Notes on Modelling

Overview

Modelling

Topics to be covered include:

¢ How to select the appropriate model complexity
< How to build models for a given plant

< How to describe model errors.

< How to linearise nonlinear models

It also provides a brief introduction to certain commonly
used models, including

+¢ State space models

< High order differential and high order difference equation models
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The Raison d'étre for Models

The basic idea of feedback is tremendously
compelling. Recall the mould level control problem
from Lecture 2. Actually, there are only three ways
that a controller could manipulate the valve: open,
close or leave it as it is. Nevertheless, we have seen
already that the precise way this is done involves
subtle trade-offs between conflicting objectives, such
as speed of response and sensitivity to measurement
noise.
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The power of a mathematical model lies in the fact

that it can be simulated in hypothetical situations, be
subject to states that would be dangerous in reality,

and it can be used as a basis for synthesizing controllers.
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Model Complexity

In building a model, it is important to bear in mind
that all real processes are complex and hence any
attempt to build an exact description of the plant is
usually an impossible goal. Fortunately, feedback is
usually very forgiving and hence, in the context of
control system design, one can usually get away with
rather simple models, provided they capture the
essential features of the problem.
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We introduce several terms:

% Nominal model. This is an approximate description of
the plant used for control system design.

s Calibration model. This is a more comprehensive
description of the plant. It includes other features not used
for control system design but which have a direct bearing
on the achieved performance.

¢ Model error. This is the difference between the nominal
model and the calibration model. Details of this error may

be unknown but various bounds may be available for it.
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Building Models

A first possible approach to building a plant model is to postulate a
specific model structure and to use what is known as a black box
approach to modeling. In this approach one varies, either by trial and
error or by an algorithm, the model parameters until the dynamic
behavior of model and plant match sufficiently well.

An alternative approach for dealing with the modeling problem is to
use physical laws (such as conservation of mass, energy and
momentum) to construct the model. In this approach one uses the fact
that, in any real system, there are basic phenomenological laws which
determine the relationships between all the signals in the system.

In practice, it is common to combine both black box and
phenemenological ideas to building a model. 6/25
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Control relevant models are often quite simple
compared to the true process and usually combine
physical reasoning with experimental data.
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State Space Models

For continuous time systems

dx
= — fa(t),u(t), )
=9

y(t) = g(x(t), u(t),t)
For discrete time systems

x[k ot 1] 13 fd(x[k]7u[k]’ k)
ylk] = ga(x[k], ulk], k)
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Linear State Space Models

3/23/2006 9/25

Notes on Modelling

Example 3.3

Consider the simple electrical network shown in
Figure 3.1. Assume we want to model the voltage

v(t)
Ry i(t)
+ [ —
vf(t) T 6\ Rs

On applying fundamental network laws we obtain
the following equations:

Figure 3.1: Electrical
" network. State space model.

. di(t)
v(t) =L T
v¢(t) — v(t) i) + Cdv(t) i v(t) Tk
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These equations can be rearranged as follows:

dift) 1
.

dv(t) 1. 1 1 1
TR <R10 2] R20> Wb i)

We have a linear state space model with

1
A[OI _< : L+ : ) ; B:[ { ]; c=[0 1]; D=0
c R, C R>C R, C
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Example 3.4

Consider a separately excited d.c. motor. Let v_(t)
denote the armature voltage, &t) the output angle. A
simplified schematic diagram of this system is
shown in Figure 3.2.

as Figure 3.2: Simplified model of a d.c. motor 2%
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LIinearisation

Although almost every real system includes
nonlinear features, many systems can be reasonably
described, at least within certain operating ranges, by
linear models.
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Thus consider _
#(t) = f(z(t), u(?))

y(t) = g(a(t), u(t))
Say that {Xo(t), Un(t), Yo(t); t € R} Is a given set of
trajectories that satisfy the above equations, i.e.

iq(t) = f(zq(t), ug(l)

ug(t)); zq(t,) given
ye(t) = glzq(t), uq(t))

g af of
o(t) = f(zg,ug) + S (et —To¥+ el (u(t) — ug)
U=UQ U=UQ
dg dg
t) ~ s )% bl Pl
y( %/Zgl%ggﬁQ,UQ)+ Bl (z{l) = z)+ EAE (u(t) — uq s
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&=t -
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Example 3.6

Consider a continuous time system with true model
given by

(u(t))”

B0 _ falt), u(t) = —/o0 + 2

dt

Assume that the input u(t) fluctuates around u = 2.
Find an operating point with u, =2 and a linearized
model around it.

dAz(t) 3 4
Feh —gAx(t) i §Au(t)
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Figure 3.4: Nonlinear system output, y.(t), and linearised
system output, y,(t), for a square wave input of increasing
amplitude, u(t).
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Example 3.7 (Inverted pendulum)

0(t)

f(t)
% Figure 3.5: Inverted pendulum

In Figure 3.5, we have used the following notation:

y(t) - distance from some reference point

O(t) - angle of pendulum

M - mass of cart

m - mass of pendulum (assumed concentrated at tip)
¢ - length of pendulum
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- forces applied to pendulum
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Example of an Inverted Pendulum
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Application of Newtonian physics to this system
leads to the following model:

i g slin2 o0 [fr(rf) + 0%(t)sin O(t) — g cos O(t) sin O(t)

& 1 f(t) e |
= Do 152 00) [— = cos (t) + 0°(t)sin0(t) cos(t) + (1 — Ay )gsin6(2)

where A= (M/m)
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This is a linear state space model in which A, B and C are:

0 1 0 0 0
00 =2 0 L
A= o 8 Pyl = E s O = (L0,
e =
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Summary

< In order to systematically design a controller for a
particular system, one needs a formal - though possibly
simple - description of the system. Such a description is
called a model.

< A model is a set of mathematical equations that are
intended to capture the effect of certain system variables
on certain other system variables.
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< The italicized expressions above should be understood as
follows:

*
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Certain system variables: It is usually neither possible
nor necessary to model the effect of every variable on
every other variable; one therefore limits oneself to
certain subsets. Typical examples include the effect of
input on output, the effect of disturbances on output, the
effect of a reference signal change on the control signal,
or the effect of various unmeasured internal system
variables on each other.
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L 4

4
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Capture: A model is never perfect and it is therefore
always associated with a modeling error. The word
capture highlights the existence of errors, but does not
yet concern itself with the precise definition of their
type and effect.

Intended: This word is a reminder that one does not
always succeed in finding a model with the desired
accuracy and hence some iterative refinement may be
needed.

Set of mathematical equations: There are numerous
ways of describing the system behavior, such as linear

or nonlinear differential or difference equations. ~ ***
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< Models are classified according to properties of the equation
they are based on. Examples of classification include:

Model
Attribute Contrasting Attribute Asserts whether or not ...
Single input
Single output Multiple input multiple output ... the model equations have one input and one output only
Linear Nonlinear ... the model equations are linear in the system variables
Time varying Time invariant ... the model parameters are constant
Continuous Sampled ... model equations describe the behavior at every instant of

time, or only in discrete samples of time

Input-output

State space

... the model equations rely on functions of input and output
variables only, or also include the so called state variables.

Lumped
parameter

Distributed parameter

... the model equations are ordinary or partial differential

equations

< In many situations nonlinear models can be linearised
around a user defined operating point.
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