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1 Introduction

Undoubtedly, one of the major contributions of R.E. Kalman has been the
Kalman filter, [1,2], the magnitude of the contribution being specifically
recognized in the award of the Kyoto Prize.

In this contribution, we shall try to put the Kalman filter in historical
perspective, by recalling the state of filtering theory before its appearance, as
well as some of the major developments which it spawned. It is impossible to
be comprehensive in the allotted space, especially so in making a selection from
major developments.

2 The Wiener Filter

Wiener filtering [3, 4] probably represented the first domain of endeavour where
two important ideas were merged: dynamic systems, and optimal estimation in
the presence of noise. The quantity being estimated is a “moving target”, being
associated with the evolution of a dynamic system. More precisely, consider
the arrangement of Fig. 2.1, which depicts a signal y(”), contaminating noise
v(”) and a measurement z(”). Continuous and discrete-time problems can be
formulated, and vector y(-), u(.) and z(”) are permitted. Nevertheless, for
convenience, we shall consider scalar continuous time signals only. All signals
are defined on the time interval (– co, co).

It is assumed that y(. ) and u(”) are sample functions of stationary random
processes. Normally, they are zero mean, and independent. Further, they are
assumed to have known spectra, @YY(@)and #VU(j~),OGR. (Certain well-
behavedness properties, whose particular form does not concern us here, must
be fulfilled by the spectra also.)

The task of Wiener filtering is to use the measurements z(.) to estimate y( ).
More precisely, the estimation is required to be causal, on-line and optimal.
Causal means that y(t) is to be estimated using z(s) fors < t;on-line means that
at time t, the estimate of y(t) should be available, and this should hold for all
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t, i.e. as t evolves; optimal means that the estimate, call it j(t),should offer
minimum mean square error, i.e. E{ [y(t)– j(t)]2}should be minimized. In case
y(-) and U(O)are jointly gaussian, this means that j(t) is a conditional mean
estimate, viz E[ y(t)l z(s), s < t].

The solution to this problem is depicted in Fig. 2.2. The block labelled
“Wiener filter” is a linear, time-invariant, causal, stable system, describable by
an impulse response h(. ) or transfer function, thus

j(t)= i Iz(t– s)z(s)ds (2.1)
-m

The signal y(”) and noise u(.) are often represented as the output of stable
linear systems excited by white noise, see Fig. 2.3. If CY(”). &V(.) denote zero
mean, unit variance, white noise, i.e.

E(&y(t)&y(s)]= E[e,(t)tu(s)] = ~(~– s) (2.2)

Then
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Fig. 2.2. Structure of Wiener filter
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It is clear that the key problem in Wiener filtering is to describe the procedure
which leads from the pair @},Y(jco),@,,U(ju) (or WY(ja) and W’,,(j~)) to the impulse
response h(t) or its transfer function H(jm). The most crucial step is that of
spectral factorization. The spectrum of z(”), at least when y(. ) and o(”) are
independent, is given by

and the spectral factorization operation requires the determination of a transfer
function Wz(jm) such that WZ(S)and W,- l(s) are analytic in Res >0 [i.e. W:( )
is causal and causally invertible] such that

@zz(j@)= I~z(j~)l’ (2.5)

In [3], this spectral factorization operation is presented as a crucial step in the
calculation of H(.), while in [4], it is the key to a well-motivated derivation of
the optimum filter. The point behind this derivation is the following. Define a
signal c,(. ) as the output of a linear system of transfer function W,- 1(jco) driven
by z(”). Because of the causality and causal invertibilit y of W,(”), then G.,(~)is
informationally equivalent to z(”), i.e. estimation of y(t) using &Z(s)fors < f must
give the same result as estimation of y(t) using z(s) for s <t; but akso, E,(”) k

white. This is a very significant simplification, and is the key to the derivation
of the optimum filter in [4].

We noted above that construction of WZ(”) satisfying stability constraints
and (2.5) is a crucial step in the construction of H(’). The question arises as to
how this can be done. If @ZZ(.) is rational, polynomial factorization is the key.
Otherwise, one uses

(2.6)

The case of vector z(”) and matrix @,Z(”)is much more complicated.
The following table sums up some important characteristics of the Wiener

filtering problem and its solution:

Table 1. Assumptions for and properties of the Wiener filter

Initial time to to=–aj

Random Processes Stationarity required
Signal Y() (i) Spectrum 0,,(”) enough, but IVY(ju) is acceptable.

(ii) y(.) is stationary, WY(jti) must be stable.
(iii) 0,,(”) and W,(.) are not necessarily rational.

Measurement Noise u(”) (i) Usually independent of y(’)
(ii) Stationary

(iii) Not necessarily white
(iv) @,.L() is not necessarily rational.

Wiener filter Time invariant and stable but not necessarily with rational
transfer function.

Main Calculation Burden Spectral factorization
Quantity estimated y(t)
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3 The Kalman Filter (Continuous Time), [2]

We shall first recall the standard Kalman filter set-up, and then compare it with
the Wiener filter. The signal model is (see Fig. 3.1)

(ix(t)
— = F’(t)x(t) + G(t)w(t)

dt
(3.la)

z(t) = H’(t)x(t) + v(t) (3.lb)

in which F, G, H are n x n, n x m, and n x p respectively. The processes w(”) and
V(.) define zero mean white noise, such that

E
[1

;;;; [w’(s) u’(s)] =
[% tll’(t-’)

(3.2)

with R(t) = R’(t) >0 for all t.Very frequently, S(t) -O, i.e. W(”) and v(.) are
independent. We shall make this assumption. Then Q(t)= Q’(t) ~ O.

In the first instance, we shall assume a finite initial time to.Further, x(to)
will be assumed to be a gaussian random variable, of mean XOand covariance
Po. Equation (3.la) defines a Gauss--Markov model—since x(”) is a Markov
process which is gaussian. [In fact, [x’(~) z’(“)]’ is also gaussian and Markov.]

The estimation task is to use measurements of z(s) for s < t to estimate x(t);

the estimate, call it t(t), is to be on line and to minimize E[ IIx(t) – f(t) II2].

(This means that f(t) is necessarily a conditional-mean estimate.) The now
well-known solution is obtained as follows. Define P(t) = F“(t) >0 as the solution
of

P=PF’ + FP – PHR - lH’P + GQG’ P(to) = P. (3.3)

and f(. ) by (see Figure 3.2)

di
~ = F(t)f(t) + P(t)H(t)R ‘ ‘(t) [z(t) – H’(t)f(t)] (3.4)

(Note that Fig. 3.2 depicts a standard observer, in terms of structure, with a
special gain P(t)H(t)R - l(t), sometimes referred to as the Kalman gain.) Further,
there holds

E{ [x(t) – qt)][x(t) – i(t)]’} = P(() (3.5)

@-&
Fig. 3.1. Signal model for
Wiener filter
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I Fig. 3.2. Kalman filter

i.e. the performance of the optimal estimator, as measured by the error
covariance, is given through the solution of (3.3). (The existence of a solution
to (3.3) in (tO,co) has to be proved, but this is not difficult.)

Let us now study some differences with the Wiener filter, considering the
points listed in Table 1.

Initial time. In the above formulation, we have taken LO> – m. This can be
adjusted, see the next section. So the Kalman filter allows either to > – cc or
to = – co, whereas the Wiener filter allows only to= – co.

Random processes. The exciting random processes u(”) and W(~)in the above
signal model are not necessarily stationary, since Q(”) and R(”) in (3.2) may be
time-varying. With to > – co, we cannot have stationarity. Finally, time-variable
F(t), G(t), H(t) mean that, even if Q(t) and R(t)were constant and tOwere – co, z(”)
would not have to be stationary. Thus, in contrast to the Wiener filter, stationarity
is normally not guaranteed or expected. Under special circumstances, it can be
present however. We discuss this point further in the next section.

Signal y(”). It is clearly appropriate to regard H’x in the signal model (3.1) as
corresponding to the signal y(”) in the previous section. For the Wiener filter,
it was enough to know the spectrum of y(”), or equivalently, its covariance.
There is such a quantity as a nonstationary covariance, and so in principle one
could contemplate constructing the Kalman filter knowing just the covariance
of y(”). Whether or not this is possible, (it is, see [5]) this is certainly not the
way the Kalman filter was presented—rather, a detailed signal model of y(”) is
required, rather like requiring WY(jw)in the Wiener filter problem as opposed
just to @YY(jo).Next, we note that for the Kalman filter problem, y(. ) does not
have to be stationary, and the linear system linking W(o)to y(”) does not have
to be time-invariant or stable. This linear system however does have to be finite
dimensional. In the time-invariant case, this would correspond to WY(O)being
rational, which is not a requirement in Wiener filtering. In summary, the cost
of dropping the stationarity assumption of the Wiener filtering problem is the
requirement for a model of y(”), not just of its covariance, and a finite-
dimensional model into the bargain.

Measurement noise v(”). In both the Wiener and Kalman formulations, the
noise is usually independent of y(”). In the Wiener formulation, it is stationary,
but this is not required for the Kalman formulation. The major difference is
that the noise is required to be white in the Kalman formulation. This is not
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Table 2. Wiener filter and Kalman filter key differences

Wiener Kalman

to=–~ to~–cc)

Stationarity Nonstationarity acceptable

Infinite dimensional OK Finite dimensional

Measurement noise not necessarily white Measurement noise white

Spectral factorization Riccati equation solution
Signal estimation State estimation

required in the Wiener formulation (though it turns out that whiteness does
carry with it significant simplifications).

Filter. The Kalman filter is in general time varying, stability is not guaranteed
(and of course, over a finite interval it is of limited relevance). It ii finite
dimensional. The Wiener filter may not be, since its transfer function is not
necessarily finite dimensional.

Main cakzdation Burden. Spectral factorization and Riccati matrix solution, the
two key computational tasks, could not appear more dissimilar.

Quantity estimated. The Wiener filter estimates y(t), the Kalman filter x(t). In
the Kalman filter formulation, y(t) = H’(t)x(t), and an estimate of y(t) follows as

j(t) = H’(t)f(t) (3.6)

Table 2 summarizes the key differences.
The problem of prediction is almost as easily solved as that of filtering. This

is the task of estimating X(L+ A) for some positive A, given z(s) for s < t. There
holds

2(1 + A)= @(t + A, t)f(t) (3.7)

where 0(.,. ) is the transition matrix of F(.). The smoothing problem (A is
negative instead of positive) took some time to resolve; it is discussed later.

4 Kalman Filter Over an Infinite Time Interval

The deepest contribution of [2] lies in the treatment of infinite time problems.
Here, concepts of controllability and observability were cleverly used to tackle
issues such as time invariance and stability. We shall review the main ideas here.

Suppose that F, G, H, Q and R are all time invariant, with tOremaining finite.

Result 1. Given observability of [F, H], P(t) is bounded, and

P = min P(l) (4.1)
t-m
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exists and satisfies the steady state Riccati equation

FFI+FF– PHR-lHT+GQG’=O (4.2)

The boundedness of P(t) is intuitively reasonable, because under observ-
ability, it is not surprising that the error in estimating x(t), viz P(t), should remain
bounded. There are a number of other consequences of this result:

(i) the Kalman filter (3.4) is asymptotically time invariant.
(ii) if tO~ – m, rather than t + m, the fact that the right side of the differential

equation (3.3) has no explicit time dependence yields

for all t.

(iii) if to+ – co, the signal model (3.1) with constant F, G may produce
unbounded E[x(t) x’(t)] unless Re J.i(F) <O, i.e. unless it is stable. And if
to remains finite and t+ co, the same is true.

Result 1 says nothing about stability of the Kalman filter, nor of the depen-
dence of ~ on PO. The circle is closed with Result 2. Again, we suppose that
F, G, H, Q and R are time invariant.

Result 2. Suppose [F, H] is observable and [F’,GQ1/2] is controllable. Then ~
as defined in Result 1 is independent of PO, and

Re Ai(F – ~HR - lH’) <0

Notice that this stability property is just what is required to ensure that the
Kalman filter (3.4) is asymptotically stable.

Summarizing, if Re Ii(F)< O, with constant F, G, H, Q and R and with
tO-+ – m, the signals x, y = H’x, v and z are all stationary, the Kalman filter is
time invariant and asymptotically stable provided observability and control-
lability conditions are fulfilled. (Even if Re ii(F)< O fails, the latter statements
concerning the Kalman fiiter remain true.)

The parallel with the Wiener filter becomes more apparent in this result.
Let us note that observability and controllability are a little stronger than

needed; in fact, it is not hard to relax these requirements to detectability and
stabilizabilityy, see e.g. [5,6].

Even in the nonstationary case, it still makes sense to contemplate the
possibility oft ~ + m, and to ask about the stability of the Kalman filter and
the forgetting of initial conditions. A resolution of these questions was really
suggested by the observation of [1,2] that the Kalman filter problem in many
ways is a dual of the linear-quadratic regulator problem, where infinite-time
behavior and stability are key issues, even for time-varying systems. The
fundamental paper [7] had dealt with these issues, and duality pointed the way
to the corresponding filtering results:

Result 1 (TV). Suppose [F(t), H(t)] is uniformly completely observable, and
F(t), G(t), H(t), Q(t) and R(t) are bounded. Then P(t) is bounded for all tc [to,m].
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Moreover, if to+ – co,

lim P(t)= P(t)
(o+–w

exists and satisfies the differential equation (3.3).

Result 2 (TV). In addition to the hypothesis of Result 1 (TV) suppose that
[F’(t),G(t)Q’/2(t)] is uniformly completely controllable. Then ~(t) is independent
of PO, and the system ~ = (F(t) – ~(t) H(t)R - l(t) H’(t))p is exponentially stable.

Relaxation of the observability/controllability to detectability/stabilizability
is surprisingly difficult, and took some time, [8].

5 Kalman Filter (Discrete Time), [1]

Practically all that has been stated for the continuous-time Kalman filter carries
over to the discrete-time filter. There is however one idea in the discrete-time
theory that is made more transparent than in the continuous-time theory, and
because of its applicability to more general problems it is worth recording. The
signal model is

(5.la)Xk+l=Fkxk+Gkwk

Zk = kf; Xk+ Uk (5.lb)

with

‘[::][W’;‘;]=[:‘k]’kl

(5.2)

and {wk},{v,} are zero mean sequences. For COIIVeIIkIICe, kt the lnitla) time be
k = O. Then the data include the mean XOand variance PO of XO, which is
independent of {Wk}, {Uk}. All variables are gaussian.

The key idea is to distinguish the effect of dynamics and measurements in
the filter. More precisely, let fk,k be the optimal estimate, again a conditional
mean estimate, of .~k given Zl,i S k, and let i~ +~,k be E[x~ +~\zl, 1~ k], the
one-step prediction estimate. Since w, is independent of z, for ~S k, (5.la)
yields

.t kf l,k = ‘k-ik,k
(5.3)

This shows how to update an estimate as a result of the system dynamics, ‘
when no extra measurements appear. Along with (5.3), there holds

z k+ l/k = Fkzk,kf’; + GkQk G; (5.4)

Hence Zklkand Zk, ~,kare the error covariances associated with fk,k and fk +~,k.
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The measurement update equations indicate how to pass from f~, ~,~and
z’k+ l/k ‘0 ‘k+l/k+l and ,Z’~+~,k+~. They are

A A

‘k+ I/k+l ‘xk+l/k+zk+ l/k ‘k+, [H;+, zk+,,kHk+, +R,+,]-’

“[zk+, –H; +12k+l/kl (5.5a)

z –.Zk+l,k -Zk+l,kHk+ l[H~+l Zk+l,kHk+l +Rk+l]-lk+l/k+l —

H~+l Zk+l,k (5.5b)

Observe that F~, Gk and Q~ enter only in the time or dynamical update
equation, while Hk and Rk enter only in the measurement update equation. This
separate accounting for dynamics and measurements, necessarily blurred in the
continuous-time filter equations, is optimal in the discrete-time equations.

Some of these ideas are also to be found in [9].

6 Development 1: Spectral Factorization and Innovation

The key computational tool in Wiener filtering is spectral factorization, and in
Kalman filtering, it is the Riccati equation.

Since there are some problems which can be treated either by Wiener or
Kalman filtering methods (those whereto= – OCI,Wy(jo) = H’(jol – F’)-1 GQ 1/2,
and u(.) is white), there should be a connection between the computational tools
for each approach, and indeed, this is now reasonably explored even in books,
see, e.g. [5, 10, 11]. We shall touch lightly on the connection here.

Take tO= – co, F, G, H, Q and R constant, with F stable and the obser-
vability/controllability condition fulfilled. From the steady-state Riccati
equation (4.2), it is possible to prove

(1+ H’(s1 – F)- lK)R(l + K’(– S1 – F’)- lH)

=R+H’(sI –F)-l GQG’(–sI– F’)-lH (6. 1)

where

K=~HR-l (6.2)

The quantity on the right side of (6.1) is the spectrum of the measurement
process Z(O).The left side defines a spectral factorization. Notice that

[I+ H’(sI– F)-lK]- l=l– H’(sI– F+ HK’)-lK

and F – KH’ = F – ~HR - lH’, which is guaranteed stable. So the spectral
factorization produces a transfer function (matrix) which is stable, together with
its inverse. Evidently, the Riccati equation has led to a spectral factorization.
Conversely, if one has the spectral factorization (obtained say by Wiener
filtering methods), and is able to represent the spectral factor in the form
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(1+ H’(s1 – F)- ‘K)R 1/2 then (4.2) and (6.2) imply

F(F’ – HK’) + (F – KH’)~= – GQG’ – KRK’ (6.3)

and this shows that ~ can be defined as the solution of a linear Lyapunov matrix
equation. So the two apparently distinct filter calculations, spectral factorization
and (steady state) Riccati equation solution, are effectively equivalent in this case.

A related result concerns the so-called innovations process. Consider
Fig. 3.2, and suppose that P = ~, with F, H and R all time-invariant. Then
the transfer function matrix from z to v = z – H’f can be computed to be

l–H’(sl –F+PHR- lH’)-’PHR- l=l– H’(sJ– F+ KH’)-’K

= [1 + H’(sI - F)- ‘K] -1 (6.4)

It follows that the spectral matrix of v,which is termed the innovations process, is

@vv(jco)= [1 + H’(jcol – F)- ‘K]- l@zZ(jO)[l + K’(–jml – F’)- lH]- 1

=R (6.5)

i.e. v(”) is a white noise process. This remarkable result continues to hold even
in the nonstationary case, see [12] for a further discussion, though the proof
is obviously very different. The observation has proved useful in developing
various extensions of the basic theory, motivating conjectures, etc. It suggests
that the time-varying Riccati equation is achieving a form of time-varying
spectral factorization. (Indeed, this is true, see [13].) It also makes nice contact
with the highly motivated derivation of the Wiener filter of [4].

7 Development 2: Smoothing

Filtering is concerned with obtaining E [x(t) Iz(s), se [to, t)] on line. Smoothing
is concerned with obtaining one or more of the following:

E[x(tO)lz(s), s=[to, t)] (fixed to, varying t)

E[x(t)lz(s), se[tO, t + A)] (fixed tO,A, and varying t)

E[x(t)[z(s), sE[t~, T)] (fixed to,T, varying t)

These tasks are known as fixed point, fixed lag and fixed interval smoothing.
We shall now outline how these problems can be solved.

Fixed point smoothing. Consider the standard signal model, augmented by a
second set of integrators which are undriven and unmeasured. The initial
condition on these integrators is identical with that on the main signal model.
The full model is then

E?I=K:I[il+[:l’v
(7.la)

[1
z=[H’ O] x +U (7.lb)

Xa



2 Kalman Filtering— Whence, What and Whither? 51

v(t)

x(t) z(t)

Fig. 7.1. Augmented signal model
for fixed point smoothing

with

‘Ll=[::]

‘[{[:al-[::l}{[:.l-[~:l}’l=[:: ::1
(7.2)

The set-up is a standard one in terms of the Kalman filter. The best estimate
of x., viz f.(t), is E[xJt)l z(s), s < t]. However, x.(”) is so constructed that
x.(t) = x~(tO)= x(tO) for all t. So i.(t) = E[x(tO)lz(s), s < t].

The Riccati equation for the augmented system decomposes into the Riccati
equation for the original model plus linear equations, and the construction of
the smoothed estimate is not at all hard.

This approach was suggested by [14, 15]. It could not really have come out
of a theory requiring stationarity.

Fixed lag smoothing. This problem was examined in the Wiener filtering
context, see, e.g. [3]. The optimum smoother is normally infinite dimensional
(unless A = co), and this does not augur well for a Kalman filtering approach.
However, by switching to discrete time we avoid this problem. Consider the
standard discrete-time signal model, augmented as depicted in Fig. 7.2.

‘k Gk Delay
‘k

%

@

Delay

1

mDelay

Fig. 7.2. Augmented signal model
for fixed lag-smoothing
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This augmented model, with state

is of a standard type, and therefore a Kalman filter can be found for it. The
state estimate of the Kalman filter will include as a subvector for eachj~[ 1,N]

(7.3)

This is nothing but a fixed-lag estimate with lag j. Again, it is easy to compute
the filter for the augmented system, and therefore the fixed-lag smoother. It
turns out that if not all lagged estimates between 1 and N are required, con-
siderable simplification is possible, see [5]. This approach originally appeared
in [16]. Approaches to the continuous-time problem can be found in [17].

Fixed-lag estimates will always offer a lower error covariance than filtered
estimates of the same quantity , since more data is being used to generate the
estimate. When the Kalman filter is exponentially stable, it turns out that all
the improvement can in practice be obtained by taking the lag equal to 4 to 5
times the dominant time constraint of the Kalman filter.

Fixed interval smoothing. One way to solve the fixed interval smoothing
problem becomes available when the Kalman filter is exponentially stable. Let
A correspond to 4 to 5 times the dominant time constant t of the Kalman filter.
Then

E[x(t)lz($, ~=[to>n] x E[x(r)\ z(s), se[to, r+ A)] (7.4)

so long as t+ As T. If we define H(r) = O for r > T, so that measurements of
z([) for t > Tcontains no information about x(t), then (7.4) holds for all t~[tO, T].

Exact approaches are described in [1 8-20]. They generally involve running
a Kalman filter forward in time and storing either the filtered estimates or the
measurements. Then those stored estimates are run backwards to obtain the
fixed-interval smoothed estimates. In discrete time, there holds

A

‘j–l/N =x” ,-l/j-l F~-lzj/j- l(ij/N–ij/j-l)‘J-~/j-,+Z (7.5)

where the interval in question is [0, N]. Using stored values of ij,j> .fj,j _ ,,
equation (7.5) is implemented backwards in time, thus j = N, N – 1, N – 2, . . . .
Similarly,

zj_l,N=zj_lij_l +xj_lj_l F;._,. x,;j!*[qN-zj, j_J

jj-1 j-lzj-lj-l
.~;l f“ (7.6)

8 Miscellaneous Developments

Nonlinear Kaknan filter. Following the success of the (linear) Kalman filter, it
became natural to try to extend the ideas to nonlinear systems. In one thrust,
see e.g. [21 –22], the aim was to provide equations for the evolution of the
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conditional probabilities p(x(t)l z(s), s < t). Of course, describing the evolution
of a function is much more complicated than describing the evolution of a finite
dimensional quantity, as constituted for example by a mean and variance. Most
practical applications of the nonlinear Kalman filter have therefore sought to
follow the approach of describing the evolution of the conditional mean and
error covariance. The catch is that approximations are inevitably involved, as
linearization underpins virtually all the suggested schemes. In reference [23].
the phase-locked-loop for demodulation of angle modulated signals is derived
using such ideas: this is a real demonstration of their eftlcacy.

Computational issues, Attempts to implement the Kalman filter on practical
problems soon showed that, where there was a choice of analytically equivalent
procedures, numerical issues could play a major role in determining the utility
of algorithms, especially for discrete-time problems, see e.g. [5] for a summary.
Key ideas advanced included the following

(a) The information filter; one works by updating the inverses of the covariance
matrices, and modifies the filter equation.

(b) Sequential processing; one processes a vector of output measurements one
at a time, or in blocks.

(c) Square root filtering; one works with the square root of the covariance
matrices, rather than the matrices themselves.

(d) Prevention of filter divergence; to avoid gain matrices becoming too small,
artificial increase of the covariance of the process noise, {w~} or W(~),or
exponential forgetting of old data, is introduced.

(e) Chandrasekhar type algorithms; computational simplifications arise when
the defining matrices of the signal model are time-invariant.

Controller design. For high order, linear multivariable systems, the design of
controllers is a major task. One of the main tools is the linear-quadratic-
Gaussian (LQG) design method, and a key component of such a design is the
inclusion of a Kalman filter. The filter produces estimates A(r) of the plant state
x(t), and they are fed back to the plant input via an optimal linear state feedback
law. For a recent treatment of LQG design, see [24].

Adaptivefiltering. A critical assumption in applying Kalman filtering techniques
is that the signal model is known. Since inaccurate model knowledge (which
can certainly be the case in practice) may lead to poor estimation or prediction,
there is motivation to “tune” or “select” filter parameters on line. The key idea
of adaptive Kalman filtering is to monitor the variance of the innovations and
to tune or select the Kalman gain, and perhaps other parameters, to reduce
this. When the innovations covariance is white, and consequently of minimum
variance, there is guaranteed optimality. A second approach is to work with
signal models such that the original unknown model parameters are states, and
apply Kalman filtering to estimate the parameters. These parameter estimates
can then be used to tune the original Kalman filter. This coupled Kalman filter
arrangement is discussed in [5].
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9 Conclusions

Though the preceding sections have solely discussed theoretical issues, we should
note the great practical importance of the Kalman filter. Applications in tracking
and guidance abound, and as noted in the preceding section, the Kalman filter
is a major constituent of many controller designs. In truth, it represents one of
the major post-war advances of engineering science.
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