Representation of Sets

� Enumeration of elements: A = fx1; x2; : : : ; xng

� Definition by property: A = fx 2 Xjx has property Pg

� Characteristic function: �A(x) : X ! f0; 1g

�A(x) =

(
1 x is member of A
0 x is not member of A
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Set of natural numbers smaller than 5

1

1

876543 x2
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Fuzzy sets
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Why Fuzzy Sets?

� Classical sets are good for well-defined concepts (maths, programs,
etc.)

� Less suitable for representing commonsense knowledge in terms of
vague concepts such as:

� a tall person, slippery road, nice weather, . . .
� want to buy a big car with moderate consumption
� If the temperature is too low, increase heating a lot
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Classical Set Approach

set of tall people A = fhjh � 180g

h [cm]

1

180 190170

0

A
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Logical Propositions

“John is tall” . . . true or false

John’s height: hJohn = 180:0 �A(180:0) = 1 (true)
hJohn = 179:5 �A(179:5) = 0 (false)

h [cm]

1

180 190170

0

A
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Fuzzy Set Approach

h [cm]

A

0.6

180 190170

0

1

�A(h) =

8><
>:

1 h is full member of A (h � 190)
(0; 1) h is partial member of A (170 < h < 190)
0 h is not member of A (h � 170)
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Fuzzy Logic Propositions

“John is tall” . . . degree of truth
John’s height: hJohn = 180:0 �A(180:0) = 0:6

hJohn = 179:5 �A(179:5) = 0:56
hPaul = 201:0 �A(201:0) = 1

h [cm]

A

0.6

180 190170

0

1
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Subjective and Context Dependent

h [cm]

0.6

180 190170

0

1

tall in China tall in Europe tall in NBA
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Shapes of Membership Functions

x

1

0

triangular trapezoidal bell-shaped
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Representation of Fuzzy Sets

� Pointwise as a list of membership/element pairs:

A = f�A(x1)=x1; : : : ; �A(xn)=xng = f�A(xi )=xi jxi 2 Xg

� As a list of �-level/�-cut pairs:

A = f�1=A�1 ; �2=A�2 ; : : : ; �n; A�n
g = f�i=A�i

j�i 2 (0; 1)g
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Representation of Fuzzy Sets

� Analytical formula for the membership function:

�A(x) =
1

1 + x2
; x 2 R

or more generally

�(x) =
1

1 + d(x; v)
:

d(x; v) . . . dissimilarity measure

Various shorthand notations: �A(x) : : : A(x) : : : a
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Linguistic Variable

1

t (temperature)

3020 40

base variable

linguistic
terms

linguistic variable

membership
functions

semantic
rule

0

µ

highmediumlow

TEMPERATURE

0
10

Basic requirements: coverage and semantic soundness
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Properties of fuzzy sets

34 / 79



Support of a Fuzzy Set

supp(A) = fx j�A(x) > 0g

0

1

supp( )A

x

A

support is an ordinary set
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Core (Kernel) of a Fuzzy Set

core(A) = fx j�A(x) = 1g

0

1

core( )A
x

A

core is an ordinary set

36 / 79



�-cut of a Fuzzy Set

A� = fx j�A(x) > �g or A� = fx j�A(x) � �g

0

1

x

a-level
a

A
a

A

A� is an ordinary set
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Convex and Non-Convex Fuzzy Sets

0

1

a

convex non-convex

x

A B

A fuzzy set is convex , all its �-cuts are convex sets.
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Non-Convex Fuzzy Set: an Example

1

64 age [years]

high-risk age

483216

High-risk age for car insurance policy.

39 / 79



Fuzzy Numbers and Singletons

0

1

fuzzy number

"about 3"

fuzzy

singleton

3 8 x

Fuzzy linear regression: y = 3̃x1 + 5̃x2
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Fuzzy set-theoretic operations
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Complement (Negation) of a Fuzzy Set

A

0

1

x

A

�Ā(x) = 1 � �A(x)
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Intersection (Conjunction) of Fuzzy Sets

0

1

x

A B

�A\B(x) = min(�A(x); �B(x))
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Other Intersection Operators (T-norms)

Probabilistic “and” (product operator):

�A\B(x) = �A(x) � �B(x)

 Lukasiewicz “and” (bounded difference):

�A\B(x) = max(0; �A(x) + �B(x) � 1)

Many other t-norms . . . [0; 1] � [0; 1] ! [0; 1]
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Union (Disjunction) of Fuzzy Sets

0

1

x

A B

�A[B(x) = max(�A(x); �B(x))
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Other Union Operators (T-conorms)

Probabilistic “or”:

�A[B(x) = �A(x) + �B(x) � �A(x) � �B(x)

 Lukasiewicz “or” (bounded sum):

�A[B(x) = min(1; �A(x) + �B(x))

Many other t-conorms . . . [0; 1] � [0; 1] ! [0; 1]
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Demo of a Matlab tool
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Fuzzy Set in Multidimensional Domains

x
y

A = f�A(x; y)=(x; y)j(x; y) 2 X � Y g
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Cylindrical Extension

x
2

A

x
1

extx2(A) =
�
�A(x1)=(x1; x2)j(x1; x2) 2 X1 � X2
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Projection

A

x
2

x
1

50 / 79



Projection onto X1

A

A
1

x
2

x
1

projx1
(A) =

n
sup
x22X2

�A(x1; x2)=x1jx1 2 X1

o
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Projection onto X2

A

A
2

x
2

x
1

projx2
(A) =

n
sup
x12X1

�A(x1; x2)=x2jx2 2 X2

o
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Intersection on Cartesian Product Space
An operation between fuzzy sets are defined in different domains results
in a multi-dimensional fuzzy set.

Example: A1 \ A2 on X1 � X2:

A
2

x
2

A
1

x
1
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Fuzzy Relations

Classical relation represents the presence or absence of interaction
between the elements of two or more sets.

With fuzzy relations, the degree of association (correlation) is
represented by membership grades.

An n-dimensional fuzzy relation is a mapping

R : X1 � X2 � X3 � � � � Xn ! [0; 1]

which assigns membership grades to all n-tuples (x1; x2; : : : ; xn) from
the Cartesian product universe.
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Fuzzy Relations: Example

Example: R : x � y (“x is approximately equal to y”)

�R(x; y) = e�(x�y)2
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0
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−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

y
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Relational Composition

Given fuzzy relation R defined in X � Y and fuzzy set A defined in X,
derive the corresponding fuzzy set B defined in Y :

B = A � R = projY
�
extX�Y (A) \ R

�
max-min composition:

�B(y) = max
x

�
min

�
�A(x); �R(x; y)

��
Analogous to evaluating a function.
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Graphical Interpretation: Crisp Function

x

y

x

y

crisp argument interval argument
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Graphical Interpretation: Interval Function

crisp argument

x

y

interval argument

x

y
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Graphical Interpretation: Fuzzy Relation

x

y

x

y

crisp argument fuzzy argument
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Max-Min Composition: Example

�B(y) = max
x

�
min

�
�A(x); �R(x; y)

��
; 8y

�
1:0 0:4 0:1 0:0 0:0

�
�

2
66666664

0:0 0:0 0:0 0:4 0:8

0:0 0:1 1:0 0:2 0:0

0:0 1:0 0:0 0:0 0:0

0:0 0:9 0:0 0:0 0:0

0:0 0:0 0:8 0:3 0:0

3
77777775

=

�
0:0 0:1 0:4 0:4 0:8

�
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Fuzzy Systems
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Fuzzy Systems

� Systems with fuzzy parameters

y = 3̃x1 + 5̃x2

� Fuzzy inputs and states

ẋ(t) = Ax(t) + Bu(t); x(0) = 2̃

� Rule-based systems

If the heating power is high

then the temperature will increase fast
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Rule-based Fuzzy Systems

� Linguistic (Mamdani) fuzzy model

If x is A then y is B

� Fuzzy relational model

If x is A then y is B1(0:1); B2(0:8)

� Takagi–Sugeno fuzzy model

If x is A then y = f (x)

59 / 79



Linguistic Model

If x is A then y is B
x is A – antecedent (fuzzy proposition)
y is B – consequent (fuzzy proposition)

Compound propositions (logical connectives, hedges):
If x1 is very big and x2 is not small
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Multidimensional Antecedent Sets

A1 \ A2 on X1 � X2:

A
2

x
2

A
1

x
1
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Partitioning of the Antecedent Space
A

2
  
1

A
2
  
3

A
2
  
2

A
11

A
1  3

A
1  2

A
11

A
2
  
1

A
1  3

A
2
  
3

A
1  2

A
2
  
2

x
2

x
1

x
2

x
1

other connectivesconjunctive
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Inference Mechanism

Given the if-then rules and an input fuzzy set, deduce the corresponding
output fuzzy set.

� Formal approach based on fuzzy relations.

� Simplified approach (Mamdani inference).

� Interpolation (additive fuzzy systems).
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Formal Approach

1 Represent each if–then rule as a fuzzy relation.

2 Aggregate these relations in one relation representative for the

entire rule base.

3 Given an input, use relational composition to derive the

corresponding output.
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Modus Ponens Inference Rule

Classical logic

if x is A then y is B
x is A

y is B

Fuzzy logic

if x is A then y is B
x is A0

y is B0
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Relational Representation of Rules

If–then rules can be represented as a relation, using implications or
conjunctions.

Classical implication

A B A! B (:A _ B)

0 0 1

0 1 1

1 0 0

1 1 1

AnB 0 1

0 1 1

1 0 1

R : f0; 1g � f0; 1g ! f0; 1g
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Relational Representation of Rules

If–then rules can be represented as a relation, using implications or
conjunctions.

Conjunction

A B A ^ B

0 0 0

0 1 0

1 0 0

1 1 1

AnB 0 1

0 0 0

1 0 1

R : f0; 1g � f0; 1g ! f0; 1g
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Fuzzy Implications and Conjunctions

Fuzzy implication is represented by a fuzzy relation:

R : [0; 1] � [0; 1] ! [0; 1]

�R(x; y) = I(�A(x); �B(y))

I(a; b) – implication function
“classical” Kleene–Diene I(a; b) = max(1 � a; b)

 Lukasiewicz I(a; b) = min(1; 1 � a + b)
T-norms Mamdani I(a; b) = min(a; b)

Larsen I(a; b) = a � b
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Inference With One Rule

1 Construct implication relation:

�R(x; y) = I(�A(x); �B(y))

2 Use relational composition to derive B0 from A0:

B0 = A0 � R
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Graphical Illustration

�R(x; y) = min
�
�A(x); �B(y)

�
�B0(y) = max

x

�
min

�
�A0(x); �R(x; y)

��

R

A B

= min( , )

x

y

A
B

A’

min(A’,R)

max(min(A’,R))

x

y

R

B

B’

µ

A
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Inference With Several Rules

1 Construct implication relation for each rule i :

�Ri
(x; y) = I(�Ai

(x); �Bi
(y))

2 Aggregate relations Ri into one:

�R(x; y) = aggr(�Ri
(x; y))

The aggr operator is the minimum for implications and the
maximum for conjunctions.

3 Use relational composition to derive B0 from A0:

B0 = A0 � R
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Example: Conjunction

1 Each rule
If x̃ is Ai then ỹ is Bi

is represented as a fuzzy relation on X � Y :

Ri = Ai � Bi �Ri
(x ; y) = �Ai

(x) ^ �Bi
(y)

2 The entire rule base’s relation is the union:

R =
K[
i=1

Ri �R(x ; y) = max
1�i�K

[�Ri
(x ; y)]

3 Given an input value A0 the output value B0 is:

B0 = A0 � R �B0(y) = max
X

[�A0(x) ^ �R(x ; y)]
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Example: Conjunction, Aggregation

1 Each rule
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Example: Conjunction, Aggregation, and Composition
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Example: Modeling of Liquid Level

F
o  u  t

h

F
in

- If Fin is Zero then h is Zero

- If Fin is Med then h is Med

- If Fin is Large then h is Med

Zero Medium

10

1

3

h
2

Zero LargeMedium

0

1

10020

F
in

40 8060
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R1 If Flow is Zero then Level is Zero
Z

e
ro

M
e
d
iu

m

1

h

m

Zero LargeMedium

1

F
in

m

F
in

R
1
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R2 If Flow is Medium then Level is Medium
Z

e
ro

M
e
d
iu

m

1

h

m

Zero LargeMedium

1

F
in

m

F
in

R
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R3 If Flow is Large then Level is Medium
Z

e
ro

M
e
d
iu

m

1

h

m

Zero LargeMedium

1

F
in

m

F
in

R
3
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Aggregated Relation
Z
er
o

M
ed
iu
m

1

h

�

Zero LargeMedium
1

Fin
�

Fin

R1

R2
R3
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Simplified Approach

1 Compute the match between the input and the antecedent
membership functions (degree of fulfillment).

2 Clip the corresponding output fuzzy set for each rule by using the
degree of fulfillment.

3 Aggregate output fuzzy sets of all the rules into one fuzzy set.

This is called the Mamdani or max-min inference method.
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Water Tank Example
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- If Fin is Med then h is Med
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Zero Medium
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Mamdani Inference: Example

Zero Medium
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1
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mZero LargeMedium
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10050
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Mamdani Inference: Example

Zero Medium

0

1

63

h

mZero LargeMedium

0

1

10050

F
in

m

Given a crisp (numerical) input (Fin).
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If Fin is Zero then . . .

Zero Medium

0

1

63

h

mZero LargeMedium

0

1

10050

F
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m

Determine the degree of fulfillment (truth) of the first rule.
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If Fin is Zero then h is Zero

Zero Medium

0

1

63

h

mZero LargeMedium

0
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10050
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Clip consequent membership function of the first rule.
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If Fin is Medium then . . .

Zero Medium

0

1

63
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mZero LargeMedium
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Determine the degree of fulfillment (truth) of the second rule.

76 / 79



If Fin is Medium then h is Medium

Zero Medium

0

1

63

h

mZero LargeMedium

0

1

10050

F
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m

Clip consequent membership function of the second rule.
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Aggregation

Zero Medium

0

1

63

h

mZero LargeMedium

0

1

10050

F
in

m

Combine the result of the two rules (union).
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Defuzzification

conversion of a fuzzy set to a crisp value

y' y

(a) center of gravity

y' y

(b) mean of maxima
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Center-of-Gravity Method

y0 =

FX
j=1

�B0(yj)yj

FX
j=1

�B0(yj)
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Defuzzification

Zero Medium

0

1

63

h

mZero LargeMedium

0

1

10050

F
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m

Compute a crisp (numerical) output of the model (center-of-gravity
method).
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Outline

1 Singleton and Takagi–Sugeno fuzzy system.

2 Knowledge based fuzzy modeling.

3 Data-driven construction.

5
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Singleton Fuzzy Model

If x is Ai then y = bi

Inference/defuzzification:

y =

PK
i=1 —Ai (x)biPK
i=1 —Ai (x)

• well-understood approximation properties

• straightforward parameter estimation
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Piece-wise Linear Approximation

A2 A3

x

1

A1

b1

b2

b3

b4

A4

y y = f(x)

x
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Linear Mapping with a Singleton Model

y = kT x + q =
pX
j=1

kjxj + q

• Triangular partition:
A

1
A

5
A

4
A

3

a
1

a
2

a
3

a
4

A
2

a
5

• Consequent singletons are equal to:

bi =
pX
j=1

kjai ;j + q
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Takagi–Sugeno (TS) Fuzzy Model

If x is Ai then yi = aix + bi

y =

KX
i=1

—Ai (x)yi

KX
i=1

—Ai (x)

=

KX
i=1

—Ai (x)(aix + bi )

KX
i=1

—Ai (x)
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Input-Output Mapping of the TS Model

y

x

y 
=
 a 1

x 
+
 b 1

y =
 a

2 x +
 b

2

y = a
3
x + b

3

MediumSmall

x

Large
µ

Consequents are approximate local linear models of the system.
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TS Model is a Quasi-Linear System

y =

KX
i=1

—Ai (x)yi

KX
j=1

—Aj (x)

=

KX
i=1

—Ai (x)(aTi x + bi )

KX
j=1

—Aj (x)

y =

 
KX
i=1

‚i (x)aTi

!
| {z }

a(x)T

x +
KX
i=1

‚i (x)bi| {z }
b(x)

linear in parameters ai and bi , pseudo-linear in x (LPV)
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TS Model is a Polytopic System
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Construction of Fuzzy Models
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Modeling Paradigms

• Mechanistic (white-box, physical)

• Qualitative (naive physics, knowledge-based)

• Data-driven (black-box, inductive)

Often combination of different approaches semi-mechanistic, gray-box
modeling.
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Parameterization of nonlinear models

• polynomials, splines

• look-up tables

• fuzzy systems

• neural networks

• (neuro-)fuzzy systems

• radial basis function networks

• wavelet networks

• . . .
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Modeling of Complex Systems

ModelData
- static
- dynamic
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- partial models
- stability
- gain, nonlinearity
- settling time
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Modeling of Complex Systems

ModelData
- static
- dynamic

- partial models
- stability
- gain, nonlinearity
- settling time

Prior knowledge

- accuracy
- interpretation
- mathematical form
- reliability (extrapolation)

User
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Building Fuzzy Models

Knowledge-based approach:

• expert knowledge → rules & membership functions

• fuzzy model of human operator

• linguistic interpretation

Data-driven approach:

• nonlinear mapping, universal approximation

• extract rules & membership functions from data
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Knowledge-Based Modeling

• Problems where little or no data are available.

• Similar to expert systems.

• Presence of both quantitative and qualitative variables or
parameters.

Typical applications: fuzzy control and decision support, but also
modeling of poorly understood processes
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Wear Prediction for a Trencher

Trencher T-850 (Vermeer) Chain Detail

Goal: Given the terrain properties, predict bit wear and production rate
of trencher.
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Why Knowledge-Based Modeling?

• Interaction between tool and environment is complex, dynamic and
highly nonlinear, rigorous mathematical models are not available.

• Little data (15 data points) to develop statistical regression models.

• Input data are a mixture of numerical measurements (rock
strength, joint spacing, trench dimensions) and qualitative
information (joint orientation).

• Precise numerical output not needed, qualitative assessment is
sufficient.
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Dimensionality Problem: Hierarchical Structure

Assume 5 membership functions for each input
625 rules in a flat rule base vs. 75 rules in a hierarchical one

x1

x2

z

rule base
A

rule base
C

x3 y2

x4

rule base
B

y1
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Trencher: Fuzzy Rule Bases

Joint set 2

Joint set 1

Joint set 3

Block sizeRule base 1
(block size)

Production rate
(linguistic output)

Production rate
(numerical output)

Defuzzification

Rock dim.

FeedRule base 3
(feed)

Rule base 4
(production)

Rock strength

Orientation

If TRENCH-DIM is SMALL and STRENGTH is LOW Then FEED is VERY-HIGH;

If TRENCH-DIM is SMALL and STRENGTH is MEDIUM Then FEED is HIGH;

....

If JOINT-SP is EXTRA-LARGE and FEED is VERY-HIGH Then PROD is VERY-HIGH
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Example of Membership Functions
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Output: Prediction of Production Rate

data no. measured value predicted linguistic value(s)

--------------------------------------------------------

1 2.07 VERY-LOW 1.00

2 5.56 HIGH 1.00

3 23.60 VERY-HIGH 0.50

4 11.90 HIGH 0.40 VERY-HIGH 0.60

5 7.71 MEDIUM 1.00

6 7.17 LOW 0.72

7 8.05 MEDIUM 0.80

8 7.39 LOW 1.00

9 4.58 LOW 0.50

10 8.74 MEDIUM 1.00

11 134.84 EXTREMELY-HIGH 1.00
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Data-Driven Construction

22 / 81



Structure and Parameters

Structure:

• Input and output variables. For dynamic systems also the
representation of the dynamics.

• Number of membership functions per variable, type of membership
functions, number of rules.

Parameters:

• Consequent parameters (least squares).

• Antecedent membership functions (various methods).
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Least-Squares Estimation of Singletons

Ri : If x is Ai then y = bi

• Given Ai and a set of input–output data:

{(xk ; yk) | k = 1; 2; : : : ; N}
• Estimate optimal consequent parameters bi .
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Least-Squares Estimation of Singletons

1 Compute the membership degrees —Ai (xk)

2 Normalize

‚ki = —Ai (xk)=
KX
j=1

—Aj (xk)

(Output: yk =
PK
i=1 ‚kibi , in a matrix form: y = Γb)

3 Least-squares estimate: b =
h
ΓTΓ

i−1
ΓT y
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Least-Square Estimation of TS Consequents

X =

266664
xT1
xT2
...
xTN

377775 ; y =

266664
y1
y2
...
yN

377775 ; Γi =

266664
‚i1 0 · · · 0
0 ‚i2 · · · 0
...

...
. . .

...
0 0 · · · ‚iN

377775
„i =

h
aTi bi

iT
; Xe = [X 1]
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Least-Square Estimation of TS Consequents

• Global LS: „′ =
h
(X ′)TX ′

i−1
(X ′)T y

with X ′ = [Γ1Xe Γ2Xe : : : ΓcXe ]

and „′ =
h
„T1 „T2 : : : „Tc

iT

• Local LS: „i =
h
XT
e ΓiXe

i−1
XT
e Γiy
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Antecedent Membership Functions

• templates (grid partitioning),

• nonlinear optimization (neuro-fuzzy methods),

• tree-construction

• product space fuzzy clustering
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Fuzzy Clustering: Data
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Fuzzy Clustering: Prototypes

[ v1 v2

Cluster centers (means):

V = ]

v2

v1
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Fuzzy Clustering: Distance

d(z v )k  , 1 zk [ v1 v2
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Fuzzy Clustering: Distance
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Fuzzy Clustering: Partition Matrix

[
Fuzzy partition matrix:

U = ]
d

v

(z
)

k 
 ,

2

d(z v )k  , 1 zk [ v1 v2

Cluster centers (means):

V = ]

v2

v1
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Fuzzy Clustering: Shapes

[
Fuzzy partition matrix:

U = ]
d

v

(z
)

k 
 ,

2

d(z v )k  , 1 zk [ v1 v2

Cluster centers (means):

V = ]

v2

v1
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Fuzzy Clustering Problem

Given the data:

zk = [z1k ; z2k ; : : : ; znk ]T ∈ Rn; k = 1; : : : ; N

Find:
the fuzzy partition matrix:

U =

264—11 : : : —1k : : : —1N
... : : :

... : : :
...

—c1 : : : —ck : : : —cN

375
and the cluster centers:

V = {v1; v2; : : : ; vc}; vi ∈ Rn
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Fuzzy Clustering: an Optimization Approach

Objective function (least-squares criterion):

J(Z; V ; U; A) =
cX
i=1

NX
j=1

—mi;jd
2
Ai

(zj ; vi )

subject to constraints:

0 ≤ —i ;j ≤ 1; i = 1; : : : ; c; j = 1; : : : ; N membership degree

0 <
NX
j=1

—i ;j < N; i = 1; : : : ; c no cluster empty

cX
i=1

—i ;j = 1; j = 1; : : : ; N total membership
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Fuzzy c-Means Algorithm

Repeat:

1 Compute cluster prototypes (means): vi =

PN

k=1
—m
i;kzkPN

k=1
—m
i;k

2 Calculate distances: dik = (zk − vi )T (zk − vi )

3 Update partition matrix: —ik = 1Pc

j=1
(dik=djk)1=(m−1)

until ‖∆U‖ < ›
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Distance Measures

• Euclidean norm:

d2(zj ; vi ) = (zj − vi )T (zj − vi )

• Inner-product norm:

d2Ai
(zj ; vi ) = (zj − vi )TAi (zj − vi )

• Many other possibilities . . .
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Fuzzy Clustering – Demo

1 Fuzzy c-means

34 / 81



Extraction of Rules by Fuzzy Clustering
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Extraction of Rules by Fuzzy Clustering
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Extraction of Rules by Fuzzy Clustering

Takagi-Sugeno model

Rule-based description:

If x is A then y = a x + b
If x is A then y = a x + b

etc...
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Extraction of Rules by Fuzzy Clustering

Inverse Takagi-Sugeno model

projection
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Rule-based description:

If y is B then x = a y + b
If y is B then x = a y + b

etc...
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Rule Extraction – Demo

• Extraction of Takagi–Sugeno rules
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