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Talk Structure

➢ Definitions

➢ Methods of residual generation

➢ Fault detectability and isolability

➢ Fault diagnosis using:

• (Dynamic Observers) UIO

• Kalman Filters

• Neural Networks

➢ Case Studies

➢ Concluding discussion



28/11/2025 3

Definitions

Residual Generation Method

Fault Detectability and Isolability
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Need for Fault Diagnosis

◼ Safer

◼ Reliable

◼ Avoid system shutdown, breakdown

◼ Catastrophes 

 involving human fatalities and material damage 
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Monitoring

➢ Continuous real-time task

➢ Determination of the 
conditions of a physical 
system

➢ By recording information,
recognising and indicating 
anomalies in the behaviour
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Problem  Statement

◼ What is a fault?

◼ An unexpected change in a system, such as a 

component malfunction and variations in 

operating condition, that tend to degrade overall 

system performance

◼ We use the term “fault” rather than “failure” to 

denote a malfunction rather than a catastrophe.  

The term failure suggests a complete breakdown, 

whilst a fault may denote something tolerable
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Fault Classification

❖ Classification according to location at which 

each fault affects the system:

❑ Sensor fault

❑ Actuator fault (valve, motor)

❑ Component fault (intermediate valve)
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Classification by Fault 

Type

➢   bias

➢   drift

➢   slow varying fault

➢   abrupt changes

➢   stochastic faults

Note: Faults are distinguished from noise 

Noise can be considered in advance, but faults are “unexpected”. 

      Noise is often tolerable, but faults are not 
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Incipient Faults

Why do we need fault diagnosis?

➢ Early indication of incipient faults can help 

avoid major plant breakdowns and 

catastrophes

➢ Fault detection and isolation has become a 

critical issue in the operation of high-integrity 

and fault-tolerant systems



28/11/2025

10

Tasks of  Fault Diagnosis

➢  Fault detection: i.e., the indication that something is 
going wrong in the system

➢  Fault isolation: i.e., the determination of the exact 
 location of the fault

➢  Fault identification: i.e., the determination of the size 
and type a nature of the fault

➢  Fault accommodation: i.e., the reconfiguration of the 
system using healthy components

◼ We focus attention on Fault Detection and 
Isolation (FDI)
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Traditional Approaches to 
Fault Diagnosis

Installation of multiple sensors?
         (“physical redundancy” or “hardware redundancy!”): 

➢Back up safety-critical hardware and software using triplex or 
quadruplex arrangement, e.g. as in “fly-by-wire” aircraft

➢  The measure is aimed especially at detecting and isolating 
sensor faults.

➢Measurements of the same variable from different sensors are 
compared.     Any serious discrepancy is an indication of a fault 
in at least one sensor
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Traditional Methods
Limit checking: 
Plant measurement compared with preset limits; 

exceedance of  a limit can indicate a fault situation.

       Installation of  special sensors: 

      Limit sensors – basically, performance limit-checking in

       hardware (e.g., limit temperature or pressure) or measuring 
some special variables (sound, efficiency, vibration, ...)

Frequency spectrum analysis: 

Some plant measurements have a typical frequency 
spectrum under normal operating conditions; any 
deviation from this is an indication of  abnormality.

Characteristic signature used to isolate faults.
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Model-based Approaches 
to Fault Diagnosis

  Analytical (Functional) Redundancy

➢ Makes explicit use of mathematical model of system, 

often known as the “model-based” approach.

➢ Computer implementation allows the development of

fault detection, fault isolation and fault identification

based on analytical rather than hardware redundancy.

➢ We now give a more detailed treatment of this    

approach.
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Functional (Analytical) 
Redundancy

   Provides independent way of detecting and 

accommodating faults

➢     Requires a “functional” model  - either “explicit” or 
“implicit”    

➢     Suffers from system non-linearity and modelling 
errors

➢      Sometimes saves on weight, space, cost

E.g. Dynamic Observers, UIO and Kalman filters 
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Knowledge-based 

Approach

➢Makes explicit use of human knowledge of fault 

and qualitative reasoning.

➢ Provides method of combining numeric and 

symbolic models for performing the FDI task.

➢ Combination of  all above approaches:

            EXPERT SYSTEM FOR FDI 

E.g. Neural Networks (and Fuzzy Systems) 
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Basic  Principles  of  Model-
Based   Fault Diagnosis

Residual

Generation

Decision

Making

Residuals

Fault

Information

OutputInput

Fault Diagnosis System

Actuators
Plant

Dynamics
Sensors

Controller

Faults

Monitored System Reference Input
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Based FDI

➢ Residual generation

◼  Generate residual signals which are 
indicators of faults.

➢ Decision making

◼  Make decisions based on residuals 
and decision rules.
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Generation

• Residuals are INDICATORS OF FAULTS that are

independent of the system operating state under

nominal conditions.

- Zero for  fault-free case

- Non-zero for  faulty case

r  0 if and only if f  0

Decision rule:

( )J r J th for ( )f t = 0

( )J r J th for ( )f t  0

where J(r) residuals evaluation function

Jth threshold
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Fault Isolation
• Fault Isolability:  Fault distinguishable from other faults using residual set

(or residual vector).

• Structured residual set: Residual set which has required sensitivity to

specific faults and insensitivity to other faults.

M eth od  1 M eth od  2

f 1 f 1

f 2f 2

f 3 f 2

r1 r1 r2
r2 r3 r3

1 0 0

0 1 0

0 0 1

0 1 1

1 0 1

1 1 0

• Fixed direction residual vector:
Fault d irection  1

Fau lt d irection  2

Fau lt d irection  3

Residual
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Residual Generation Based on 
(State) Output Estimation

State estimation approach restricted to on-line
reconstruction of sets (or subsets) of state variables (or 
measured variables) using mathematical model.

      Using observers or Kalman filters whose estimation error 
vector then used for residual generation.

      Most processes are nonlinear and linear state space 
models are only appropriate for small variations.

  When a fault occurs, the variations can be large!!

      Perhaps, multiple-models should be used - 
based on different points of operation.
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Our Case Studies

❑ Simulated case studies

❑ Real processes

❑ Research works 

➢ Aircraft/Aerospace Applications

➢ Industrial Simulated Example 
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Fault and System 

Models
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Model-based FDI 
Techniques

The fault diagnosis scheme
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Model-based FDI 
Techniques (Cont’d)

Fault and System Modelling
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Model-based FDI 
Techniques (Cont’d)

Fault and System Modelling
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Model-based FDI 
Techniques (Cont’d)

Fault and System Modelling
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Model-based FDI 
Techniques (Cont’d)

◼ Modelling 

of Faulty 

Systems
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Residual Generation

Residual Evaluation
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Residual Generator 
Structure

Under fault-free

assumptions, the

residual signal r(t)

is “almost zero” 
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General Residual
Evaluation

Faulty residual

Fault

free

residual
Detection thresholds

(t)
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General Residual
Evaluation (example)

Fault free residual Fault-free & faulty residuals

Detection thresholds
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Change Detection & 
Residual Evaluation

Faulty residual

Fault

free

residual

Detection thresholds
(t)

2with

),,1()(



==



 mirt ii 

( ) )()( trtrJ 
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Unknown Input 
Observers
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Unknow Input Observer 
(UIO)

System with disturbance

“Unknown Input”

Definition: An observer is defined as an Unknown Input Observer 

for the system with disturbance (above), if its state estimation 

error vector ex(t) approaches zero asymptotically, regardless of the 

presence of the unknown input term in the system.

Unknown Input

Disturbance Distribution Matrix (Known)
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UIO Model

Given:
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UIO Structure

Plant Model

UIO Model

Observer Design???
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UIO Design
Plant Model

UIO Model

)1(ˆ)1()1( +−+=+ txtxtex
State estimation error
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UIO Design (Cont’d)
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UIO for Fault (Detection) + 
Isolation

General system

UIO model

Process with input faults
Output sensors

are fault-free



28/11/2025

40

Input Fault Isolation 
with UIO

Each observer is 
insensitive to
one input sensor: 
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UIO for Output Fault 
Isolation

Bank of 

output observers

)()()( * tftyty ii +=

Fault-free case:

Faulty case

0)(lim 
→

tri
t
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Residual Disturbance
Robustness

◼ Residuals 

decoupled from 

disturbance

◼ Robust residual 

generator

◼ Disturbance 

effect 

minimisation

◼ Measurement 

errors
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FDI with Noisy
Measurements

✓ Model with fault and noise

➢Model with noise only: Kalman filter!

v(t)

v(t)

w(t)

w(t)
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Kalman Filter

Idea...
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Filter?

◼ Optimal recursive data fusion algorithm

◼ Predictor-Corrector style algorithm

◼ Processes all available sensor 
measurements in estimating the value of 
parameters of interest using:

◼ Knowledge of system and sensor dynamics

◼ Statistical models reflecting uncertainty in 
system noise and sensor dynamics

◼ Any information regarding initial conditions
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46 What is a Kalman Filter 
(cont’d)?

◼ Optimal in the sense that for systems which can be described by a 
linear model, e.g.

 and for which the process and measurement noises wk and vk are 
normally distributed, the Kalman filter is the provably optimal 
estimator (estimate has minimum error variance) 

◼ In our case, “process noise” corresponds to uncertainty in the 
process model, measurement noise is from uncertainty in the 
sensing model, x denotes the state being estimated and z the 
sensor measurements 

kkk

kkkk

vxCz

wBuAxx

+=

++=+1
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(Predictor)

◼ Update expected value of x

◼ Update error covariance matrix P

◼ Previous statements were simplified 
versions of the same idea:

 

ˆ x k
−

= Aˆ x k −1 + Buk

 

Pk

−
= APk −1A

T
+ Q

 

ˆ x (t3

−
) = ˆ x ( t2) + u[ t3 − t2]

 


2
(t3

−
) = 

2
( t2) + 

2
[t3 − t2 ]
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Measurement Update 
(Corrector)

◼ Update expected value

◼ innovation is

◼ Update error covariance matrix

◼ Compare with previous form

)ˆ(ˆˆ −− −+= kkkkk xCzKxx

−− kk xCz ˆ

−−= kkk PC)K(IP

 

ˆ x (t3) = ˆ x ( t3

−
) + K( t3)(z3 − ˆ x (t3

−
))

 


2
(t3) = (1− K(t3))

2
(t3

−
)
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The Kalman Gain

◼ The optimal Kalman gain Kk is

◼ Compare with previous form

1)( −−− += RCPCCPK
T

k

T

kk

RCPC

CP

+
=

−

−

T

k

T

k

 

K(t3) =
 2(t3

−)


2
(t3

−
) + 3

2
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Kalman Filter for FDI

Design...
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Kalman Filter Design

(State and Output Prediction)

*

*

w(t)

v(t)
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Kalman Filter Design 
(Cont’d)

(Vector Updates)
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Kalman Filter Design 
(Cont’d)

(Vector Updates)
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54 Kalman Filtering for 
FDI

*

*
*

1)

2)

3)

v(t)

w(t)
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Kalman Filtering for FDI 
(Cont’d)

)|1()1()1()1()1( ttxCtytytyte i

Fii

i

Fii +−+=+−+=+Innovation

(i)

(ii)

v(t)

w(t)

w(t)
v(t)



28/11/2025

56

Kalman Filtering for FDI 
(Cont’d)

)|1()1()1()1()1( ttxCtytytyte i

Fii

i

Fii +−+=+−+=+Innovation

v(t)

w(t)

w(t)

v(t)
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KF Residual Evaluation...

)|1()1()1()1()1( ttxCtytytyte i

Fii

i

Fii +−+=+−+=+Innovation

Which thresholds???
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Kalman Filtering for FDI 
(Cont’d)

)|1()1()1()1()1()( ttxCtytytytetr i

Fii

i

Fii +−+=+−+=+

Innovation or

Residual r(t)

(i) Statistical Tests

Zero-mean

&

variance
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Kalman Filtering for FDI 
(Cont’d)

)|1()1()1()1()1()( ttxCtytytytetr i

Fii

i

Fii +−+=+−+=+

Innovation or

Residual r(t)

(ii) Statistical Tests

Whiteness test

 − type
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Kalman Filtering for FDI 
(Cont’d)

Whiteness test

 − type

previously seen
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KF Residuals: Mean-value
(example)

Fault-free

&

faulty

residuals Fault-free residual 

Faulty residual 
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KF Residuals: Standard 
deviation (example)

Fault-free

&

faulty

residuals
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KF Residuals: Whiteness
test (example)

Fault-free

&

faulty

residuals
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Neural Networks for 

FDI
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Brain

◼ 1011 neurons (processors)

◼ On average 1000-10000 connections
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Artificial Neuron bias

i

j

neti = ∑j wijyj + b

The function f  is the unit’s activation function.
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2

2

2

)(

2

1
)( 





−
−

=

x

exy

Sigmoid function Bipolar Sigmoid function

Bipolar Step function
Binary Step functionIdentity function

Gaussian function
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Considered ?

➢The solution to the problem cannot be explicitly described 

by an algorithm, a set of equations, or a set of rules. 

➢There is some evidence that an input-output mapping exists 

between a set of input and output variables. 

➢There should be a large amount of data available to train 

the network. 
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NN Main Features

◼ NN Nonlinear Structure

◼ Multi-Layer Perceptron (MLP)

◼ NN Estimation Error:

 

◼ Gradient Descending Learning

( ) 
=

−=
p

i

ixtwfidtwE
1

2
)()()(

2

1
))((
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To find  g            
           w(t+1) = w(t)+g( E(w(t)) )

so that w automatically tends to the 

global minimum of E(w).

      w(t+1) = w(t)- E’(w(t))(t) 

     

Gradient Descent Method
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xn

x1

x2

Input
Output

Example: Three-layer networks

Input layer      Hidden layer        Output layer 

Signal routing
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◼ Main Ability of NN: Learn from examples

◼ Trained to represent relationships b/w past values of 
residual data and faults

◼ No mathematical model is needed if sufficient 
training data is available.

◼ Generalise when presented with I/P not appearing in 
the training data

◼ Decision-making in noisy or corrupted data

Neural Networks
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◼ Pattern Recognition

◼ Model based

 Residual generation: Residual r determined in 

order to characterise each fault.  Ideally, the NN 

models identify all classes of system behaviour.

Decision-making: Process the residual r to 

determine the location and occurrence time of each 

fault

Neural Networks : Strategies for 

FDI
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◼ A single NN can be used for both stages 
simultaneously on cost of less transparency but 
improved training time

◼ Fault isolation:  Requires training data available for all 
expected faults in terms or residual values or system 
measurements

◼ Used for classification in conjunction with other 
residual generating methods e.g. non-linear 
observers.

◼ Online FDI

Neural Networks : Strategies 

for FDI
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NN

Neural Network Training Sequences

Neural Network for residual evaluation!

Fault-free 
and faulty
residual 
signals
(NN input)

Fault
index,
(NN output)
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ANN ANN
Residuals

Fault

Information

OutputInput

Fault Diagnosis System

Actuators
Plant

Dynamics
Sensors

Controller

Faults

Monitored System Reference Input

Symbolic

(Qualitative)

Information

Qualitative

Information

Neural Network Scheme 

for FDI
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Application Examples

❑ Industrial Process

➢ Gas Turbine Prototype

❑ Aircraft/Aerospace Studies

➢ Small Commercial Aircraft

➢ Mars Express Satellite/Probe
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Simulated Gas Turbine 

Prototype Model
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Simulated Application 
Example (Cont’d)

Simulated Gas Turbine (SIMULINK®)
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Gas Turbine FDI

◼  Work started in 1999 (UK):
◼  Ron J. Patton & Mike Grimble, 

◼  Steve Daley & Andrew Pike

◼  Residual generation:
◼ Kalman filters.

◼ Fuzzy logic

◼  Residual evaluation:
◼ Geometrical or statistical tests

◼ Neural Networks
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 fault condition(s) before running the simulation. To reset        
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Turbine Model

◼ Simulink dynamic model supplied, 
based upon  an ABB ALSTOM 
experimental test rig.

◼ 1%-5% model accuracy.

◼ Steady-state validation.
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Turbine Inputs & Outputs
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Fault Conditions

Four gradually developing faults:

1) Compressor contamination (core engine 
performance deterioration)

2) Thermocouple sensor fault

3) High Pressure turbine seal damage (core 
engine performance deterioration

4) Fuel actuator friction wear

(realistic fault conditions!)



Compressor 
Contamination (1)

◼ Fault 1: Compressor contamination

◼ It represents fouling of the surfaces of 
the compressor blades.

◼ The failure is modeled as a gradual 
decrease in mass flow rate for a given 
pressure ratio. 



Compressor 
Contamination (1)

Turbine
a

v

f
f

Observer

+ -


r(t)p (t)
t

◼ Mainly affects
 p3 , p4 , p5 , pt

◼ pt(t) output observer  

◼ Observer inputs:
 ff(t), av(t), pt(t)

◼ residual generation 
r13(t)



Thermocouple Sensor 
Fault (2)

◼ Fault 2: output sensor fault

◼ Failure case 2 represents the 
malfunctioning of a thermocouple (t3n) 
in the gas path. 

◼ It leads to a slowly increasing or 
decreasing reading over time. 



High Pressure Turbine Seal 
Damage (3)

◼ Failure case 3: failure of an HP turbine 
seal. 

◼ This results in a reduction in turbine 
efficiency. 

◼ The fault is modeled as a gradual reduction in 
turbine efficiency over time. 



Fuel Actuator Friction 
Wear (4)

◼ Failure case 4: loss of performance 
due to wear of the fuel valve 
actuator. 

◼ The effect of actuator wear causes 
slower response to demanded flow rates. 

◼ It is modeled as a simple first order lag. 

 The time constant increases linearly with 
time to represent progressive wear 
damage to the actuator.
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Compressor 
Contamination (Case 1)

pt(t) residual generation using a Kalman filter
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Thermocouple Sensor 
(Case 2) Fault

t3n residual generation using a Kalman filter 
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High Pressure Turbine Seal 
Damage (Case 3)

p5(t) residual generation using a Kalman filter 
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Fuel Actuator Friction 
Wear (Case 4)

qt(t) residual generation using a Kalman filter 
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Fault Isolability

Fault/
r t( ) p3

p4
p5 p7

pt
qa qc q t t n3 t5

t6

Case 1 1 1 1 0 1 0 0 0 0 0 0

Case 2 0 0 0 0 0 0 0 0 1 0 0

Case 3 1 1 1 1 1 0 0 0 0 1 1
Case 4 1 1 1 0 1 1 1 1 0 0 0

‘0’ if residual is not sensitive to a fault

‘1’ if residual is sensitive to a fault

Fault signature: the most sensitive measurement
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Residual Statistical 
Analysis
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Minimum Detectable 
Faults

Fault case Deterministic environment Stochastic environment

Case 1 %5 %11

Case 2 %5 %8

Case 3 %5 %9

Case 4 %5 %8

• Faults expressed as per cent of the signals.

• Minimum delay FDI
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NN Training for FDI

Neural Network Training Sequences

Neural Network for residual evaluation!
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NN Residuals for FDI
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Small Commercial Aircraft

PIPER PA-30
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Simulated Application 
Example

Small Aircraft Model
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Residual Signals
(inputs)

FDI of the 1st input sensor (elevator) 

UIO/
Kalman
filters as
residual 

generators

Fault Severity
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Residual Signals (outputs)

FDI of the 
9th output 
sensor 
(engine speed) 

Fault Severity
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Validation Trajectory
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Minimum Detectable
Faults

Minimum detectable faults and detection delays



28/11/2025

105

Reliability Analysis

Experimental Robustness/Reliability Assessment
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Mars Express (MEX)

FDI
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MEX Project

◼ “Robust Estimation for Failure Detection”

◼ ESA (Holland), Astrium (Toulouse, France)

◼ Denis Fertin, Bernard Polle  

◼ University of Hull, Hull (UK)

◼ Ron J. Patton, Faisal J. Uppal

◼ Università di Ferrara

◼ Silvio Simani
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Simulated Application 
Example

Aerospace Satellite
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Simulated Application

Aerospace Satellite
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Diagram of the MEX 
System

Mars Express Satellite
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111 Process Modelling
Problems

➢ Solar array 
dynamics

➢ Command input 
nonlinearity

➢ Centre of Gravity 
uncertainty

➢ Thrusters’ 
misalignments

➢  IMU/IMP/Gyro 
misalignment 
errors

➢ Engine disturbance 
torques
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Suggested 
Methodologies

1. Satellite Dynamic Model 

✓Kalman filter design for residual 
generation;

✓Fixed thresholds for FDI

2. UIO Observers

✓Designed from the MEX model

✓Fault Isolation
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System

Model

+

Residual

Design

+

Residual

Generation
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FDI Design Overview: UIO



28/11/2025

115 Residual Signal Examples…

Fault-free & faulty residuals for thruster faults.
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Performance evaluation html file for the thruster closed fault cases with 500  Monte-Carlo runs. The 

probabilistic thresholds were fixed with 0000.3= . 

Performance Analysis Example
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Example

False alarm
situation
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118Performance Analysis
Example

Wrong
Isolation

Case
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Performance 

Index

Classical

FDI
Method 1 Method 2

Mean false alarm rate 0.00 0.00 0.00

Detection possible Yes Yes Yes

Isolation possible No Yes Yes

Mean true isolation 

rate (typical value)

N/A 0.994 

(Thruster closed)

0.996 (Thruster 

open)

More than 

0.999

(1152 MC runs)

Max pointing error

before detection

(typical value)

1.08 0.10 

(Thruster closed)

0.10 

(Thruster open)

0.10 

(Combined)

Max pointing error 

before isolation

N/A N/A 0.11

MEX FDI Method Results
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Conclusions
✓ Model-Based FDI

✓ Analytical Redundancy

✓ State-Space Models

✓ Residual Generation

✓ Unknown Input Observers UIO

✓ Dynamic Observers / Kalman Filters

✓ Neural Networks

✓ Residual Evaluation/Change Detection
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FDI Issues

◼ From FDI to FTC

◼ Fault Tolerant Control 

◼ Model Uncertainty and FDI
◼ Model-reality mismatch

◼ Sensitivity problem: incipient faults!

◼ Robustness in FDI
◼ Disturbance, modelling errors, uncertainty

◼ UIO and Kalman filter: robust residual generation 

◼ Knowledge-based approaches (NN and FL)
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