## Overview

## **Continuous Time Signals**

**Notes on Continuous Time Signals** 

#### Specific topics to be covered include:

- linear high order differential equation models
- Laplace transforms, which convert linear differential equations to algebraic equations, thus greatly simplifying their study
- methods for assessing the stability of linear dynamic systems
- frequency response.

#### Linear Continuous Time Models

The linear form of this model is:

$$\frac{d^{n}y(t)}{dt^{n}} + a_{n-1}\frac{d^{n-1}y(t)}{dt^{n-1}} + \dots + a_{0}y(t) = b_{n-1}\frac{d^{n-1}}{dt^{n-1}}u(t) + \dots + b_{0}u(t)$$

Introducing the Heaviside, or differential, operator  $\rho(\circ)$ :

$$\rho \langle f(t) \rangle = \rho f(t) \triangleq \frac{df(t)}{dt}$$

$$\rho^n \langle f(t) \rangle = \rho^n f(t) = \rho \left\langle \rho^{n-1} \langle f(t) \rangle \right\rangle = \frac{df^n(t)}{dt^n}$$

We obtain:

$$\rho^{n} y(t) + a_{n-1} \rho^{n-1} y(t) + \ldots + a_{0} y(t) = b_{n-1} \rho^{n-1} u(t) + \ldots + b_{0} u(t)$$

**Notes on Continuous Time Signals** 

## Laplace Transforms

The study of differential equations of the type described above is a rich and interesting subject. Of all the methods available for studying linear differential equations, one particularly useful tool is provided by Laplace Transforms.

#### Definition of the Transform

Consider a continuous time signal y(t);  $0 \le t < \infty$ . The Laplace transform pair associated with y(t) is defined as

$$\mathcal{L}[y(t)] = Y(s) = \int_{0^{-}}^{\infty} e^{-st} y(t) dt$$

$$\mathcal{L}^{-1}[y(s)] = y(t) = \frac{1}{2\pi j} \int_{\sigma - j\infty}^{\sigma + j\infty} e^{st} Y(s) ds$$

**Notes on Continuous Time Signals** 

A key result concerns the transform of the derivative of a function:

$$\mathcal{L}\left[\frac{dy(t)}{dt}\right] = sY(s) - y(0^{-})$$

Table 4.1: Laplace transform table

| $f(t) \qquad (t \ge 0)$                      | $\mathcal{L}\left[f(t) ight]$                                                                   | Region of Convergence    |
|----------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------|
| 1                                            |                                                                                                 | $\sigma > 0$             |
| $\delta_D(t)$                                |                                                                                                 | $ \sigma  < \infty$      |
| t                                            | $\frac{1}{s^2}$                                                                                 | $\sigma > 0$             |
| $t^n$ $n \in \mathbb{Z}^+$                   | $\frac{\overline{s^2}}{n!}$                                                                     | $\sigma > 0$             |
| $e^{\alpha t}$ $\alpha \in \mathbb{C}$       | $\frac{1}{s-\alpha}$                                                                            | $\sigma > \Re\{\alpha\}$ |
| $te^{\alpha t} \qquad \alpha \in \mathbb{C}$ | $\frac{1}{(s-\alpha)^2}$                                                                        | $\sigma > \Re\{\alpha\}$ |
| $\cos(\omega_o t)$                           | $\frac{s}{s^2 + \omega_o^2}$                                                                    | $\sigma > 0$             |
| $\sin(\omega_o t)$                           | $s^2 + \omega_0^2$                                                                              | $\sigma > 0$             |
| $e^{\alpha t}\sin(\omega_o t + \beta)$       | $\frac{(\sin \beta)s + \omega_o^2 \cos \beta - \alpha \sin \beta}{(s - \alpha)^2 + \omega_o^2}$ | $\sigma>\Re\{lpha\}$     |
| $t\sin(\omega_o t)$                          | $\frac{2\omega_o s}{(s^2+\omega_o^2)^2}$                                                        | $\sigma > 0$             |
| $t\cos(\omega_o t)$                          | $\frac{s^2 - \omega_o^2}{(s^2 + \omega_o^2)^2}$                                                 | $\sigma > 0$             |
| $\mu(t) - \mu(t - \tau)$                     | $\frac{1-e^{-s\tau}}{s}$                                                                        | $ \sigma  < \infty$      |

Table 4.2: Laplace transform properties. Note that  $F_i(s) = [f_i(t)], Y(s) = [y(t)], k \in \{1,2,3,...\}, f_1(t) = f_2(t) = 0 \ \forall t < 0.$ 

| f(t)                                                                                                    | $\mathcal{L}\left[f(t) ight]$                                                                       | Names                 |
|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------|
| $\sum_{i=1}^{l} a_i f_i(t)$                                                                             | $\sum_{i=1}^{l} a_i F_i(s)$                                                                         | Linear combination    |
| dy(t)                                                                                                   | $sY(s)-y(0^-)$                                                                                      | Derivative Law        |
| $\frac{\frac{d^k y(t)}{dt}}{\frac{d^k y(t)}{dt^k}}$ $\int_{0-}^{t} y(\tau)d\tau$ $y(t-\tau)\mu(t-\tau)$ | $s^{k}Y(s) - \sum_{i=1}^{k} s^{k-i} \frac{d^{i-1}y(t)}{dt^{i-1}} \Big _{t=0^{-}}$                   | High order derivative |
| $\int_{0}^{t} y(\tau)d\tau$                                                                             | $\frac{1}{s}Y(s)$                                                                                   | Integral Law          |
| $y(t-	au)\mu(t-	au)$                                                                                    | $e^{-s\tau}Y(s)$                                                                                    | Delay                 |
| ty(t)                                                                                                   | $-\frac{dY(s)}{ds}$                                                                                 |                       |
| $t^k y(t)$                                                                                              | $(-1)^k \frac{d^k Y}{ds^k}$                                                                         |                       |
| $\int_{0^{-}}^{t} f_1(\tau) f_2(t-\tau) d\tau$                                                          | $F_1(s)F_2(s)$                                                                                      | Convolution           |
| $\lim_{t \to \infty} y(t)$                                                                              | $\lim_{s \to 0} sY(s)$                                                                              | Final Value Theorem   |
| $\lim_{t \to 0^+} y(t)$                                                                                 | $\lim_{s \to \infty} sY(s)$                                                                         | Initial Value Theorem |
| $f_1(t)f_2(t)$                                                                                          | $\frac{1}{2\pi j} \int_{\sigma-j\infty}^{\sigma+j\infty} F_1(\zeta) F_2(s-\zeta) d\zeta$ $F_1(s-a)$ | Time domain product   |
| $e^{at}f_1(t)$                                                                                          | $F_1(s-a)$                                                                                          | Frequency Shift       |

#### **Transfer Functions**

Taking Laplace Transforms converts the differential equation into the following algebraic equation

$$s^{n} Y(s) + a_{n-1} s^{n-1} Y(s) + \dots + a_{0} Y(s)$$

$$= b_{n-1} s^{n-1} U(s) + \dots + b_{0} U(s) + f(s; x_{0})$$

where

$$Y(s) = G(s)U(s)$$

and

$$G(s) = \frac{B(s)}{A(s)}$$

G(s) is called the *transfer function*.

$$A(s) = s^{n} + a_{n-1}s^{n-1} + \dots + a_{0}$$
  

$$B(s) = b_{n-1}s^{n-1} + b_{n-2}s^{n-2} + \dots + b_{0}$$

**Notes on Continuous Time Signals** 

# Transfer Functions for Continuous Time State Space Models

Taking Laplace transform in the state space model equations yields

$$sX(s) - x(0) = AX(s) + BU(s)$$
$$Y(s) = CX(s) + DU(s)$$

and hence

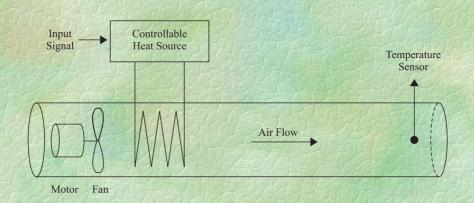
$$X(s) = (s\mathbf{I} - \mathbf{A})^{-1}x(0) + (s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B}U(s)$$

$$Y(s) = [\mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}]U(s) + \mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}x(0)$$

$$Y(s) = \mathbf{G}(s)U(s)$$

$$\mathbf{G}(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}$$

G(s) is the system transfer function.


Often practical systems have a time delay between input and output. This is usually associated with the transport of material from one point to another. For example, if there is a conveyor belt or pipe connecting different parts of a plant, then this will invariably introduce a delay.

The transfer function of a pure delay is of the form (see Table 4.2):

$$H(s) = e^{-sT_d}$$

where  $T_d$  is the delay (in seconds).  $T_d$  will typically vary depending on the transportation speed.

Example 4.4 (Heating system). As a simple example of a system having a pure time delay consider the heating system shown below.



The transfer function from input (the voltage applied to the heating element) to the output (the temperature as seen by the thermocouple) is approximately of the form:

$$H(s) = \frac{Ke^{-sT_d}}{(\tau s + 1)}$$

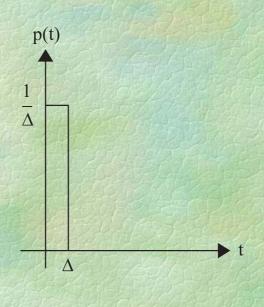
**Notes on Continuous Time Signals** 

### **Summary**

Transfer functions describe the input-output properties of linear systems in algebraic form.

### Stability of Transfer Functions

We say that a system is stable if any bounded input produces a bounded output for all bounded initial conditions. In particular, we can use a partial fraction expansion to decompose the total response of a system into the response of each pole taken separately. For continuous-time systems, we then see that stability requires that the poles have strictly negative real parts, i.e., they need to be in the open left half plane (OLHP) of the complex plane [S]. This implies that, for continuous time systems, the stability boundary is the imaginary axis.


**Notes on Continuous Time Signals** 

## Impulse and Step Responses of Continuous-Time Linear Systems

The transfer function of a continuous time system is the Laplace transform of its response to an impulse (Dirac's delta) with zero initial conditions.

The impulse function can be thought of as the limit  $(\Delta \rightarrow 0)$  of the pulse shown on the next slide.

Figure 4.2: Discrete pulse



## Steady State Step Response

The steady state response (provided it exists) for a unit step is given by

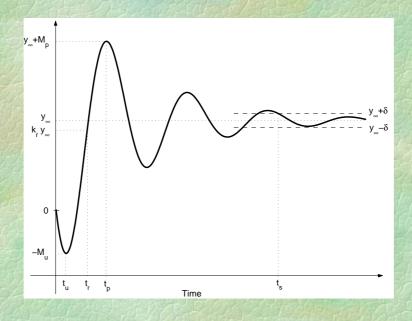
$$\lim_{t \to \infty} y(t) = y_{\infty} = \lim_{s \to \infty} sG(s) \frac{1}{s} = G(0)$$

where G(s) is the transfer function of the system.

We define the following indicators:

Steady state value,  $y_{\infty}$ : the final value of the step response (this is meaningless if the system has poles in the CRHP).

**Rise time, t<sub>r</sub>:** The time elapsed up to the instant at which the step response reaches, for the first time, the value  $k_r y_\infty$ . The constant  $k_r$  varies from author to author, being usually either 0.9 or 1.


Overshoot,  $M_p$ : The maximum instantaneous amount by which the step response exceeds its final value. It is usually expressed as a percentage of  $y_{\infty}$ 

**Notes on Continuous Time Signals** 

**Undershoot, M<sub>u</sub>:** the (absolute value of the) maximum instantaneous amount by which the step response falls below zero.

Settling time,  $t_s$ : the time elapsed until the step response enters (without leaving it afterwards) a specified deviation band,  $\pm \delta$ , around the final value. This deviation  $\delta$ , is usually defined as a percentage of  $y_{\infty}$ , say 2% to 5%.

Figure 4.3: Step response indicators



## Poles, Zeros and Time Responses

We will consider a general transfer function of the form

$$H(s) = K \frac{\prod_{i=1}^{m} (s - \beta_i)}{\prod_{l=1}^{n} (s - \alpha_l)}$$

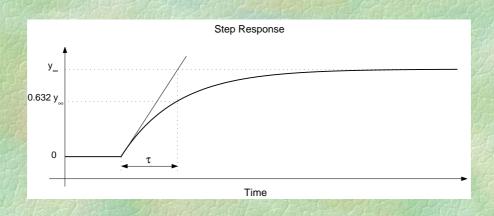
 $\beta_1, \beta_1, ..., \beta_m$  and  $\alpha_1, \alpha_2, ..., \alpha_n$  are the zeros and poles of the transfer function, respectively. The relative degree is  $n_r = n - m$ .

#### Poles

Recall that any scalar rational transfer function can be expanded into a partial fraction expansion, each term of which contains either a single real pole, a complex conjugate pair or multiple combinations with repeated poles.

**Notes on Continuous Time Signals** 

#### First Order Pole


A general first order pole contributes

$$H_1(s) = \frac{K}{\tau s + 1}$$

The response of this system to a unit step can be computed as

$$y(t) = \mathcal{L}^{-1} \left[ \frac{K}{s(\tau s + 1)} \right] = \mathcal{L}^{-1} \left[ \frac{K}{s} - \frac{K\tau}{\tau s + 1} \right] = K(1 - e^{-\frac{t}{\tau}})$$

Figure 4.4: Step response of a first order system

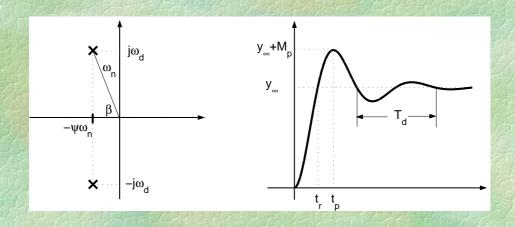


## A Complex Conjugate Pair

For the case of a pair of complex conjugate poles, it is customary to study a *canonical second order* system having the transfer function.

$$H(s) = \frac{\omega_n^2}{s^2 + 2\psi\omega_n s + \omega_n^2}$$

## Step Response for Canonical Second Order Transfer Function


$$Y(s) = \frac{1}{s} - \frac{s + \psi \omega_n}{(s + \psi \omega_n)^2 + \omega_d^2} - \frac{\psi \omega_n}{(s + \psi \omega_n)^2 + \omega_d^2}$$

$$= \frac{1}{s} - \frac{1}{\sqrt{1 - \psi^2}} \left[ \sqrt{1 - \psi^2} \frac{s + \psi \omega_n}{(s + \psi \omega_n)^2 + \omega_d^2} - \psi \frac{\omega_d}{(s + \psi \omega_n)^2 + \omega_d^2} \right]$$

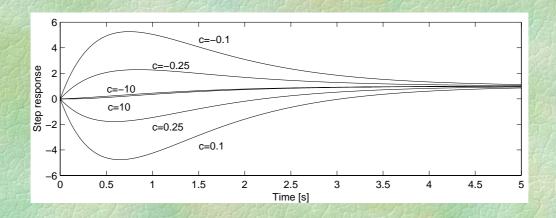
On applying the inverse Laplace transform we finally obtain

$$y(t) = 1 - \frac{e^{-\psi\omega_n t}}{\sqrt{1 - \psi^2}} \sin(\omega_d t + \beta)$$

Figure 4.5: Pole location and unit step response of a canonical second order system.



#### Zeros


The effect that zeros have on the response of a transfer function is a little more subtle than that due to poles. One reason for this is that whilst poles are associated with the states in isolation, zeros rise from additive interactions amongst the states associated with different poles. Moreover, the zeros of a transfer function depend on where the input is applied and how the output is formed as a function of the states.

**Notes on Continuous Time Signals** 

Consider a system with transfer function given by

$$H(s) = \frac{-s+c}{c(s+1)(0.5s+1)}$$

Figure 4.6: Effect of different zero locations on the step response



These results can be explained as we show on the next slides.

**Notes on Continuous Time Signals** 

# Analysis of Effect of Zeros on Step Response

A useful result is:

**Lemma 4.1:** Let H(s) be a strictly proper function of the Laplace variable s with region of convergence  $\Re\{s\} > -\alpha$ . Denote the corresponding time function by h(t),

Then, for any  $z_0$  such that  $\Re\{z_0\} > -\alpha$ , we have  $H(s) = \mathcal{L}[h(t)]$ 

$$\int_0^\infty h(t)e^{-z_0t}dt = \lim_{s \to z_0} H(s)$$

#### Non minimum phase zeros and undershoot.

Assume a linear, stable system with transfer function H(s) having unity d.c. gain and a zero at s=c, where  $c \in \mathbb{Z}^+$ . Further assume that the unit step response, y(t), has a settling time  $t_s$  (see Figure 4.3) i.e.  $1+\delta \ge |y(t)| \ge 1-\delta(<<1), \forall t \ge t_s$ . Then y(t) exhibits an undershoot  $M_u$  which satisfies

$$M_u \ge \frac{1 - \delta}{e^{ct_s} - 1}$$

**Notes on Continuous Time Signals** 

The lemma above establishes that, when a system has non minimum phase zeros, there is a trade off between having a fast step response and having small undershoot.

**Slow zeros and overshoot.** Assume a linear, stable system with transfer function H(s) having unity d.c. gain and a zero at s=c, c<0. Define v(t)=1-y(t), where y(t) is the unit step response. Further assume that

- A-1 The system has dominant pole(s) with real part equal to -p, p>0
- A-2 The zero and the dominant pole are related by

$$\eta \stackrel{\triangle}{=} \left| \frac{c}{p} \right| \ll 1$$

**Notes on Continuous Time Signals** 

A-3 The value of  $\delta$  defining the settling time (see Figure 4.3) is chosen such that there exists 0 < K which yields

$$|v(t)| < Ke^{-pt} \qquad \forall t \ge t_s$$

Then the step response has an overshoot which is bounded below according to

$$M_p \ge \frac{1}{e^{-ct_s} - 1} \left( 1 - \frac{K\eta}{1 - \eta} \right)$$

### Frequency Response

We next study the system response to a rather special input, namely a sine wave. The reason for doing so is that the response to sine waves also contains rich information about the response to other signals.

Let the transfer function be

$$H(s) = K \frac{\sum_{i=0}^{m} b_i s^i}{s^n + \sum_{k=1}^{n-1} a_k s^k}$$

Then the steady state response to the input  $\sin(wt)$  is

$$y(t) = |H(jw)|\sin(wt + \phi(w))$$

where

$$H(j\omega) = |H(j\omega)|e^{j\phi(\omega)}$$

**Notes on Continuous Time Signals** 

#### In summary:

A sine wave input forces a sine wave at the output with the same frequency. Moreover, the amplitude of the output sine wave is modified by a factor equal to the magnitude of H(jw) and the phase is shifted by a quantity equal to the phase of H(jw).

#### **Bode Diagrams**

Bode diagrams consist of a pair of plots. One of these plots depicts the magnitude of the frequency response as a function of the angular frequency, and the other depicts the angle of the frequency response, also as a function of the angular frequency.

Usually, Bode diagrams are drawn with special axes:

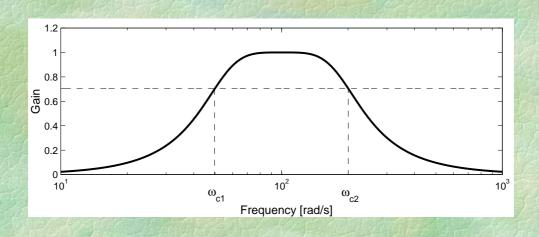
\* The abscissa axis is linear in log(w) where the log is base 10. This allows a compact representation of the frequency response along a wide range of frequencies. The unit on this axis is the decade, where a *decade* is the distance between  $w_1$  and  $10w_1$  for any value of  $w_1$ .

- \* The magnitude of the frequency response is measured in decibels [dB], i.e. in units of  $20\log|H(jw)|$ . This has several advantages, including good accuracy for small and large values of |H(jw)|, facility to build simple approximations for  $20\log|H(jw)|$ , and the fact that the frequency response of cascade systems can be obtained by adding the individual frequency responses.
- The angle is measured on a linear scale in radians or degrees.

### Filtering

In an ideal amplifier, the frequency response would be H(jw) = K, constant  $\forall w$ , i.e. every frequency component would pass through the system with equal gain and no phase.

#### We define:


The pass band in which all frequency components pass through the system with approximately the same amplification (or attenuation) and with a phase shift which is approximately proportional to w.

- \* The *stop band*, in which all frequency components are stopped. In this band |H(jw)| is small compared to the value of |H(jw)| in the pass band.
- \* The *transition band(s)*, which are intermediate between a pass band and a stop band.

- \* Cut-off frequency  $w_c$ . This is a value of w, such that  $|H(jw_c)| = \hat{H}/\sqrt{2}$ , where  $\hat{H}$  is respectively
  - |H(0)| for low pass filters and band reject filters
  - $|H(\infty)|$  for high pass filters
  - the maximum value of |H(jw)| in the pass band, for band pass filters

\* Bandwidth  $B_w$ . This is a measure of the frequency width of the pass band (or the reject band). It is defined as  $B_w = w_{c2} - w_{c1}$ , where  $w_{c2} > w_{c1} \ge 0$ . In this definition,  $w_{c1}$  and  $w_{c2}$  are cut-off frequencies on either side of the pass band or reject band (for low pass filters,  $w_{c1} = 0$ ).

Figure 4.8: Frequency response of a bandpass filter



#### Fourier Transform

Definition of the Fourier Transform

$$\mathcal{F}[f(t)] = F(j\omega) = \int_{-\infty}^{\infty} e^{-j\omega t} f(t) dt$$

$$\mathcal{F}^{-1}\left[F(j\omega)\right] = f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{j\omega t} F(j\omega) d\omega$$

Table 4.3: Fourier transform table

| $f(t) \qquad \forall t \in \mathbb{R}$                          | $\mathcal{F}[f(t)]$                                                                                                 |
|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
|                                                                 | $2\pi\delta(\omega)$                                                                                                |
| $\delta_D(t)$                                                   |                                                                                                                     |
| $\mu(t)$                                                        | $\pi\delta(\omega) + \frac{1}{j\omega}$                                                                             |
| $\mu(t) - \mu(t - t_o)$                                         | $\frac{1-e^{-j\omega t_o}}{j\omega}$                                                                                |
| $e^{\alpha t}\mu(t)$ $\Re\{\alpha\}<0$                          | $\frac{1}{j\omega_{1}-\alpha}$                                                                                      |
| $te^{\alpha t}\mu(t) \qquad \Re\{\alpha\} < 0$                  | $\frac{1}{(j\omega-\alpha)^2}$                                                                                      |
| $e^{-\alpha t } \qquad \alpha \in \mathbb{R}^+$                 | $\frac{2\alpha}{\omega^2 + \alpha^2}$                                                                               |
| $\cos(\omega_o t)$                                              | $\pi \left( \delta(\omega - \omega_o) + \delta(\omega - \omega_o) \right)$                                          |
| $\sin(\omega_o t)$                                              | $j\pi\left(\delta(\omega+\omega_o)-\delta(\omega-\omega_o)\right)$                                                  |
| $\cos(\omega_o t)\mu(t)$                                        | $\pi \left(\delta(\omega - \omega_o) + \delta(\omega - \omega_o)\right) + \frac{j\omega}{-\omega^2 + \omega_o^2}$   |
| $\sin(\omega_o t)\mu(t)$                                        | $j\pi \left(\delta(\omega + \omega_o) - \delta(\omega - \omega_o)\right) + \frac{\omega_o}{-\omega^2 + \omega_o^2}$ |
| $e^{-\alpha t}\cos(\omega_o t)\mu(t)$ $\alpha \in \mathbb{R}^+$ | $\frac{j\omega + \alpha}{(j\omega + \alpha)^2 + \omega_o^2}$                                                        |
| $e^{-\alpha t}\sin(\omega_o t)\mu(t)$ $\alpha \in \mathbb{R}^+$ | $\frac{\omega_o}{(j\omega+\alpha)^2+\omega_o^2}$                                                                    |

Table 4.4: Fourier transforms properties. Note that  $F_i(jw) = F[f_i(t)]$  and Y(jw) = F[y(t)].

| f(t)                                                                             | $\mathcal{F}[f(t)]$                                                                                                                      | Description           |
|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| 1                                                                                |                                                                                                                                          | Description           |
| $\sum_{i=1}^{n} a_i f_i(t)$                                                      | $\sum_{i=1}^{r} a_i F_i(j\omega)$                                                                                                        | Linearity             |
| dy(t)                                                                            | $j=1 \ j\omega Y(j\omega)$                                                                                                               | Derivative law        |
| $\frac{d^{\kappa}y(t)}{dt^{k}}$                                                  | $(j\omega)^k Y(j\omega)$                                                                                                                 | High order derivative |
| $\int_{-\infty}^{\frac{d^{t}y(t)}{dt^{k}}} \int_{y(\tau)d\tau}^{t} y(\tau)d\tau$ | $\frac{1}{j\omega}Y(j\omega) + \pi Y(0)\delta(\omega)$ $e^{-j\omega\tau}Y(j\omega)$                                                      | Integral law          |
| y(t-	au)                                                                         | $e^{-j\omega	au}Y(j\omega)$                                                                                                              | Delay                 |
| y(at)                                                                            | $\frac{1}{ a }Y\left(j\frac{\omega}{a}\right)$                                                                                           | Time scaling          |
| y(-t)                                                                            | $Y(-j\omega)$                                                                                                                            | Time reversal         |
| $\int_{-\infty}^{\infty} f_1(\tau) f_2(t-\tau) d\tau$                            | $F_1(j\omega)F_2(j\omega)$                                                                                                               | Convolution           |
| $y(t)\cos(\omega_o t)$                                                           | $\frac{1}{2} \{ Y(j\omega - j\omega_o) + Y(j\omega + j\omega_o) \}$ $\frac{1}{j2} \{ Y(j\omega - j\omega_o) - Y(j\omega + j\omega_o) \}$ | Modulation (cosine)   |
| $y(t)\sin(\omega_o t)$                                                           | $\frac{1}{i2}\left\{Y(j\omega-j\omega_o)-Y(j\omega+j\omega_o)\right\}$                                                                   | Modulation (sine)     |
| F(t)                                                                             | $2\pi f(-i\omega)$                                                                                                                       | Symmetry              |
| $f_1(t)f_2(t)$                                                                   | $\frac{1}{2\pi j} \int_{\sigma-j\infty}^{\sigma+j\infty} F_1(\zeta) F_2(s-\zeta) d\zeta$                                                 | Time domain product   |
| $e^{at}f_1(t)$                                                                   | $F_1(j\omega-a)$                                                                                                                         | Frequency shift       |

#### A useful result: Parseval's Theorem

Theorem 4.1: Let F(jw) and G(jw) denote the Fourier transform of f(t) and g(t) respectively. Then

$$\int_{-\infty}^{\infty} f(t)g(t) dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(j\omega)G(-j\omega) d\omega$$

Table 4.5: System models and influence of parameter variations

| System                                                | Parameter                                                                      | Step response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Bode (gain)                                                                                                                                   | Bode(phase)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\frac{K}{\tau s + 1}$                                | K                                                                              | K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | K                                                                                                                                             | $-\frac{\pi}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                       | τ                                                                              | Ţ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                               | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\frac{\omega_n^2}{s^2 + 2\psi\omega_n s + \omega^2}$ | ψ                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ψ ,                                                                                                                                           | ψπ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                       | $\omega_n$                                                                     | ω <sub>n</sub> which is a second of the |                                                                                                                                               | $\omega_n$ $-\pi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\frac{as+1}{(s+1)^2}$                                | a                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | a                                                                                                                                             | $-\frac{\pi}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\frac{-as+1}{(s+1)^2}$                               | a                                                                              | a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | a a                                                                                                                                           | 2 <u>m</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                       | $\frac{\omega_n^2}{s^2 + 2\psi\omega_n s + \omega^2}$ $\frac{as + 1}{(s+1)^2}$ | $\frac{K}{\tau s+1} \qquad K$ $\tau$ $\frac{\omega_n^2}{s^2+2\psi\omega_n s+\omega^2} \qquad \psi$ $\omega_n$ $\frac{as+1}{(s+1)^2} \qquad a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\frac{K}{\tau s+1} \qquad K$ $\tau$ $\frac{\omega_n^2}{s^2+2\psi\omega_n s+\omega^2} \qquad \psi$ $\omega_n$ $\frac{as+1}{(s+1)^2} \qquad a$ | $\frac{K}{\tau s+1} \qquad K \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad $ |

## **Summary**

- \* There are two key approaches to linear dynamic models:
  - the, so-called, time domain, and
  - the so-called, frequency domain
- Although these two approaches are largely equivalent, they each have their own particular advantages and it is therefore important to have a good grasp of each.

- . In the time domain,
  - systems are modeled by differential equations
  - systems are characterized by the evolution of their variables (output etc.) in time
  - the evolution of variables in time is computed by solving differential equations

- \* In the frequency domain,
  - modeling exploits the key linear system property that the steady state response to a sinusoid is again a sinusoid of the same frequency; the system only changes amplitude and phase of the input in a fashion uniquely determined by the system at that frequency,
  - systems are modeled by transfer functions, which capture this impact as a function of frequency.

- With respect to the important characteristic of stability, a continuous time system is
  - stable if and only if the real parts of all poles are strictly negative
  - marginally stable if at least one pole is strictly imaginary and no pole has strictly positive real part
  - unstable if the real part of at least one pole is strictly positive
  - non-minimum phase if the real part of at least one zero is strictly positive.